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The pentose phosphate pathway (PPP) branches from glucose 6-phosphate (G6P),

produces NADPH and ribose 5-phosphate (R5P), and shunts carbons back to the

glycolytic or gluconeogenic pathway. The PPP has been demonstrated to be a major

regulator for cellular reduction-oxidation (redox) homeostasis and biosynthesis. Enzymes

in the PPP are reported to play important roles in many human diseases. In this review,

we will discuss the role of the PPP in type 2 diabetes and cancer.
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INTRODUCTION

The pentose phosphate pathway (PPP), also known as the pentose phosphate shunt, is an
important part of glucose metabolism. The PPP branches after the first step of glycolysis and
consumes the intermediate glucose 6-phosphate (G6P) to generate fructose 6-phosphate (F6P)
and glyceraldehyde 3-phosphate (G3P) through the oxidative and non-oxidative branches of
the PPP. Unlike glycolysis and glucose aerobic oxidation, the PPP does not provide adenosine
5′-triphosphate (ATP) to meet the energy demands of cells. Instead, it supplies NADPH and ribose
5-phosphate (R5P). These two metabolites are vital for the survival and proliferation of cells. R5P is
a building block for nucleic acid synthesis. NADPH is the reducing power required for the synthesis
of fatty acids, sterols, nucleotides and non-essential amino acids (1, 2). Moreover, NADPH-derived
conversion of oxidized glutathione (GSSG) to reduced glutathione (GSH) via glutathione reductase
is important for cellular antioxidant defenses. Interestingly, NADPH also serves as the substrate of
NADPH oxidases (NOXs) which produce reactive oxygen species (ROS) (3).

Both the oxidative branch and non-oxidative branch of the PPP take place in the cytosol
(Figure 1). Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the
oxidative PPP, determining the flux of G6P directed into the pathway. G6PD catalyzes
the conversion of G6P to 6-phosphogluconolactone, accompanied by NADPH production.
6-phosphogluconolactonase (6PGL) is the enzyme that hydrolyses 6-phosphogluconolactone to
produce 6-phosphogluconate (6PG). 6-phosphogluconate dehydrogenase (6PGD) converts 6-PG
to ribulose 5-phosphate (Ru5P) and generates NAPDH (Figure 1). The largest contributor
to cytosolic NADPH is the oxidative PPP in mammalian cells. Moreover, at least 3 other
cytoplasmic enzymes including isocitrate dehydrogenase 1 (IDH1), malic enzyme 1 (ME1) and
10-formyltetrahydrofolate dehydrogenase (ALDH1L1) contribute to NADPH synthesis in cytosol.
Furthermore, mitochondrial NADPH production is dependent on at least 5mitochondrial enzymes
including nicotinamide nucleotide transhydrogenase (NNT), isocitrate dehydrogenase 2 (IDH2),
malic enzyme 3 (ME3), mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase
(ALDH1L2) and methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L) (4).

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00365
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00365&domain=pdf&date_stamp=2020-06-09
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xuemeitong@shsmu.edu.cn
https://doi.org/10.3389/fendo.2020.00365
https://www.frontiersin.org/articles/10.3389/fendo.2020.00365/full
http://loop.frontiersin.org/people/865934/overview
http://loop.frontiersin.org/people/838417/overview
http://loop.frontiersin.org/people/992027/overview
http://loop.frontiersin.org/people/992034/overview
http://loop.frontiersin.org/people/991823/overview
http://loop.frontiersin.org/people/586834/overview


Ge et al. The PPP Pathway in Metabolic & Diseases

FIGURE 1 | The pentose phosphate pathway (PPP). The PPP branches after the first step of glycolysis and goes back to fructose 6-phosphate and glyceraldehyde

3-phosphate in the glycolytic and gluconeogenic pathway. The PPP produces R5P and NADPH for biosynthesis and redox regulation. Enzymes in the oxidative and

non-oxidative PPP are shaded in green.

The non-oxidative branch is composed of a series of
reversible transfer reactions of chemical groups. Ribose 5-
phosphate isomerase (RPI) and ribulose 5-phosphate epimerase
(RPE) catalyze reversible reactions converting Ru5P to R5P
and xylulose 5-phosphate (Xu5P), respectively. TKT catalyzes
two reversible reactions. One is the conversion of Xu5P
and R5P to G3P and sedoheptulose 7-phosphate (S7P). The
other is the conversion of Xu5P and erythrose 4-phosphate
(E4P) to G3P and F6P. Therefore, TKT can bi-directionally
regulate the carbon flux between the non-oxidative PPP and
glycolysis or gluconeogenesis. Transaldolase (TALDO) reversibly
converts G3P and S7P to E4P and F6P. The non-oxidative
branch not only replenishes metabolites of the oxidative branch
by the reversible reactions, but also regulates the flux of
glycolysis or gluconeogenesis by providing F6P and G3P (5)
(Figure 1).

THE ROLE OF THE PPP IN TYPE 2
DIABETES MELLITUS (T2DM)

T2DM is a chronic metabolic disease featured by persistently
abnormal hyperglycemia, which can cause serious chronic
damage to kidneys, eyes, and nerves. Deregulated insulin
secretion and progressive insulin resistance are two main
characteristics of T2DM (6). Over the past few decades, studies
on the pathogenesis of T2DM have revealed a close relationship
between the PPP, obesity-related insulin resistance and T2DM.
In this part, we will mainly focus on the role of the PPP in

obesity-related insulin resistance, insulin secretion and chronic
diabetic complications.

The Role of the PPP in Obesity-Related
Insulin Resistance
The term “insulin resistance” indicates that insulin-responsive
tissues such as the liver, adipose tissue, and skeletal muscle
reduce insulin-mediated glucose uptake, contributing to
hyperglycemia (7). Pancreatic islet β cells, therefore, have to
secrete more insulin to compensate for insulin resistance,
resulting in hyperinsulinemia which leads to dysfunction of β

cells and T2DM.
Obesity is closely related to the onset of insulin resistance.

Chronic obesity-induced inflammation is one of the major
causes of obesity-related insulin resistance. Adipose tissue
macrophages (ATMs) surrounding dead adipocytes cause
obesity-induced inflammation and secrete pro-inflammatory
cytokines leading to local insulin resistance in adipose tissues
(8). The severity of obesity-induced inflammation correlates
with the degree of obesity. Abnormally increased number and
activity of ATMs as well as higher ratio of pro-inflammatory to
anti-inflammatory macrophages are both hallmarks of obesity-
induced inflammation (9). Different activity of the oxidative
PPP in macrophages contributes to the functional discrepancy
of macrophages. Pro-inflammatory M1 macrophages show
enhanced glycolysis and PPP flux which provides more energy
and NADPH to trigger inflammatory responses, secrete
pro-inflammatory cytokines and recruit more immune cells.

Frontiers in Endocrinology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 365

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Ge et al. The PPP Pathway in Metabolic & Diseases

However, anti-inflammatory M2 macrophages, displaying
decreased glycolysis and PPP flux, work adversely to resolute
inflammatory responses, secreting anti-inflammatory cytokines
to inhibit M1 macrophages (10). The pro-inflammatory
cytokines released by M1 macrophages include tumor necrosis
factor-α (TNF-α) and interleukin 1β (IL-1β). TNF-α and
IL-1β contribute to insulin resistance in adipose tissues by
altering the insulin receptor signaling pathway via the stress-
responsive c-Jun-NH2-terminal kinase (JNK 1/2), inhibitor of
κB kinase (IKK) and mitogen-activated protein kinase (MAPK)
p38 (11, 12). In contrast, M2 macrophages secret the anti-
inflammatory cytokines including interleukin 10 (IL-10) and
arginase1 and maintain insulin sensitivity (12, 13). In addition,
pro-inflammatory cytokines recruit more monocytes to adipose
tissues, resulting in more severe obesity-induced inflammation.
This amplifying feedback loop aggravates local insulin resistance.

Moreover, obesity-induced inflammation can lead to insulin
resistance in the skeletal muscle or liver, resulting in systemic
insulin resistance (9, 14, 15). Pro-inflammatory cytokines
promote lipolysis in adipocytes, leading to elevated levels of
circulating free fatty acids (FFAs). In the skeletal muscle, FFAs
reduce insulin-stimulated glucose intake, resulting in skeletal
muscle insulin resistance (16). On the other hand, lipolysis
in adipose tissues increases hepatic acetyl CoA levels and
pyruvate carboxylase activity which further promotes hepatic
glucose production. Both hepatic glucose production and pro-
inflammatory cytokines contribute to hepatic insulin resistance
(8, 17, 18). FFAs increase production of ROS in liver, leading
to severe insulin resistance and nonalcoholic steatohepatitis
(NASH) (19). Furthermore, long-term exposure to elevated levels
of FFAs contributes to pancreatic β cells dysfunction and death
(20, 21).

Recent studies suggest that the PPP might serve as a novel and
promising target for modulating obesity-induced inflammation
and insulin sensitivity in different tissues. Over-nutrition causes
excessive FFAs released from adipose tissues which up-regulates
G6PD expression in ATMs. Elevated levels of G6PD in ATMs
can cause obesity-related inflammation (22). Pro-inflammatory
cytokines also increase G6PD expression in adipocytes.
Accordingly, adipocytes secrete adipocytokines including
resistin and TNF-α which further stimulate inflammatory
responses and recruit more monocytes to the inflamed adipose
tissues (23). This vicious cycle promotes obesity-related insulin
resistance, resulting in severe T2DM. The non-oxidative PPP
in adipose tissues also plays an important role in regulating
insulin sensitivity. TKT deficiency in adipocytes results in R5P
accumulation and reduced glycolysis, accompanied by increased
lipolysis and fatty acid β-oxidation. Therefore, loss of TKT in
adipose tissues alleviates high fat diet (HFD)-induced obesity,
leading to reduced hepatic steatosis and improved insulin
sensitivity (24). Moreover, increased expression of G6PD in
hepatocytes generates more NADPH for de novo lipogenesis
(DNL) which promotes hepatic steatosis and insulin resistance
(25, 26). Interestingly, excessive NADPH in liver may contribute
to oxidative stress via NOXs, leading to liver damage and insulin
resistance (27). The peroxisome proliferator-activated receptor
δ (PPARδ) reduces hepatic glucose output and improves insulin

sensitivity partly by regulating the PPP flux (28). Furthermore,
G6PD in skeletal muscle regulates glucose uptake and insulin
sensitivity (29). As an excellent intervention in metabolic
diseases, exercise increases the level of peroxisome proliferator-
activated receptor γ coactivator 1α (PGC-1α) which promotes
G6PD transcription and higher intramyocellular lipid (IMCL)
content in skeletal muscles. The combination of increased
muscle PGC-1α expression and exercise greatly enhances insulin
sensitivity (30, 31).

Carbohydrate kinase-like protein (CARKL), also known as
sedoheptulokinase (SHPK), is a carbohydrate kinase catalyzing
the phosphorylation of sedoheptulose to S7P (32). Since S7P
is the substrate for TKT and TALDO, CARKL is important
for regulating the flux through the PPP. High level of S7P
generated by CARKL restricts the reversible reaction in the non-
oxidative PPP, limiting the flux through the PPP. CARKL is
highly expressed in M2 macrophages and its down-regulation
is critical for proper M1 polarization (33, 34) (Figure 2). It is
reasonable to assume that regulating CARKLmay reduce obesity-
induced inflammation, leading to increased insulin sensitivity.
Furthermore, whether TKT and TALDO can direct macrophage
polarization should be studied in the future.

The Role of the PPP in Insulin Secretion
Insulin is stored in granules and released via exocytosis from
pancreatic islet β cells in response to glucose in a biphasic
manner, which is known as the triggering pathway and the
amplifying pathway (35). The amplifying pathway accounts
for the majority of glucose-stimulated insulin secretion (GSIS).
Decreased insulin secretion in the amplifying pathway is often
observed in patients with T2DM. Therefore, how to simulate
insulin secretion during the amplifying pathway is important for
the prevention and treatment of T2DM.

NADPH is one key modulator of the amplifying pathway
because it converts GSSG to GSH which elicits insulin granule
exocytosis via sentrin/SUMO-specific protease-1 (SENP1) (35,
36) (Figure 3). Being a major source for NADPH, the PPP
regulates the GSIS-related NADPH/GSH/SENP1 pathway. Only
optimal levels of G6PD and 6PGD, two enzymes generating
NADPH in the PPP, are beneficial to GSIS. Patients with G6PD
deficiency show decreased insulin secretion (37). Inhibition of
G6PD and 6PGD not only blocks GSIS but also increases
oxidative stress and β cells apoptosis (38, 39). However,
overexpression of G6PD also negatively influences GSIS
which is due to increased expression of NADPH oxidases
(NOXs) and ROS accumulation (40, 41). In conclusion,
the PPP/NADPH/GSH/SENP1 pathway needs to be precisely
controlled to achieve beneficial GSIS.

The Role of the PPP in Chronic Diabetic
Complications
Diabetes can lead to diabetic nephropathy, diabetic retinopathy,
diabetic cardiomyopathy, diabetic macroangiopathy and
other chronic complications. Oxidative stress can cause these
complications by activating the hexosamine pathway, the
advanced glycation end products (AGEs) pathway and the
diacylglycerol (DAG)-protein kinase C (PKC) pathway (42).
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FIGURE 2 | The role of the PPP in insulin resistance. (A) CARKL is highly expressed in M2 macrophages, limiting the PPP flux by inhibiting G6PD. M2 macrophages

release anti-inflammatory mediators including IL-10 and arginase 1 to maintain insulin sensitivity. Decreased G6PD in adipocytes suppresses inflammation and

ameliorates insulin resistance. (B) FFAs and pro-inflammatory cytokines including TNF-α, IL-1β, and resistin increase G6PD expression in both adipocytes and M1

macrophages, which stimulate inflammatory responses leading to insulin resistance.

FIGURE 3 | The role of the PPP in insulin secretion. NADPH from the PPP converts oxidized glutathione (GSSG) to reduced glutathione (GSH). GSH elicits insulin

granule exocytosis via SENP1. However, NADPH might inhibit insulin secretion by promoting NADPH oxidases (NOXs).

Hyperglycemia decreases G6PD activity through the
activation of protein kinase A (PKA) and increase of
intracellular oxidative stress, leading to chronic kidney
injury, and diabetic kidney disease (DKD) (43–45).
Moreover, overexpression of G6PD in endothelial

cells prevents diabetic cardiomyopathy by decreasing
ROS accumulation and increasing endothelial cell
viability (46).

TKT plays an important role in preventing hyperglycemia-
induced vascular cell dysfunction (47). The cofactor of TKT
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is thiamine diphosphate (TDP), the active form of thiamine.
Thiamine deficiency and decreased TKT activity has been
reported to contribute to diabetic complications (48). Low
plasma thiamine was found in patients with DKD and diabetic
rats. After high-dose thiamine therapy, the progression of
proteinuria and microalbuminuria was reversed in both patients
and animal models, indicating that regulating the activity of
TKT may be a promising therapy in treating DKD (47, 49, 50).
Benfotiamine, a lipid-soluble thiamine derivative, can prevent
diabetic retinopathy and cardiomyopathy as well as accelerate the
healing of diabetic limbs by activating TKT (51–53). However,
benfotiamine did not show promising efficacy in phase II and
IV trials for the treatment of DKD or diabetic peripheral nerve
function (54, 55). Therefore, other transketolase activators await
further investigation.

THE ROLE OF THE PPP IN CANCER

The PPP is critical for cancer prevention and treatment because
NADPH and R5P play important roles in regulating DNA
damage response, metabolism, and proliferation in cancer cells.
Various enzymes in the PPP have been shown to be potential
targets in cancer therapy. These proteins not only function as
metabolic enzymes, but also participate in the regulation of other
cellular activities. Therefore, we will summarize recent findings in
upstream signaling pathways regulating PPP enzymes in cancer
initiation and progression (Table 1).

Enzymes in the Oxidative PPP
Up-regulation of the G6PD level or activity is often observed
in many kinds of cancer (79–86). Several signaling pathways
have been identified to be responsible for promoting G6PD
expression or activity in cancer cells (Figure 4). TP53-induced
glycolysis and apoptosis regulator (TIGAR) enhances the
PPP flux and biosynthesis (87). The tumor suppressor p53
directly binds to G6PD and prevents formation of the active
G6PD dimer whereas the mutant p53 fails to inhibit G6PD in
cancer cells (64). The p21-activated kinase 4 (PAK4) regulates
G6PD activity by promoting p53 ubiquitination (81). Bcl-2
associated athanogene 3 (BAG3) inhibits dimerization and
activity of G6PD (62). TAp73, a member of the p53 family
which is often overexpressed in cancers, supports tumor
growth by inducing G6PD expression (56, 57). Nuclear factor
E2-related factor 2 (NRF2) is a transcription factor regulated
by oxidative stress. When the PI3K/Akt signaling pathway
is activated, NRF2 directly increases G6PD, 6PGD, TKT,
and TALDO expression to enhance metabolic activities and
promote cancer cell growth (58). The mammalian target of
rapamycin complex 1 (mTORC1) stimulates the oxidative
branch of the PPP by enhancing the sterol regulatory element-
binding protein (SREBP)-dependent transcription of G6PD
(65, 66). Inhibitor of differentiation and DNA binding-1
(ID1) regulates c-MYC through Wnt/β-catenin pathway
activation to promote G6PD transcription and activate the
PPP (60). Phosphatase and tensin homolog (PTEN) prevents
G6PD from activation via the PTEN/Tcl1/hnRNPK/G6PD
axis (61). Transcription factor yin yang 1 (YY1) regulates

TABLE 1 | The regulation of PPP enzymes in cancer cells.

Enzyme Cancer type Regulation References

G6PD Lung cancer TAp73 transcriptionally activates G6PD (56, 57)

Nrf2 transcriptionally activates G6PD (58)

O-GlcNAcylation of G6PD at S84

enhances its activity

(59)

Liver cancer ID1/Wnt/β-catenin/c-MYC

transcriptionally activates G6PD

(60)

PTEN/Tcl1/hnRNPK regulates

pre-mRNA splicing and activity of G6PD

(61)

BAG3 inhibits dimerization and activity of

G6PD

(62)

Colorectal

cancer

YY1 transcriptionally activates G6PD (63)

P53 inactivates G6PD (64)

Leukemia mTORC1/SREBP1 transcriptionally

activates G6PD

(65, 66)

SIRT2 deacetylates G6PD at K403

which enhances its activity

(67)

Breast cancer NSD2 increases the level of H3K36me2

at the promoter of G6PD and enhances

its expression

(68)

Prostate cancer TRIM21 promotes ubiquitination of

G6PD

(69)

Cervical cancer Plk1 phosphorylates G6PD at T406 and

T466 which promotes its active dimer

formation

(70)

6PGD Lung cancer Nrf2 transcriptionally activates 6PGD (58)

YTHDF2 binds to the m6A modification

site of 6PGD mRNA and promotes its

translation

(71)

DLAT and ACAT2 acetylate 6PGD at K76

and K294 which enhances its activity,

while HDAC4 deacetylates both sites

(72)

Brain cancer EGFR promotes phosphorylation of

6PGD at Y481 by Fyn which enhances

its activity

(73)

RPI/RPE Pancreatic

cancer

Kras G12D transcriptionally activates

RPI/RPE

(74)

TKT Lung cancer Nrf2 transcriptionally activates TKT (58)

Liver cancer BACH1 transcriptionally represses TKT

Nrf2 transcriptionally activates TKT

(75)

Breast cancer PFKFB4/SRC-3-ATF4 transcriptionally

activates TKT

(76)

Leukemia BCR-ABL/HIF-1α transcriptionally

activates TKT

(77)

Pancreatic

cancer

MUC1/HIF-1α transcriptionally activates

TKT

(78)

TALDO Lung cancer Nrf2 transcriptionally activates TALDO (58)

G6PD transcriptional activity by directly binding to the
G6PD promoter (63). Histone H3K36 methyltransferase
NSD2 methylates H3K36me2 at the G6PD promoter to
up-regulate its expression (68). In addition, some post-
translational modifications such as phosphorylation, acetylation,
O-GlcNAcylation and ubiquitination affect the activity of
G6PD (59, 67, 69, 70).

Activated G6PD increases flux through the oxidative
branch of PPP. Up-regulation of the PPP flux provides
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FIGURE 4 | Regulation of G6PD in cancers. Several signaling pathways have been identified to be responsible for promoting G6PD expression or activity in cancer

cells. These signaling pathways interact with each other, adding complexity to the regulation of G6PD.

cells with R5P for nucleotide biosynthesis, as well as
NADPH for biosynthesis and maintaining redox homeostasis
(59, 67, 70). The level of G6PD often negatively correlates to
the prognosis of cancer patients (61). Suppression of G6PD
induces cellular senescence in hepatocellular carcinoma
(HCC) cells and leads to intracellular oxidative stress,
making cancer cells sensitive to chemotherapy (60, 61).
Interestingly, elevated G6PD is not observed in liver cirrhosis
which is a main cause of liver cancer, indicating that G6PD
might play an important role in promoting malignant
transformation (88).

6PGL is found to be associated with shorter overall survival
in breast cancer patients with bone metastases (89). However, the
role of 6PGL in cancer remains to be elucidated.

Elevated 6PGD and its product Ru5P inhibit AMPK activation
by disrupting the active LKB1 complex, which promotes
lipogenesis by abolishing AMPK-dependent acetyl-CoA
carboxylase 1 (ACC1) phosphorylation and inactivation (90). 3-
phosphoglycerate (3-PG), the intermediate product of glycolysis,
inhibits 6PGD enzyme activity. Therefore, elevated glycolytic
enzyme phosphoglycerate mutase 1 (PGAM1) keeps its substrate
3-PG to a relatively low level and promotes the PPP in cancer cells
(91). In addition to its function as a metabolic enzyme, 6PGD
also regulates cell metastasis by promoting phosphorylation of
c-Met (92). 6PGD promotes the formation of distant metastatic
subclones in pancreatic ductal adenocarcinoma (PDAC)
by regulating epigenetic reprogramming. 6PGD inhibitor
6-aminonicotinamide (6AN) selectively and quantitatively
reverses several reprogrammed chromatin modifications and
blocks the tumorigenic potential of distant metastasis (93).
How 6PGD and the PPP regulate epigenetic programs requires
further investigation.

Elevated 6PGD expression and/or enzyme activity is also
found in liver cancer, cervical cancer, thyroid cancer, breast
cancer, ovarian cancer, non-small cell lung cancer (NSCLC)
and leukemia (72, 94–99). In lung cancer, YTH domain family
2 (YTHDF2) promotes 6PGD mRNA translation by directly
binding to the m6A modification site, leading to increased
oxidative PPP flux (71). Post-translational modification of
6PGD is important for cancer cell proliferation and tumor
growth. Acetylation of 6PGD plays a key role in coordinating
redox homeostasis, lipogenesis and glycolysis (72). In glioma,
epidermal growth factor receptor (EGFR) activation increases
6PGDphosphorylation and activation to promote DNA synthesis
and resistance to radiation (73). Patients with lower levels
of 6PGD Y481 phosphorylation have longer median survival
time (73). Aberrant expression of 6PGD can accelerate cancer
cell proliferation and induce resistance to chemical or radical
therapy (72, 94–99). All these findings suggest that inhibiting the
expression or activity of 6PGD might be a promising therapeutic
strategy for cancer.

Enzymes in the Non-oxidative PPP
RPI and RPE expression is induced by the oncogenic Kras
mutation, which is critical for the initiation of PDAC. KrasG12D

regulates the non-oxidative but not oxidative PPP to provide
cancer cells with sufficient R5P for nucleotide biosynthesis (74).
RPI mRNA and protein levels are elevated in HCC. RPI promotes
tumor growth and colony formation by negatively modulating
protein phosphatase 2A (PP2A) to activate extracellular signal-
regulated kinase (ERK) signaling pathways (100). In zebrafish,
overexpression of RPI contributes to fatty liver, liver cirrhosis
and cell proliferation (101). Therefore, whether and how RPI
plays an important role in HCC development is worthy of further
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study. Furthermore, RPI increases the stability of β-catenin and
promotes colorectal tumorigenesis by inducing Wnt target genes
such as Cyclin D1 in zebrafish (102). High level of RPI is reported
to predict negative clinical outcomes of colorectal cancer patients.
Moreover, miRNA-124 decreases glucose metabolism and cell
growth in colorectal cancer by down-regulating RPI (103).

The expression of TKT is elevated in many types of
cancer (75–78, 83, 104). BTB and CNC homolog 1 (BACH1)
and kelch-like ECH-associated protein 1 (KEAP1) negatively
regulate TKT expression while NRF2 positively regulates it
(75). 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4
(PFKFB4) phosphorylates steroid receptor coactivator-3 (SRC-3)
at S857 which increases TKT expression (94). Hypoxia-inducible
factor-1α (HIF-1α) induced in leukemia and pancreatic cancer
enhances the non-oxidative arm of the PPP by promoting TKT
activity, resulting in resistance to chemotherapy (77, 78). In
addition to TKT, its two homologs, transketolase like-1 (TKTL1)
and transketolase like-2 (TKTL2) are also found in human beings
(105). TKT and TKTL1 rather than TKTL2 are essential for
promoting cell growth and reducing oxidative stress in cancer
cells (106, 107).

Patients with pancreatic cancer have higher levels of
serum fructose which induces TKT expression to drive
nucleic acid synthesis in cancer cells (104). TKT can maintain
redox hemostasis by regulating the level of NADPH in
liver cancer cells (75). Inhibition of TKT leads to increased
ROS production and decreased glycolytic flux. Despite
the accumulation of R5P, knockdown of TKT suppresses
tumor growth and sensitizes cancer cells to chemotherapy
(75). Recent work suggests that TKT promotes genome
instability by regulating nucleotide biosynthesis during liver
injury and cancer initiation (108). In addition, TKT can
regulate cell cycle and promote the viability and proliferation
of cancer cells independent of its enzyme activity. TKT
interacting with EGFR and MAPK3 might be the underlying
mechanism (109).

TALDO is highly expressed in gastric adenocarcinoma and
HCC (110, 111). Moreover, higher TALDO expression often
indicates poorer clinical outcomes and more resistance to
trastuzumab therapy in breast cancer. When human epidermal
growth factor receptor 2 (HER2) signaling is inhibited, breast
cancer cells rely on the non-oxidative arm of the PPP to
replenish the oxidative arm. Combined with HER2 inhibition,
TALDO knockdown can exacerbate the reduction of NADPH
and promote cell death (112). Surprisingly, TALDO can
protect against cancer initiation. Loss of TALDO reduces
GSH and diminishes β-catenin phosphorylation and Fas-
dependent apoptosis, promoting hepatocarcinogenesis in mouse
models (113).

COULD PPP BE A TARGET FOR T2DM AND
CANCER?

The major contributor to cytosolic NADPH is the PPP
(114). NADPH, a key intracellular reductant, is required for
glutathione system and other ROS scavengers to maintain

the redox homeostasis (115). High ROS levels not only
damage DNA, proteins and lipids to induce genome
instability and activate NF-κB, PI3K, HIF-1α, and MAPK
which contributes to carcinogenesis (116), but also result in
T2DM (117, 118). Therefore, the PPP serves as an ideal target
for regulating the redox homeostasis in metabolic diseases
and cancer.

The PPP regulates insulin secretion. When insulin or insulin-
like growth factors bind insulin receptor (IR) and insulin-
like growth factor-I receptor (IGF-IR), many downstream
signaling pathways including the Ras/Raf/Mek/Erk pathway
and the PI3K/Akt/mTOR pathway are activated to drive cell
growth and proliferation. Insulin promoting the growth and
proliferation of cells is one of the mechanisms underlying
increased cancer risk in obese and diabetic patients (119, 120).
Chronic inflammation is a well-known hallmark of cancer and
insulin resistance. Obesity-related inflammation is believed to
create a microenvironment contributing to the initiation and
progression of cancer (121). In turn, cancer cells secrete cytokines
to recruit macrophages, leading to cancer-related inflammation,
which plays an important role in cancer cell migration and
invasion (122, 123). Therefore, targeting the PPP to block the
M1 macrophage function is a possible strategy for both T2DM
and cancer.

SUMMARY

The PPP plays a critical role in type 2 diabetes and cancer.
Being the major source for NADPH, the PPP serves an ideal
target for regulating the redox homeostasis in metabolic diseases
and cancer. In addition, the intermediate R5P in the PPP is
a precursor for nucleotide biosynthesis, which is essential for
DNA replication and DNA damage repair. G6PD and 6PGD
are the two enzymes in the PPP which catalyze the reactions
to produce NADPH. Although TKT in the non-oxidative PPP
does not directly catalyze the formation of NADPH, recent
study has revealed its role in regulating cellular NADPH and
R5P levels by balancing the flux between glycolysis and the
PPP. Therefore, G6PD, 6PGD, and TKT are promising targets
in the PPP for prevention and treatment of metabolic diseases
and cancer.
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