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Simple Summary: The coconut rhinoceros beetle is a pest of palm trees, which may have symbiotic gut
microbes that help it digest its food. These microbes may produce enzymes like cellulase, which have
uses in human industry. If the microbes are essential for the beetle’s survival, then finding ways to
attack the microbes could help fight the pest. We sampled microbes from the guts of larval beetles
collected in coconut trees in southern Taiwan, and identified the microbes both by culturing and with
molecular biology methods. We found several species of bacteria and a yeast, Candida xylanolytica,
with potential digestive functions for the beetle. Some of these microbes had been reported in these
beetles before while others are new. Broader surveys of the beetle microbiome are needed to determine
whether or not they have a conserved microbiome.

Abstract: Wood-feeding insects should have a source of enzymes like cellulases to digest their
food. These enzymes can be produced by the insect, or by microbes living in the wood and/or
inside the insect gut. The coconut rhinoceros beetle, Oryctes rhinoceros, is a pest whose digestive
microbes are of considerable interest. This study describes the compartments of the O. rhinoceros
gut and compares their microbiomes using culturing-enriched metabarcoding. Beetle larvae were
collected from a coconut grove in southern Taiwan. Gut contents from the midgut and hindgut
were plated on nutrient agar and selective carboxymethylcellulose agar plates. DNA was extracted
from gut and fat body samples and 16S rDNA metabarcoding performed to identify unculturable
bacteria. Cellulase activity tests were performed on gut fluids and microbe isolates. The midgut
and hindgut both showed cellulolytic activity. Bacillus cereus, Citrobacter koseri, and the cellulolytic
fungus Candida xylanilytica were cultured from both gut sections in most larvae. Metabarcoding did
not find Bacillus cereus, and found that either Citrobacter koseri or Paracoccus sp. were the dominant
gut microbes in any given larva. No significant differences were found between midgut and hindgut
microbiomes. Bacillus cereus and Citrobacter koseri are common animal gut microbes frequently found
in Oryctes rhinoceros studies while Candida xylanilytica and the uncultured Paracoccus sp. had not been
identified in this insect before. Some or all of these may well have digestive functions for the beetle,
and are most likely acquired from the diet, meaning they may be transient commensalists rather than
obligate mutualists. Broader collection efforts and tests with antibiotics will resolve ambiguities in
the beetle–microbe interactions.

Keywords: cellulase; rhinoceros beetles; digestive system; symbiosis; microbiome

1. Introduction

Animals that feed on wood frequently depend on plant cell wall-degrading enzymes, such as
cellulase and xylanase, to degrade their recalcitrant diet into digestible sugars. These enzymes can be
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produced by the animal endogenously, or by microbes living in the wood or in close external or internal
symbioses with the host [1]. These two options are not mutually exclusive, as in the case of termites,
where the insect and their gut microbes produce a cocktail of enzymes to fully digest wood into sugar
monomers [2]. Interest in the digestive enzymes and microbial symbionts of wood-eating insects is
growing due to demand for these enzymes in industries, such as bioconversion [3,4], on top of the
basic science interests in how these systems differ across Insecta and how wood feeding convergently
evolved in different groups [5,6].

The coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), is a widespread
tropical pest of palm trees from India through the South Pacific [7]. The adults bore into and
feed on the crown meristem, destroying the growing points, reducing yields, and stunting or
killing the tree. They are pests of economically important species, such as coconut (Cocos nucifera),
rattan (Calamus sp.), raffia (Raphia ruffia), areca nut (Areca catechu), oil palm (Elaeis sp.), pandan
(Pandanus sp.), salak (Salacca zalacca), sago (Metroxylon sagu), date (Phoenix dactylifera), and ornamental
palms (e.g., Roystonea regia, Livistona chinensis, Corypha umbraculifer). They are also known to feed on
non-palms, such as banana, taro, sugar cane, papaya, sugar apple, and pineapple [8,9]. While the
adults are the destructive stage, the larvae feed on rotting wood from dead or fallen trunks. This wood
is high in plant cell wall polysaccharides, requiring enzymes to break down, but also should be rich
in cellulolytic microbes naturally found in decaying wood. As the larvae and adults do not interact,
any symbiotic microbes the larvae need for digestion, if they exist, would either be passed down
vertically and be housed in tissues, such as mycetocytes in the gut or fat body, or be acquired from the
diet/environment. Analysis of the gut microbiome of such beetle larvae would reveal both transient
microbes passing through the gut with the food and also symbionts, obligate or facultative, that reside
in the gut longer than the transit time needed for food to pass or which replicate and develop in the
gut to reach higher densities than in the substrate [6].

Several researchers have tried to characterize the microbiome of Oryctes rhinoceros, producing
important findings like the pathogenic Oryctes rhinoceros nudivirus used in managing this pest [10] and
the discovery of antimicrobial peptides such as rhinocerosin [11] and scarabaecin [12]. These efforts
typically focused on bacteria and used either culturing or culturing-independent methods, such as
metabarcoding and denatured gradient gel electrophoresis of the 16S rRNA genes to identify and
quantify the microbial community in the guts, with only one study so far attempting both [13].
The results vary, with beetles in different locations having different microbes, and studies on other
species of Oryctes showing different microbiomes yet [14,15]. Efforts to culture microbes expressing
plant cell wall-degrading enzymes in particular have been successful but inconsistent. Cellulolytic
Bacillus brevis was isolated from the beetles in Nigeria [16]; cellulolytic, xylanolytic, and mannolytic
Citrobacter koseri, Bacillus pumilus, Bacillus subtilis, Bacillus cereus, and Bacillus aryabhattai were isolated in
Java, Indonesia [17]; and cellulolytic Citrobacter sp. and lignolytic Bacillus sp. were isolated in Sumatra,
Indonesia [18]. Species of Citrobacter and Bacillus are almost always found in Oryctes rhinoceros studies,
though they are not always checked for enzymatic activity [13,19].

The goals of this experiment were to produce an in-depth look at the gut microbiome of
Oryctes rhinoceros from a single location through a physiological context. This project sought to compare
the microbiome in the larval midgut and hindgut with both culturing and culture-independent analysis,
to look for microbial cellulases, and to describe the gut anatomy, which has not yet been done. This work
thus provides a novel look at how gut physiology, enzymatic digestion, and microbiota interact in this
pest beetle.

2. Materials and Methods

2.1. Insect Source

Larval Oryctes rhinoceros were collected from a single coconut (Cocos nucifera) grove on October
2019 in Tianyu village, Wandan Township, Pingtung County, Taiwan (22◦35′05.4′′ N, 120◦28′22.8′′ E).
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No approval was needed to collect or study these pest insects. O. rhinoceros is the only known Oryctes
species in Taiwan, and larvae were identified as Oryctes using a key [20]. Insects and coconut pulp
were collected in large plastic bins and transported to the Entomology Museum of National Taiwan
University. Larvae survived entirely on the coconut palm they were transported with, and were
maintained in the bins for up to two weeks until dissection. Larvae were between 50 and 70 mm in
length at the time of dissection. Several larvae were maintained until adulthood, and were confirmed
with keys and museum specimens to also be O. rhinoceros.

2.2. Dissection and Microbiology

Larvae were weighed, chilled in a freezer for a few minutes to briefly anaesthetize them, and
surface sterilized for two minutes in 50% bleach and two rinses of ultrafiltered water, and then dissected
under sterile conditions under a laminar flow hood. To culture microbes, incisions were made into the
midgut and hindgut paunches (Figure 1) of six larvae and a weighed amount (≤500 mg) of contents
was added to 1 mL of 10 mM phosphate buffer solution. Five serial 10-fold dilutions were spread
onto plates of HiMedia® Nutrient Agar (HiMedia Laboratories Pvt.Ltd., Dindhori, Nashik, India) and
incubated aerobically at 30 ◦C for 72 h. Individual microbe colonies were isolated into pure cultures on
the basis of morphology and counted across all plates with countable dilutions. The pH of the gut
content was measured with a Hydrion® pH strip (Micro Essential Laboratory Inc., Brooklyn, NY, USA)
dipped into the lumen. Samples of gut contents were briefly examined under a compound microscope
to observe microbes.

2.3. Cellulase Testing

To test the gut for cellulase activity, petri dishes were made with 50 mM citrate-phosphate buffer
solution, 1% agar, and 0.2% carboxymethyl cellulose (CMC) (Fisher Scientific, Leicestershire, UK) or
xylan from corn core (Tokyo Chemical Industry, Tokyo, Japan) as the only carbon source, with pHs of 5,
6.5, and 7.6. From a dissected larva, fresh gut luminal fluid was pipetted from incisions in the six gut
sections as depicted in Figure 1 into small wells cut into the plates with a pipette tip, using 5 and 10 µL
of fluid for CMC and xylan, respectively. Cellulase from Asperillus niger (Tokyo Chemical Industry,
Tokyo, Japan) was used as a positive control, and purified water as a negative control. Plates were
incubated at 40 ◦C in a plastic bag to retain moisture for 48 h. The plates were then flooded with
0.1% Congo Red (Acros Organics, Geel, Belgium) (Color Index No. 22120) in 0.1 M Tris-HCl buffer
(Bioman Scientific Co., Ltd., Jhonghe City, Taiwan) pH 8.0 for 1 h on a shaking plate and then destained
in 1 M NaCl (BioShop® Canada Inc., Burlington, ON, Canada) for at least 1 h. Clear zones indicated
cellulase activity.

To test for cellulolytic microbes, 50 µL from the initial 1-mL sample of midgut or hindgut gut
contents as used for the nutrient agar plates were plated onto CMC agar at pH 5 and allowed to grow.
After colonies were picked for isolation onto CMC agar, the plates were flooded with Congo Red and
destained [21]. Halos of clearing in the plates qualitatively indicate extracellular cellulase activity.
To detect intracellular cellulolytic activity for certain target microbes, the tetrazolium blue method for
determining reducing sugars was used [22,23]. Microbes were grown in HiMedia® nutrient broth at
room temperature for 24 h, then diluted to match a McFarland 5 standard (Creative Media Plate®,
New Taipei City, Taiwan) in optical density. This sample was diluted 1/100 in ultrafiltered water, and
10 µL of this dilution were mixed with 100 µL of 1% CMC in 100 mM sodium acetate buffer (pH 5.5),
vortexed, and incubated at 37 ◦C for 13 min. To stop the reaction, 0.8 mL of tetrazolium blue reagent
were added and the mixture boiled for five minutes. Absorbance at 470 nm was measured using a
Libra S2 spectrophotometer (Biochrom Ltd., Cambridge, UK) and the reducing sugar concentration
calculated by comparison with glucose solution standards. Broth without microbes was the negative
control, and a cellulolytic strain of Chaetomium globosum (Sordariomycetes: Sordariales: Chaetomiaceae)
maintained in the lab was the positive control.
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Figure 1. Diagram of the digestive tract of a larval Oryctes rhinoceros. The numbering corresponds to 
the cellulase and xylanase tests in Figure 2. The foregut is short to nonexistent. Two rows of gastric 
cecae ring the midgut (1–3). Our midgut samples were taken from an incision made between these 
rings (Section 3). The hindgut (4–6) contains a large bulbous fermentation chamber whose entrance 
from the midgut is posterior to its exit, meaning gut contents flow through the hindgut in a 
posterior-anterior direction. Our hindgut samples were taken from an incision in the middle of this 
paunch (5). Figure Credit: Sonja Pinck. 
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Figure 1. Diagram of the digestive tract of a larval Oryctes rhinoceros. The numbering corresponds
to the cellulase and xylanase tests in Figure 2. The foregut is short to nonexistent. Two rows of
gastric cecae ring the midgut (1–3). Our midgut samples were taken from an incision made between
these rings (Section 3). The hindgut (4–6) contains a large bulbous fermentation chamber whose
entrance from the midgut is posterior to its exit, meaning gut contents flow through the hindgut in a
posterior-anterior direction. Our hindgut samples were taken from an incision in the middle of this
paunch (5). Figure Credit: Sonja Pinck.
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Figure 2. Cellulase and xylanase tests of the Oryctes rhinoceros gut at different pHs. Clearings in the 
Congo Red-stained plates indicate positive cellulase or xylanase activity. The positive control is 
commercial cellulase from Asperillus niger (TCI, Japan): (+) is 0.029 U, (++) is 0.29 U. Note that this 
cellulase is not xylanolytic. The negative control (-) is deionized water. The numbering corresponds 
to the sections in Figure 1, with 1–3 from the midgut and 4–6 from the hindgut. The other sample is 
from the soil in which the larvae live. (A) Carboxymethyl cellulose CMC plate at pH 5. (B) CMC plate 
at pH 6.5. (C) CMC plate at pH 7.6. (D) Xylan plate at pH 5. (E) Xylan plate at pH 6.5. (F) Xylan plate 
at 7.6. Photo Credit: Matan Shelomi. 

3.3. Cultured Microbes 

The microbes found in the gut samples are listed in Table 1, with identifications based on 
sequence similarity to the type specimens in the 16S ribosomal RNA sequence database. The bacteria 
Bacillus cereus could be cultured from five out of six larval hindguts and three midguts. Lysinibacillus 
fusiformis was found in four hindguts and only one midgut. Citrobacter koseri, Comamonas 
nitrativorans, and an unidentifiable genus in the Enterobacteriaceae (with 97.74–97.75% 16S sequence 
similarity to Salmonella enterica subsp. arizonae strain DSM 9386, Citrobacter youngae strain GTC 1314, 
and Enterobacter cloacae strain DSM 30054) were found in the midguts and/or hindguts of three 
larvae. The former was the most abundant gut microbe in both the midgut and the hindgut by an 
order of magnitude. The other bacteria were only ever cultured from individual larvae. A fungus 
identified as Candida xylanilytica was found in five midgut and three hindgut samples. Because the 
genomic sequence of this cellulolytic Candida xylanilytica strain’s 18S, ITS (ITS1, 5.8S, and ITS2), and 
D1/D2 regions ambiguously identified it as either Candida xylanilytica or Spathaspora sp. 
(Ascomycota, Saccharomycetes, Debaryomycetaceae), neighbor-joining trees were made for those 
sequences and those of related species of Candida or Spathaspora to verify the identification. The 
results confirmed the cellulolytic yeasts isolated from the larval guts are strains of Candida 
xylanilytica (Figure 3, Supplementary Materials Figures S1and S2). 
  

Figure 2. Cellulase and xylanase tests of the Oryctes rhinoceros gut at different pHs. Clearings in
the Congo Red-stained plates indicate positive cellulase or xylanase activity. The positive control is
commercial cellulase from Asperillus niger (TCI, Japan): (+) is 0.029 U, (++) is 0.29 U. Note that this
cellulase is not xylanolytic. The negative control (-) is deionized water. The numbering corresponds to
the sections in Figure 1, with 1–3 from the midgut and 4–6 from the hindgut. The other sample is from
the soil in which the larvae live. (A) Carboxymethyl cellulose CMC plate at pH 5. (B) CMC plate at
pH 6.5. (C) CMC plate at pH 7.6. (D) Xylan plate at pH 5. (E) Xylan plate at pH 6.5. (F) Xylan plate at
7.6. Photo Credit: Matan Shelomi.

2.4. Cultured Microbe Identification

Clones of individually cultured microbes were examined under a microscope, and a small isolated
colony’s worth of cells lysed in 50 µL of nuclease-free water by heating at 95 ◦C for 10 min. Bacteria were
identified using the 16S gene and fungi with the 18S, 26S (D1/D2), and internal transcribed spacer (ITS)
(ITS1-5.8S-ITS2) genes using the primers in Supplementary Materials Table S1. The PCR conditions
were 95 ◦C for 3 min; 35 cycles of 95 ◦C for 45 s, 52 ◦C for 90 s, and 72 ◦C for 60 s; 72 ◦C for 10 min;
and a hold at 4 ◦C. PCR products were run through an agarose gel and DNA extracted from the cut
bands using a QIAquick® Gel Extraction Kit (Qiagen, Hilden, Germany). The PCR products were
sequenced at the Sanger DNA Sequencing Core Lab of the Center for Biotechnology at National Taiwan
University with an Applied Biosystems® 3730 analyzer (Thermo Fisher Scientific, Waltham, MA, USA).
Forward and reverse sequences were merged using EMBOSS: merger [24] and identified using BLASTn
and the 16S RNA database for bacterial sequences, or the appropriate fungal RNA database (ITS, 26S)
for yeasts, searching only among type strain sequences [25]. For microbes whose identity required
further validation, sequences for the respective barcoding genes from type strains of related species
were downloaded from the DNA Data Bank of Japan (DDBJ) and the National Center for Biotechnology
Information (NCBI) and used to make neighbor-joining trees. A representative strain of each microbe
species was deposited at the Bioresource Collection and Resource Center (BCRC) in Hsinchu, Taiwan.

2.5. Metabarcoding

For complete bacterial microbiome analysis, DNA was extracted from 250 mg of midgut or hindgut
contents from each individual larva using a Geneaid® Presto™ Soil DNA kit (Geneaid Biotech Ltd.,
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New Taipei City, Taiwan). This was done successfully (meaning, the extracted DNA passed quality to
control for metabarcoding) for 16 larvae separately, including 4 of those from whose gut contents an
aliquot was used for culturing. DNA was also successfully extracted from the fat bodies of four larvae,
and from triplicate samples of coconut pulp from the larval rearing container. Quality control consisted
of a NanoDrop (OD260/OD280) test, Agarose Gel Electrophoresis testing of DNA degradation and
potential contamination, and Qubit 2.0 DNA concentration quantification. The extracted DNA was
sequenced by BioTools Co. Ltd. (New Taipei City, Taiwan). Libraries were constructed on a paired-end
Illumina HiSeq platform to generate 250-bp paired-end raw reads of the V3/V4 region of the 16S gene,
which were merged using FLASH [26], and transformed to sequenced reads by base calling.

Results were analyzed via QIIME2 v2019.7 [27]. Denoising was done with deblur, discarding
any features whose abundance in any sample was <1% of the average total reads for the samples.
Samples with only one operational taxonomic unit (OTU) and OTUs present in only one sample were
discarded. Sample microbial diversity was calculated with the minimum sampling depth to keep all
samples (1553), which, for this data set, was still enough for the alpha rarefaction curves to plateau,
meaning the sampling depth was sufficient to assess the species richness of the samples. OTUs were
identified using the SILVA 138 99% OTUs Classifier for 16S [28,29]. The QIIME2 program ancom
(analysis of composition of microbiome) was used to compare the microbiomes between the midgut
and hindgut samples via differential abundance testing.

3. Results

3.1. Anatomy

A diagram of the larval digestive tract is present in Figure 1. The foregut is limited to a short
pharynx or esophagus leading directly and with no obvious demarcation to a swollen cylindrical
midgut. Two rings circle the midgut, each of approximately 30 cecae pointing posteriorly, approximately
1.5 mm long, and filled with a dark substance. The midgut narrows considerably before entering the
hindgut, which starts with a bulbous swollen paunch. Notably, the gut forms an S-bend, with the
“entrance” of the hindgut almost at the posterior end of the insect, while the “exit” of the hindgut is
anterior nearer to where the midgut first thins. Thus, the contents of the hindgut are flowing in a
posterior-to-anterior direction. The contents of both the midgut and the hindgut are dark brown with
the consistency of fine wet soil. The hindgut exits into a thin “rectum” that exits through the anus.
The mass of the hindgut is approximately 150% the mass of the midgut. The pH of the midgut varied
considerably, averaging 6.67 ± 2.08, while the hindgut pH varied less drastically, averaging 6.92 ± 0.88.
Neither section was consistently more or less acidic than the other. The rest of the body of the larva is
comprised almost entirely of diffuse white fat body. Bacteria are visible in the midgut and hindgut
contents, while sparse protozoa were visible in the hindgut.

3.2. Cellulase and Xylanase Activity of the Gut

Testing of the six gut sections identified in Figure 1 (midgut 1-3 and hindgut 4-6) plus a sample
of soil in which the larvae lived showed compartmentalization of plant cell wall degradation was
conducted (Figure 2). Cellulolytic activity was detected in all samples, including the soil, at pH 5 and
6.5, but limited to the hindgut paunch (Sections 4 and 5) at pH 7.6. Xylanolytic activity was limited
to the hindgut paunch at pH 5, limited to the midgut at pH 6.5, and detected somewhat equally in
Sections 1–5 at pH 7.6.

3.3. Cultured Microbes

The microbes found in the gut samples are listed in Table 1, with identifications based on
sequence similarity to the type specimens in the 16S ribosomal RNA sequence database. The bacteria
Bacillus cereus could be cultured from five out of six larval hindguts and three midguts. Lysinibacillus
fusiformis was found in four hindguts and only one midgut. Citrobacter koseri, Comamonas nitrativorans,
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and an unidentifiable genus in the Enterobacteriaceae (with 97.74–97.75% 16S sequence similarity to
Salmonella enterica subsp. arizonae strain DSM 9386, Citrobacter youngae strain GTC 1314, and Enterobacter
cloacae strain DSM 30054) were found in the midguts and/or hindguts of three larvae. The former was
the most abundant gut microbe in both the midgut and the hindgut by an order of magnitude. The other
bacteria were only ever cultured from individual larvae. A fungus identified as Candida xylanilytica
was found in five midgut and three hindgut samples. Because the genomic sequence of this cellulolytic
Candida xylanilytica strain’s 18S, ITS (ITS1, 5.8S, and ITS2), and D1/D2 regions ambiguously identified it
as either Candida xylanilytica or Spathaspora sp. (Ascomycota, Saccharomycetes, Debaryomycetaceae),
neighbor-joining trees were made for those sequences and those of related species of Candida or
Spathaspora to verify the identification. The results confirmed the cellulolytic yeasts isolated from the
larval guts are strains of Candida xylanilytica (Figure 3, Supplementary Materials Figures S1 and S2).

Table 1. Microbes cultured from the midguts and hindguts of larval Oryctes rhinoceros. These microbes
were isolated from six larvae whose gut contents were plated into nutrient agar (NA) and carboxymethyl
cellulose agar (CMC). Microbe identity given is the closest type specimen in the NCBI RNA database,
with sequence similarity in parentheses, except for an Enterobacteriaceae that could not be determined
(see results). Microbial density as colony forming units (CFUs) per milligram of midgut or hindgut
content is estimated by averaging the CFU/mg of each serial dilution plate with a countable number of
colonies of said species, which was only done for NA plates. The ranges varied within an order of
magnitude. The number of midgut samples, hindgut samples, and larvae out of six is given. A dash (-)
means CFU could not be calculated.

Identity Agar Mean CFU/mg (# Samples) # of
LarvaeMidgut Hindgut

Bacillus cereus ATCC 14579 (99.72) NA, CMC 4.7 × 105 (3) 5.5 × 105 (5) 5
Bacillus proteolyticus MCCC 1A00365 (99.79) NA 7.2 × 105 (1) 0 1

Bacillus toyonensis BCT-7112 (99.93) NA 5.0 × 104 (1) 1.5 × 107 (1) 1
* Candida tropicalis ATCC 750 (99.65) CMC - (1) 0 1

* Candida xylanilytica KU-Xn11T (99.85) NA, CMC 9.9 × 106 (5) 3.5 × 107 (3) 5
Citrobacter koseri LMG 5519 (99.44) NA, CMC - (2) 3.1 × 108 (2) 3

Comamonas nitrativorans 23310 (99.15) NA, CMC - (2) 7.4 × 107 (3) 3
Diaphorobacter aerolatus 8604S-37 like (97.38) CMC 0 - (1) 1

Enterobacteriaceae (97.75) NA, CMC 3.5 × 107 (3) 1.4 × 107 (3) 3
Klebsiella pneuomoniae DSM 30104 (99.44) NA, CMC 1.1 × 106 (1) 6.8 × 107 (1) 1

Kluyvera georgiana ATCC 51603 (99.14) NA, CMC 3.5 × 106 (1) 3.9 × 105 (1) 1
Lactococcus lactis NBRC 100933 like (96.45) NA 2.6 × 106 (1) 0 1
Lysinibacillus fusiformis NBRC 15717 (99.30) NA, CMC 1.7 × 105 (1) 1.5 × 105 (4) 4

Pseudomonas citronellolis NBRC 103043
(98.59) NA, CMC 0 5.0 × 106 (1) 1

Staphylococcus epidermidis NBRC 100911
(99.23) NA 5.0 × 103 (1) 0 1

Staphylococcus hominis GTC 1228 (99.65%) NA 0 1.7 × 106 (1) 1
Streptomyces costaricanus NBRC 100773

or
S. murinus NBRC 14802 (99.64)

CMC - (1) - (1) 1

* Trichoderma virens DAOM 164916 (99.19) CMC - (1) 0 1

* Fungi. # Number.

Twelve microbe species could grow on CMC agar (Table 1), including four strains, each found
only in one larva, that were not found growing on nutrient agar plates. Only some Candida xylanilytica
strains and the Candida tropicalis and Streptomyces costaricanus/murinus strains produced clearings in
the agar after staining with Congo Red and destaining with NaCl. Seven Candida xylanilytica strains
were tested for cellulolytic activity with the tetrazolium blue method, and all had cellulase activity
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(Table 2) regardless of whether they tested positive for extracellular cellulase activity with the Congo
Red assays.Insects 2020, 11, x 9 of 15 

 

 
Figure 3. Phylogenetic tree based on D1/D2 region sequence analysis. Samples in red are putative 
Candida xylanolytica strains isolated from larval midguts. The tree was constructed by the 
neighbor-joining method and Saccharomyces cerevisiae was used as the outgroup. Bootstrap values 
(expressed as percentages of 1000 replications) greater than 50% are shown at branch points. Scale 
bar represents 2% sequence divergence. T: type strain. Figure Credit: Ming-Ju Chen. 
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Figure 3. Phylogenetic tree based on D1/D2 region sequence analysis. Samples in red are putative Candida
xylanolytica strains isolated from larval midguts. The tree was constructed by the neighbor-joining
method and Saccharomyces cerevisiae was used as the outgroup. Bootstrap values (expressed as
percentages of 1000 replications) greater than 50% are shown at branch points. Scale bar represents 2%
sequence divergence. T: type strain. Figure Credit: Ming-Ju Chen.

Table 2. Candida xylanilytica strain cellulase test with tetrazolium blue method. Microbes were reared
in nutrient broth, then a sample incubated with CMC in a buffer for 13 min, boiled with tetrazolium
blue reagent for 5 min to stop the reaction, and the color change measured using a spectrophotometer.
By calibrating the machine with known concentrations of glucose, the concentration (M) of reducing
sugars can be quantified. The samples are Candida xylanilytica strains from Oryctes rhinoceros larvae.
The positive control is Chaetomium globosum. The negative control is sterile nutrient broth.

Sample Absorbance at 470 nm M Sugars

L1M1 1.23 0.1665
L2M2 1.41 0.4398

L3CMC4A 1.19 0.1342
L3CMC7 1.11 0.0871

L4M2 0.99 0.0456
L6M4 1.18 0.1271

L6CMC2 1.36 0.3358
Positive control 1.3 0.2429

Negative control 0.54 0.0040

3.4. 16S Microbial Profiling

The raw metabarcoding reads are available on the NCBI Sequence Read Archive,
GenBank Accession Numbers SRR11191467-SRR11191507. A total of 2,765,840 sequence reads
were obtained in the raw data (min 31,370, max 86,727, mean 67,460). Following quality control,
alpha rarefaction at several sampling depths using QIIME2 confirmed that our sequencing had reached
a plateau for all samples, with plateaus reached at <200 sequences (Supplementary Materials Figure S3).
QIIME2 identified 65 bacterial OTUs from the samples sent for metabarcoding, of which 33 were found
in more than one sample (Supplementary Materials Data Sheet S1). ANCOM analysis using QIIME2
revealed no significant differences between the larval midgut and hindgut microbiomes (W = 0 for
all OTUs).
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An OTU identified as Paracoccus was detected in fat body, hindgut, and especially midgut
samples of most larvae and with higher abundance than any other OTU, though not found in the
soil. Citrobacter koseri OTUs were similarly found in gut and fat body samples of several larvae and
in high abundance, and not found in the soil. Notably, larvae with Paracoccus sp. as the dominant
microbe almost always lacked Citrobacter koseri, and vice versa. Lysinibacillus was found in only
three larval midguts, none of which were the ones also used for culturing. A putative new genus
of Anaeroplasma-like Acholeplasmataceae was found in the midguts only of half the samples, and a
putative new species of Erysipelothrix in the midguts of five individuals and fat body of one. A species
of Proteiniphilum was found in four hindguts only but in low abundance. QIIME2 identified two OTUs
as new genera of Oscillospiraceae, each in four separate hindguts, though these could possibly be a
single species found in eight larval hindguts that QIIME2 mistakenly split. Common OTUs found in
both midguts and hindguts were Dysgonomonas spp. in six samples and a new genus of Rhodocyclaceae
in five. In contrast to the culturing results, no Bacillus cereus was found in the microbiome data, and the
only Enterobacteriaceae was Citrobacter koseri.

4. Discussion

Microbes were cultured from a total of 6 larvae and metabarcoding from 16 larvae from the same
coconut grove, which is a comparable sample size to those of similar studies that used typically no more
than 5 samples [4,30–35], and is thus more than adequate to draw conclusions for beetles in this location.
While culturing can only reveal a small portion of the microbial diversity of a sample, and aerobic
culturing would miss the anaerobic microbes thought to dominate in an insect gut, the culturing data
from this study is still fully comparable to culturing data performed by other researchers worldwide,
and when combined with the metabarcoding can produce a more reliable picture of the true microbiome
than either method alone.

Bacillus cereus is likely a ubiquitous microbial resident of the Oryctes rhinoceros digestive tract, as it
or other members of the notoriously genetically similar Bacillus genus [36] have also been found in all
previous studies of this species’ microbiomes [13,16–19]. While none of our strains produced cellulase
with the Congo Red assay, cellulolytic strains of B. cereus exist, so it could provide symbiotic digestive
functions to Oryctes. However, B. cereus is an extremely cosmopolitan species associated with a wide
variety of animal digestive tracts [37–39], and so less likely to be an essential microbial symbiont for
O. rhinoceros (unless one assumes that it plays important roles in an extremely diverse set of vertebrate
and invertebrate organisms, which is indeed possible). More disconcerting is the absence of B. cereus
from the molecular barcoding data; however, it is not unusual for the microbes found in culturing
to differ from those in culture-independent data from the same individuals [40]. The alternative
explanation is that B. cereus is a contaminant of the laboratory equipment involved in culturing but
that is unlikely given its presence in all past Oryctes rhinoceros work from other laboratories [17–19].
Testing the B. cereus strains for extra- and intracellular cellulolytic activity would verify if they can help
the larvae digest wood, and will be done in the future. Regardless of those results, these strains are
almost certainly orally acquired and possibly transient gut microbes passing through the gut with
the food.

Citrobacter koseri is the other microbe consistently found in Oryctes rhinoceros microbiome
studies [13,17], and was the most abundant microbe in our samples in terms of CFU per mg, but it too
is cosmopolitan and frequently found to be associated with insect digestive tracts [37]. Some strains of
Citrobacter koseri and other Enterobacteriaceae can produce cellulases under certain conditions [41].
Paracoccus was found in the microbiomes of larvae that did not have Citrobacter koseri, and which
were collected on a different day (Supplementary Materials Data Sheet S1). An anaerobic cellulolytic
Paracoccus species has been detected in a scarab beetle gut before [37]. Thus, while these microbes may
well have digestive roles in Oryctes rhinoceros, not enough evidence exists at this time to claim this with
certainty. Even if they are cellulolytic, these microbes are likely orally acquired and possibly transient
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gut microbes passing through the gut with the food, although none were found in the DNA extracted
from the coconut pulp itself (Supplementary Materials Data Sheet S1).

While several microbes grew on CMC agar, little evidence of extracellular cellulase production
was found using the Congo Red assays except for some Candida xylanilytica strains. Testing for cellulase
activity with the tetrazolium blue method was only performed for Candida xylanilytica, and yielded
positive results. This recently discovered fungus [42] is related to the Spathaspora clade known to be
associated with rotting wood and wood-boring insects [43], and likely provides enzymatic digestion
for the beetle, but whether this function is essential to the fitness of the species is presently unknowable.
This microbe was found in the midguts and hindguts of almost all beetles in this study but had not been
noted in previous studies, largely because they focused on bacteria. Future collection efforts across
Taiwan are underway to determine how widely spread this yeast is in Oryctes rhinoceros digestive tracts.
Cellulolytic strain L1M1 of the Candida xylanilytica is stored and publicly available at the Bioresource
Collection and Research Center in Hsinchu, Taiwan (BCRC: 23544). Because this metabarcoding study
only looked at bacterial diversity, it missed the Candida xylanolytica along with any protozoa in the
samples, some of which were visible in the hindgut samples under a microscope (albeit in far lower
abundance compared to an equivalent sample from a termite). Future projects focusing on fungal and
protozoan diversity in Oryctes are thus justified.

Lysinibacillus fusiformis (syn. Lysinibacillus sphaericus, Bacillus fusiformis, Bacillus sphaericus) was
commonly found, yet is also cosmopolitan, and a known insect pathogen [44]. While cultured often,
it was less abundant in the metagenomic data, suggesting it is not as widely conserved in the larval
guts. The putative symbionts of Proteiniphilum, Erysipelothrix, and the unidentifiable Oscillospiraceae
and Acholeplasmataceae are seemingly specific to either the midgut or the hindgut and could be linked
to the different pH optimal for cellulolytic activity in the midgut and hindgut; however, they are not
known from previous molecular datasets. Likewise, several microbes identified in previous work as
being possible symbionts were not observed in this study: namely Desulfovibrio sp., Treponema sp.,
Endomicrobium sp., and Bastocystis sp. [13]. Comparative microbiome analysis of samples found across
greater geographic distance and feeding on different plants are necessary to separate transient microbes
picked up from the specific location where a larva feeds from genuine symbionts, and such work is
presently ongoing. One should also remember that not all organisms have an obligate microbiome [45],
and transient or environmentally acquired gut microbes can still have powerful impacts on insect
survival and fitness, so final conclusions on the importance of microbes to an insect’s fitness will
require assays with antibiotics or axenically reared insects.

The function of the two rings of midgut cecae remains unknown, but the data does not suggest a
microbe-related hypothesis for their function. The midgut and hindgut are clearly separated from
each other, and their gut fluids are cellulolytic at different pH levels, suggesting compartmentalized
digestion [46]. The large paunch-like hindgut of the beetles and the greater cellulolytic and xylanolytic
ability detected there suggest a microbial fermentation chamber, and the S-bend of the gut would
increase the transit time for food to provide increased time for digestion [46]. However, the absence of
significant differences in the pH or bacterial diversity of the midgut and hindgut in Oryctes rhinoceros
cast doubt on whether microbial fermentation is critical for cellulase digestion in the gut the way it is in
lower termites. Rather, the gut may be an opportune location for cellulolytic microbes found in the food
to continue their activity, while, otherwise, the beetle’s digestion is symbiont independent, using the
endogenous cellulase identified in the Oryctes rhinoceros transcriptome [13]. Microbe-independent
digestion is surprisingly common in insects [45], so insects should not automatically be assumed to
have symbionts. The lack of opportunities for horizontal microbe transfer in these non-colonial beetles
would preclude the evolution of obligate symbioses like in the termite hindgut; however, the existence
of vertically transmitted microbes cannot be ruled out at this time, and the hypothesis that cellulolytic
B. cereus and Candida xylanilytica play digestive functions in the insect is still supportable. Molecular
analysis of the microbiome, if present, of the adult ovaries would quickly identify potential vertically
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transmitted microbes, and fluorescent in situ hybridization of these species would better visualize in
what gut areas or tissues these microbes are found [47].

5. Conclusions

The digestive system of the Oryctes rhinoceros larva includes a midgut with cecae and a swollen
hindgut paunch. Both gut sections show cellulolytic and xylanolytic activity, and the bacterial
populations in the two gut sections are similar. Dominant microbes include Citrobacter koseri,
Bacillus cereus, an unculturable Paracoccus sp., and the fungus Candida xylanolytica. Some of these
microbes are likely acquired from the environment given their known cosmopolitanism, but all have
documented or demonstrated cellulolytic abilities, so whether they are commensalists or mutualists
that help the beetle larvae digest their food remains to be proven.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/11/0782/s1,
Figure S1: Phylogenetic tree based on 18S rRNA sequence analysis, Figure S2: Phylogenetic tree based on
ITS1-5.8S-ITS2 region sequence analysis, Figure S3: Alpha rarefaction curve for metabarcoding using Faith’s PD
metric, confirming plateaus were reached at our sequencing depth of 1553 for all samples, Data Sheet S1: Results
of the Oryctes rhinoceros metabarcoding study, Table S1: Primers used to identify cultured microbes.
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26. Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies.
Bioinform 2011, 27, 2957–2963. [CrossRef] [PubMed]

27. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.;
Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science
using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [CrossRef]

28. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA
ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res.
2012, 41, D590–D596. [CrossRef]

29. Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.;
Glöckner, F.O. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids
Res. 2014, 42, D643–D648. [CrossRef]

http://dx.doi.org/10.1016/j.jip.2005.02.010
http://www.ncbi.nlm.nih.gov/pubmed/16039308
http://dx.doi.org/10.1046/j.1432-1327.1998.2550734.x
http://www.ncbi.nlm.nih.gov/pubmed/9738915
http://dx.doi.org/10.1016/S0006-291X(03)01162-8
http://dx.doi.org/10.1186/s12864-019-6352-3
http://www.ncbi.nlm.nih.gov/pubmed/31818246
http://dx.doi.org/10.1186/s12866-015-0422-8
http://dx.doi.org/10.13057/biodiv/d170111
http://dx.doi.org/10.32734/injar.v1i2.314
http://dx.doi.org/10.1002/ps.4880
http://dx.doi.org/10.1603/0013-8746(2000)093[0090:SFKTIL]2.0.CO;2
http://dx.doi.org/10.1128/AEM.43.4.777-780.1982
http://dx.doi.org/10.1016/0165-022X(85)90046-6
http://dx.doi.org/10.1111/j.1365-2583.2010.00991.x
http://www.bioinformatics.nl/cgi-bin/emboss/merger
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
http://dx.doi.org/10.1038/s41587-019-0209-9
http://dx.doi.org/10.1093/nar/gks1219
http://dx.doi.org/10.1093/nar/gkt1209


Insects 2020, 11, 0782 13 of 13

30. Ceja-Navarro, J.A.; Karaoz, U.; Bill, M.; Hao, Z.; White, R.A., 3rd; Arellano, A.; Ramanculova, L.; Filley, T.R.;
Berry, T.D.; Conrad, M.E.; et al. Gut anatomical properties and microbial functional assembly promote
lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat. Microbiol. 2019, 4,
864–875. [CrossRef]

31. Xu, L.; Lu, M.; Xu, D.; Chen, L.; Sun, J. Sexual variation of bacterial microbiota of Dendroctonus valens guts
and frass in relation to verbenone production. J. Insect Physiol. 2016, 95, 110–117. [CrossRef]

32. Xu, L.; Deng, J.; Zhou, F.; Cheng, C.; Zhang, L.; Zhang, J.; Lu, M. Gut microbiota in an invasive bark beetle
infected by a pathogenic fungus accelerates beetle mortality. J. Pest Sci. 2019, 92, 343–351. [CrossRef]

33. Montagna, M.; Gómez-Zurita, J.; Giorgi, A.; Epis, S.; Lozzia, G.; Bandi, C. Metamicrobiomics in herbivore
beetles of the genus Cryptocephalus (Chrysomelidae): Toward the understanding of ecological determinants
in insect symbiosis. Insect Sci. 2015, 22, 340–352. [CrossRef]

34. Shukla, S.P.; Vogel, H.; Heckel, D.G.; Vilcinskas, A.; Kaltenpoth, M. Burying beetles regulate the microbiome
of carcasses and use it to transmit a core microbiota to their offspring. Mol. Ecol. 2018, 27, 1980–1991.
[CrossRef] [PubMed]

35. Franzini, P.Z.N.; Ramond, J.-B.; Scholtz, C.H.; Sole, C.L.; Ronca, S.; Cowan, D.A. The Gut Microbiomes of
Two Pachysoma MacLeay Desert Dung Beetle Species (Coleoptera: Scarabaeidae: Scarabaeinae) Feeding on
Different Diets. PLoS ONE 2016, 11, e0161118. [CrossRef]

36. Rasko, D.A.; Altherr, M.R.; Han, C.S.; Ravel, J. Genomics of the Bacillus cereus group of organisms.
FEMS Microbiol. Rev. 2005, 29, 303–329. [CrossRef] [PubMed]

37. Huang, S.; Sheng, P.; Zhang, H. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia
parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 2012, 13, 2563–2577. [CrossRef] [PubMed]

38. Mereghetti, V.; Chouaia, B.; Montagna, M. New Insights into the Microbiota of Moth Pests. Int. J. Mol. Sci.
2017, 18, 2450. [CrossRef] [PubMed]

39. Jensen, G.; Hansen, B.; Eilenberg, J.; Mahillon, J. The hidden lifestyles of Bacillus cereus and relatives.
Environ. Micobiol. 2003, 5, 631–640. [CrossRef] [PubMed]

40. Wang, Y.; Zhang, Y. Investigation of Gut-Associated Bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae)
Larvae Using Culture-Dependent and DGGE Methods. Ann. Entomol. Soc. Am. 2015, 108, 941–949.
[CrossRef]

41. Römling, U. Cellulose biosynthesis in Enterobacteriaceae. In Cellulose: Molecular and Structural Biology;
Brown, R.M., Jr., Saxena, I.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 107–122. [CrossRef]

42. Boonmak, C.; Limtong, S.; Jindamorakot, S.; Am-In, S.; Yongmanitchai, W.; Suzuki, K.-i.; Nakase, T.;
Kawasaki, H. Candida xylanilytica sp. nov., a xylan-degrading yeast species isolated from Thailand. Int. J.
Syst. Evol. Micobiol. 2011, 61, 1230–1234. [CrossRef]

43. Cadete, R.M.; Lopes, M.R.; Rosa, C.A. Yeasts Associated with Decomposing Plant Material and Rotting
Wood. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.-A., Yurkov, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 265–292. [CrossRef]

44. Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Path 2012, 109, 1–10.
[CrossRef]

45. Hammer, T.J.; Janzen, D.H.; Hallwachs, W.; Jaffe, S.P.; Fierer, N. Caterpillars lack a resident gut microbiome.
PNAS 2017, 114, 9641–9646. [CrossRef]

46. Watanabe, H.; Tokuda, G. Cellulolytic systems in insects. Ann. Rev. Entomol. 2010, 55, 609–632. [CrossRef]
[PubMed]

47. Kliot, A.; Kontsedalov, S.; Lebedev, G.; Brumin, M.; Cathrin, P.B.; Marubayashi, J.M.; Skaljac, M.; Belausov, E.;
Czosnek, H.; Ghanim, M. Fluorescence in situ Hybridizations (FISH) for the Localization of Viruses and
Endosymbiotic Bacteria in Plant and Insect Tissues. JoVE 2014, 84, e51030. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41564-019-0384-y
http://dx.doi.org/10.1016/j.jinsphys.2016.09.014
http://dx.doi.org/10.1007/s10340-018-0999-4
http://dx.doi.org/10.1111/1744-7917.12143
http://dx.doi.org/10.1111/mec.14269
http://www.ncbi.nlm.nih.gov/pubmed/28748615
http://dx.doi.org/10.1371/journal.pone.0161118
http://dx.doi.org/10.1016/j.fmrre.2004.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15808746
http://dx.doi.org/10.3390/ijms13032563
http://www.ncbi.nlm.nih.gov/pubmed/22489111
http://dx.doi.org/10.3390/ijms18112450
http://www.ncbi.nlm.nih.gov/pubmed/29156569
http://dx.doi.org/10.1046/j.1462-2920.2003.00461.x
http://www.ncbi.nlm.nih.gov/pubmed/12871230
http://dx.doi.org/10.1093/aesa/sav079
http://dx.doi.org/10.1007/978-1-4020-5380-1_7
http://dx.doi.org/10.1099/ijs.0.021873-0
http://dx.doi.org/10.1007/978-3-319-62683-3_9
http://dx.doi.org/10.1016/j.jip.2011.11.008
http://dx.doi.org/10.1073/pnas.1707186114
http://dx.doi.org/10.1146/annurev-ento-112408-085319
http://www.ncbi.nlm.nih.gov/pubmed/19754245
http://dx.doi.org/10.3791/51030
http://www.ncbi.nlm.nih.gov/pubmed/24637389
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Insect Source 
	Dissection and Microbiology 
	Cellulase Testing 
	Cultured Microbe Identification 
	Metabarcoding 

	Results 
	Anatomy 
	Cellulase and Xylanase Activity of the Gut 
	Cultured Microbes 
	16S Microbial Profiling 

	Discussion 
	Conclusions 
	References

