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Biodiesel is considered a potential substitute for fossil diesel because of its

unique environmentally friendly and renewable advantages. The efficient and

durable heterogeneous catalysts are vital to greenly and efficiently drive the

biodiesel production process. The ionic liquid-functionalized materials,

possessing the characteristics of both homogeneous and heterogeneous

catalysts, are one of the promising substitutions for conventional

homogeneous acid/base catalysts for producing biodiesel. This mini-review

focuses on recent advances in supported acid/base ionic liquids to synthesize

ionic liquid-functionalized materials for producing biodiesel. The methods of

immobilizing ionic liquids on supports were summarized. The merits and

demerits of various supports were discussed. The catalytic activities of the

ionic liquid-functionalized materials for biodiesel production were reviewed.

Finally, we proposed the challenges and future development direction in

this area.
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Introduction

The excessive consumption of fossil resources has brought a series of energy shortages

and environmental pollution problems (Dong et al., 2019; Guo et al., 2022). It is desired to

develop renewable and environmentally friendly alternatives to fossil fuels (Mao et al.,

2022). Biodiesel is a well-known alternative to fossil diesel on account of its unique

advantages, such as its renewability and environment-friendly nature. Biodiesel is mainly

composed of long-chain fatty acid methyl esters. It is well known that biodiesel is mainly

produced from renewable oil (e.g., vegetable oils and animal fats) through

transesterification of triglycerides in oil and esterification of long-chain fatty acids in

oil (Figure 1) (Pan et al., 2020). In this process, a catalyst plays a key role in influencing

reaction conditions, the production efficiency of biodiesel, and biodiesel cost (Mukhtar

et al., 2022). Ionic liquids (ILs), as a class of novel materials, are defined as organic salts
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with melting points below 100°C composed of anions and cations

(Cheng et al., 2022). ILs utilized as catalysts have obtained

enormous attention in the conversion of renewable oil to

biodiesel, owing to their outstanding properties, such as

ignored vapor pressure, strong solubility, wide liquid

temperature, thermal and chemical stability, and low toxicity

(Panchal et al., 2022). Meanwhile, physicochemical properties

and functions of ILs can be designed and adjusted via changing

the structure of anions and cations in ILs. Owing to these

outstanding advantages of ILs, they have been employed for

biodiesel production. For instance, SO3H-functionalized ILs

exhibited remarkable catalytic activity in the esterification of

fatty acids to biodiesel (Han et al., 2022), and basic ILs afforded

prominent catalytic performance in the transesterification of

triglycerides to biodiesel (Panchal et al., 2022). However, ILs

are usually soluble in polar solvents, resulting in their recycling

difficulty in the process of biodiesel production. ILs also have a

severe shortcoming of high viscosity, causing inconvenient

operation. These deficiencies need to be solved to expand the

application of ILs in the industrial production of biodiesel.

To deal with the aforementioned issues, the immobilization

of ILs on solid supports to synthesize IL functionalized materials

is a viable strategy. Ionic liquid-functionalized materials inherit

the merits of ILs and supports, combining advantages of both

homogeneous and heterogeneous catalysts; the former

homogeneous characteristics come from highly soluble ILs on

the support surface, and the latter heterogeneous characteristics

originate from the solid support. Moreover, IL-functionalized

materials are suitable for the continuous production of biodiesel

on fixed-bed reactors. Therefore, various IL-functionalized

materials have been developed for the catalytic synthesis of

biodiesel production through immobilization of ILs on the

supports, where various supports are utilized, including silica,

magnetic nanomaterials, polymers, nitrogen-doped carbon, and

metal–organic frameworks (MOFs) (Pan et al., 2016).

Although many high-quality reviews on ILs as catalysts or

solvents for the synthesis of biodiesel have been published (Ong

et al., 2021), a recent review focusing on heterogenization of ILs

via immobilization of ILs on solid supports for biodiesel

production is still required. Hence, we categorized and

summarized recent developments in synthesizing IL-

functionalized materials for producing biodiesel. The methods

of immobilizing ILs onto various carriers, including silica,

magnetic nanomaterials, polymers, nitrogen-doped carbon,

and MOFs, are reviewed. The merits and demerits of various

supports are discussed. The catalytic activities of the ionic liquid

functionalized materials for biodiesel production are presented.

Finally, the prospects and challenges of utilizing IL-

functionalized materials as catalysts for biodiesel production

are proposed.

Ionic liquid-functionalized silica

Silica materials are widely used catalyst carriers due to their

distinct merits, such as low cost, thermal stability, and chemical

inertness. Among them, mesoporous silica such as SBA-15 is the

most popular, owing to its remarkable structural properties,

FIGURE 1
Biodiesel production cycle from renewable bio-oils via transesterification and esterification catalyzed by the supported acid/base ionic liquids.
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including high surface area, uniform hexagonal pores, large pore

volume, and tailorable pore diameter (Ziarani et al., 2021). More

importantly, abundant silanol groups on its surface enable

grafting ILs via a covalent bond. For instance,

phosphotungstic acid-based IL-functionalized SBA-15 was

synthesized by post-modification of SBA-15 using the

sulfhydryl reagent through the Si-O-Si- covalent bond,

followed by grafting the acidic IL via the thiol-ene reaction

(Wang et al., 2018). The acidic IL-functionalized SBA-15 was

evaluated by esterification of palmitic acid to biodiesel

production and exhibited an 88.1% yield using methanol to

an acid molar ratio of 9:1 and 15 wt% catalyst dosage at 65°C

for 9 h. The catalyst exhibited about 80% yield after being reused

five times (Table 1, in supporting information).

To improve the acidity of the catalyst, Fe-incorporated SBA-

15 (Fe-SBA-15) was utilized as a carrier for grafting sulfonic acid-

functionalized IL. The acid catalyst (IL/Fe-SBA-15) is

synthesized by immobilizing the sulfonic acid-functionalized

IL on Fe-SBA-15 via a silylation reaction between alkoxy

groups of IL and silanol groups of the support (Zhang et al.,

2012). IL/Fe-SBA-15 showed 87.7% conversion of oleic acid

using a catalyst amount of 5 wt% and methanol to an oleic

acid molar ratio of 9:1 at 90°C for 3 h, which was ascribed to the

synergistic effect of Lewis and Brønsted acidic sites. In addition to

the loading acidic ILs, SBA-15 is also used to load basic ILs for

producing biodiesel via transesterification. A series of basic

catalysts were synthesized by immobilizing silane-based basic

ILs on SBA-15 via a silylation reaction between alkoxy groups of

silane-based basic ILs and silanol groups of SBA-15. The

tetraalkylammonium hydroxides immobilized onto SBA-15

were fabricated and utilized for the conversion of soybean oil

to biodiesel through transesterification (Xie and Fan., 2014). The

basic catalyst exhibited a 99.8% yield with good reusability.

Although various acid or base ILs have been successfully

immobilized onto mesoporous silica for the production of

biodiesel, the following problems still need to be solved: 1)

organosilicon reagents used to load ILs are usually expensive;

2) the -Si-O-Si- bond used to link ILs to mesoporous silica is

unstable in the acidic or basic media; 3) the hydrophilicity of

silica is not conducive to the contact between the substrate oil and

catalyst and also easily causes catalyst deactivation by adsorption

of by-products (water and glycerol) on the surface of the catalyst.

Ionic liquid-functionalized porous
polymers

Porous polymers, featured with nanopore structures, large

specific surface areas, high pore volumes, flexible chemical

tenability, tunable wettability, and outstanding chemical

stability, are remarkable carrier candidates for supported ILs

(Mohamed et al., 2022). Porous polymers are mainly synthesized

by the hard template method, soft template method, and

template-free methods and functionalized with ILs using

various methods, including self-polymerization of ILs,

copolymerization of ILs with skeleton molecules, and post-

modification (Zhang et al., 2022).

The acidic poly (ionic liquid) was synthesized by self-

polymerization of the acidic IL monomer with the double

bond group for esterification of palmitic acid to biodiesel with

a 91.6% yield at 65°C for 8 h (Wang et al., 2019). The acidic ionic

liquid polymer catalyst synthesized by self-polymerization

usually exhibits low specific surface area and poor

hydrophobicity. To improve the specific surface area and

hydrophobicity of acidic ionic liquid polymers,

copolymerization of the acid ionic liquid monomer and

divinyl benzene (DVB) is a feasible synthetic method. The

effect of DVB content in the catalyst on its specific surface

area and hydrophobicity was investigated by Liang et al. (Li

et al., 2016). The increase of the DVB content improves the

hydrophobicity and specific surface area of the catalyst but

reduces the acid density of the catalyst. Therefore, the

physicochemical properties of the catalyst can be regulated by

adjusting the content of DVB. Various ionic liquid polymers were

TABLE 1 Summary of carbon-supported metal oxides for biodiesel production.

Catalyst Oil source Reaction condition Yield (%) Reusability (time) Reference

SBA- IL-3 Palmitic acid 9:1, 65°C, 15%, 8 h 88.1 80 (5) Wang et al. (2018)

IL/Fe-SBA-15 Oleic acid 6:1, 90°C, 5%, 3 h 87.7a 80.8a (6) Zhang et al. (2012)

PIL-3 Palmitic acid 6:1, 65°C, 3%,8 h 91.6 75 (5) Wang et al. (2019)

P(VB-VS)HSO4 Soapberry oil 29.1:1, 150°C, 8.7%, 8 h 95.2 90.9 (6) Feng et al. (2017)

MIL-101(Cr)@ MBIAILs Oleic acid 10:1, 67°C, 11%, 4 h 91.0 82.1 (6) Han et al. (2018)

Fe3O4@HKUST-1 Soybean oil 30:1, 65°C, 1.2%, 3 h 92.3a About 82a (5) Xie and Wan, (2018)

AILs/HPW/UiO-66-2COOH Acidic oil 35:1, 110°C, 10%, 6 h 95.8a About 80a (5) Xie and Wan., (2019)

FS-B-L-IL Koelreuteria integrifolia oil 40:1, 160°C, 10%, 10 h 93.7 77.5 (5) Zhang et al. (2017a)

CoFe2O4/MIL-88B(Fe)-NH2/(Py-Ps)PMo Acidic oil 30:1, 140°C, 8%, 8 h 95.6a 85.2 (5) Xie and Wang., (2020)

aConversion.

Frontiers in Chemistry frontiersin.org03

Zhang et al. 10.3389/fchem.2022.999607

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.999607


developed by copolymerization of various acidic ionic liquid

monomers and DVB for biodiesel production. The poly (ionic

liquid) was fabricated by copolymerization of the sulfonic acid

ionic liquid monomer and DVB and possessed high surface areas

with 100.1 m2/g, rich meso-macropores, and acid density of

1.64 mmol/g (Feng et al., 2017). A 95.2% biodiesel yield was

obtained from soapberry oil using a 29.1 methanol to oil molar

ratio and an 8.7 wt% catalyst amount at 150°C for 8 h.

Condensation is also a method to synthesize acidic ionic

liquid polymers. The poly ionic liquid was synthesized by

phenolic condensation and exhibited high acidity with

4.5 mmol/g (Bian et al., 2019). Post-modification is a

frequently used method to prepare acidic ionic liquid

polymers. The mesoporous melamine-formaldehyde polymer

was developed under solvothermal conditions using the soft

template method (Pan et al., 2019). The nitrogen-rich

polymer was used for immobilization of ILs through the

chemical post-modification method. The resulting functional

polymer exhibited multiple remarkable properties, including a

rich mesoporous structure with a specific surface area of

283.0 m2/g, high density (2.2 mmol/g), and strong acidity.

These properties endowed high catalytic activity with 95%

biodiesel yield from oleic acid. In addition, zirconium

phosphonate and 2D-layered montmorillonite were also used

to support acidic poly ILs for the synthesis of an acid catalyst (Liu

et al., 2019; Pan et al., 2022). Polymers can also be used to

synthesize basic catalysts for producing biodiesel. The basic poly

(ionic liquid) was developed by copolymerization of the ionic

liquid and subsequent ion exchange. The basic poly (ionic liquid)

exhibited superhydrophobicity and porous structure with

103 m2/g and 96.3% biodiesel yield from the conversion of

soybean oil with methanol via transesterification (Jiang et al.,

2017). Ionic liquid-functionalized porous polymers are potential

catalysts for catalytic conversion of oils to biodiesel. However, its

high cost and limited thermal stability should be paid close

attention.

Ionic liquid-functionalized carbon

Owing to their obvious merits, including excellent thermal and

chemical stability, controllable surface wettability, cheapness,

availability, and no toxicity, carbonaceous materials offer

promising supports for the synthesis of highly efficient and

reusable catalysts (Dhawane et al., 2018). In particular, N-rich

porous carbon contains a large number of N active sites, which

can support ILs through chemical post-modification (Sun et al.,

2019). In addition, N-rich porous carbon exhibits a high specific

surface area, which promotes the reaction between active sites of

carbon–nitrogenmaterial and substrates, resulting in high IL loading.

Porous carbon nitrogen materials are mainly prepared using

nitrogen-containing organic compounds (e.g., cyanamide,

melamine, urea, etc.) or polymers (e.g., polypyrrole) as nitrogen

and carbon sources. Meanwhile, doping fructose as a carbon

source in nitrogenous organic compounds can adjust the

carbon content in carbon–nitrogen materials. Carbonization

and the solvothermal method are the main methods to convert

organic compounds or polymers into carbon–nitrogen materials

(Tang et al., 2018). To enhance the specific surface area of

carbon–nitrogen materials, the template method is an effective

technique for forming pore structures in carbon–nitrogen

materials (Zhang et al., 2020). Common templates include

potassium hydroxide (KOH), zinc chloride (ZnCl2), and silicon

dioxide (SiO2). Porous structures of the materials are formed by

removing the templates after carbonization, KOH and ZnCl2 can

be removed by washing, and SiO2 is eliminated via corrosion using

a strong base or hydrofluoric acid.

Ionic liquids’ functional carbons were synthesized by quaternary

ammonization of carbon–nitrogen materials with diverse

quaternary ammonization reagents including iodomethane, 1,3-

propane sultone, and 1,4-butanesultone, followed by strong acid

treatment using acids such as H3PW12O40, HSO3CF3, and H2SO4

(Liu et al., 2016). For instance, acid IL functional carbon was

fabricated by quaternary ammonization of nanoporous carbon

with 1,3-propanesultone and subsequent ion exchanging with

HSO3CF3, where the nanoporous carbon was prepared from

melamine and glucose through carbonization at 800°C. The

resulting acid IL functional carbon exhibited 88.5% biodiesel

yield via transesterification of tripalmitin with methanol at 65°C

for 14 h (Liu et al., 2015). To reduce catalyst costs, waste cowmanure

was employed for the synthesis of N-rich nanoporous carbon

through carbonization in the presence of ZnCl2 and FeCl3
templates. Subsequently, acid IL-functionalized carbon was

developed by treating the N-rich nanoporous carbon with 1,4-

butanesultone, followed by HSO3CF3 treatment. The resultant

acid catalyst showed 88.5% biodiesel yield from tripalmitin at

65°C for 14 h, which even overmatched those of homogeneous

H3PW12O40 (Noshadi et al., 2016).

Ionic liquid-functionalized
metal–organic frameworks

Metal–organic frameworks (MOFs) as a kind of

inorganic–organic hybrid materials are constructed by

coordination of metal ions or metal clusters with organic

ligands (Zhang et al., 2019). MOFs have attracted tremendous

interest in the immobilization of ILs for the synthesis of catalysts,

owing to their remarkable advantages, including crystalline

frameworks, high specific surface area, ordered pore structure,

and uniform adjustable pore size (Cong et al., 2021). Meanwhile,

compared with other porous materials, MOFs exhibit uniform

porous structures with large specific surface areas, regular and

adjustable pore, and versatile architecture (Wang et al., 2022).

Various IL-functionalized MOFs have been fabricated for the

synthesis of catalysts. The IL-functionalized MOFs are synthesized
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mainly through immobilization and encapsulation methods. The

immobilization method mainly utilizes MOF as the carrier to load

IL onto MOF through post-modification. For instance, the acidic

IL-functionalized UiO-66 solid acids were synthesized by

quaternization of the amino group originating from UiO-66 with

1,3-propane sultone, followed by an ion exchange with HSO3CF3, or

H2SO4 (Peng et al., 2020). The prepared solid acids possessed high

acid densities (3.27–3.33 mmol/g) and super acidity sites, where

acidic ILs were immobilized onMOF via a covalent bond. The solid

acids showed biodiesel yield of above 80% via transesterification of

sunflower oil, which was superior to Amberlyst-15, Nafion NR50,

and the homogeneous acid ionic liquid.

The acid–base interaction is another method of immobilizing

ILs, in which acidic ILs are immobilized on MOF by the acid and

base reaction between acidic IL and the amino group of MOF

through the ionic bond. For example, the acidic IL-functionalized

NH2-UiO-66 was fabricated by the acid and base reaction

between a sulfonic group from IL and an amino group from

NH2-UiO-66 (Lu et al., 2022). NH2-UiO-66 and sulfonic acid IL

are used as a carrier and catalytic active species, respectively. The

obtained catalyst showed above 90% conversion of oleic acid and

above 80% yield via transesterification of triglycerides. Using the

same methods, the Brønsted IL was grafted in NH2-MIL-88B

(Fe) to synthesize the acid catalyst (Wu et al., 2016). The

synthesized acid catalyst, exhibiting a specific surface area of

103.6 m2/g and acidity of 1.76 mmol H+ g−1, showed 93.2%

conversion using the ethanol to oil molar ratio of 10.5:1 and

8.5 wt% catalyst amount at 90°C for 4.5 h.

Except for MOF ligands, as bridge-supported ILs, unsaturated

metal sites in MOF can also support ionic liquids via the

coordination bond. MIL-101(Cr), as a stable MOF with

1809.1 m2 g−1 surface area, was constituted by the

interconnection of trimetric chromium and benzene-1,4-

dicarboxylates via the coordination bond, possessing massive

coordinatively unsaturated Cr (z) sites, which provides active

sites for electron-rich group coordination. The thiol-functionalized

ionic liquids were loaded on MIL-101(Cr) via coordination of

electron-rich -SH groups from ILs and the unsaturated metal Cr

sites (Han et al., 2018). MIL-101(Cr)@MBIAILs exhibited a 91.0%

conversion of oleic acid using the molar ratio of oleic acid to

methanol 1:10 and 11 wt% catalyst amount at 67°C for 4 h. This

method is also feasible for the synthesis of base catalysts. The

amino-functional basic IL was attached to the Fe3O4@HKUST-

1 carrier through coordination of the amino groups in the basic IL

and unsaturated metal Cu2+ sites in HKUST-1, where HKUST-1

was synthesized from divalent copper and benzene-1,3,5-

tricarboxylic acid by the solvothermal method (Xie and Wan.,

2018). The solid base catalyst is used to produce biodiesel through

transesterification of soybean oil and showed oil conversion of

92.3% under reaction conditions of 1.2 wt% catalyst dosage and a

methanol/oil molar ratio of 30:1 at 65°C for 3 h.

Encapsulation is a novel strategy for heterogeneous ILs,

where active species are physically accommodated in highly

porous materials (Zheng et al., 2022). Compared with the

immobilization method in which the active sites of the

catalyst are fixed on the support, the active sites of the

catalyst synthesized by the encapsulation strategy are flowable

and free, which can promote the activity of the catalyst (Kong

et al., 2016). The sulfonic acid IL is encapsulated into UiO-66-

2COOH through the following two steps: 1) 12-

tungstophosphoric acid (HPW) was encapsulated into UiO-

66-2COOH via the in situ preparation strategy; 2) then, the

sulfonic acid IL was encapsulated into HPW/UiO-66-2COOH

via pairing PW anions with the sulfonic acid IL cations (Xie and

Wan., 2019). The resultant acid catalyst with 3.40 mol/g acid

density and 8.63 m2/g specific surface area was used for the

transformation of acidic vegetable oils into biodiesel through

simultaneous esterification and transesterification, and 95.27%

conversion was obtained using the methanol to oil molar ratio of

35:1 and catalyst amount of 10 wt% at 110°C for 6 h. Utilizing the

same encapsulation strategy, sulfonic acid functionalized-IL was

encapsulated within the cages of MIL-100 with a 0.83 mmol g−1

loading amount (Wan et al., 2015). The obtained acid catalyst

with a surface area of 167 m2 g−1 was used for catalytic

esterification of oleic acid with ethanol to produce biodiesel.

Conversion of 94.55 was realized using a 11:1 M ratio of ethanol

to oleic acid and 15 wt% at 111°C for 5 h.

Ionic liquid-functionalized magnetic
composites

Efficient recovery and reuse of catalysts are extremely important

for industrial production of biodiesel because they can reduce the

production cost of biodiesel and is environmentally friendly.

Filtration and centrifugation are currently the main methods of

separating catalysts from the reaction mixture (Li et al., 2020).

Filtration is time-consuming and inefficient, especially for the

separation of nano-catalysts (Krishnan et al., 2021). Meanwhile,

for nano-catalysts with a very small size, filtration may be ineffective

because they can pass through the filter paper during the filtration

process. Centrifugation, as another separation method, helps

overcome the defects of the filtration method and effectively

separates nano-catalysts. Nevertheless, centrifugation is complex,

energy consuming, and uneconomical, which limits its application

in the industry (Quah et al., 2019).

Magnetic separation enables separation of catalysts simply and

effectively from the reaction mixture by an external magnetic field,

which offers a promising way to improve catalyst recovery (Chen

et al., 2019). Various ionic liquid-functionalizedmagnetic composites

were fabricated by immobilizing the functionalized ionic liquid on

ferromagnetic materials including Fe3O4, γ-Fe2O3, Fe, Co, and Ni

through post-modification. Among them, Fe3O4 nanoparticles are

the most commonly used magnetic carrier, owing to their unique

merits including small size, convenient synthesis, strong magnetism,

and good dispersion (Wang et al., 2020). Fe3O4 nanoparticles are
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mainly synthesized from divalent and trivalent iron salts by

coprecipitation, hydrothermal, and reduction methods.

Nevertheless, Fe3O4 nanoparticles are usually unstable and easily

oxidized or hydrolyzed, especially in the presence of oxygen or acid,

respectively. In addition, Fe3O4 nanoparticles are very easily

agglomerated resulting in the formation of large particles, which

greatly reduce their performance as a support. To overcome the

aforementioned problems, coating Fe3O4 nanoparticles using organic

or inorganic substrates is an effective and feasible strategy. Common

coatings are silicon dioxide (SiO2), polymers, and MOFs. For

example, the Brønsted–Lewis acidic ionic liquid was supported on

the carrier Fe3O4@SiO2 to synthesize the magnetic acid catalyst for

the one-pot transformation ofKoelreuteria integrifolia oil with a high

acid value into biodiesel (Zhang et al., 2017a). The obtained acid

catalyst showed a core–shell structure and Fe3O4 as the core was

coated with a 12–20 nm-thick SiO2 shell through a Fe-O-Si bond.

The acidic ionic liquid was immobilized on Fe3O4@SiO2 via post-

modification using an organosilicon reagent through the Si-O-Si-

covalent bond. A 93.7% biodiesel yield was realized using a 10 wt%

catalyst amount and 40:1 M ratio ofmethanol to oil at 160°C for 10 h.

The catalyst could be quickly separated by magnetic force and was

still able to maintain a 77.5% yield in the fifth run. Utilizing the same

strategy, various acid or basic polyionic liquids have been

immobilized on core–shell-structured Fe3O4@SiO2 composites to

synthesize magnetic acid or base catalysts for biodiesel production,

where organosilicon reagents with double bond functional groups

were the bridge between linking polyionic liquids and the Fe3O4@

SiO2 carrier (Zhang et al., 2017b;Ding et al., 2021).MOFs are another

coating that enable encapsulation of Fe3O4 nanoparticles, playing a

role in the isolation of nanoparticles. For instance, the magnetic

support CoFe2O4/MIL-88B(Fe)-NH2 was fabricated by

encapsulation of magnetic CoFe2O4 particles in a cage of MIL-

88B(Fe)-NH2 with the amine functional group (Xie and Wang.,

2020). Then, the acidic ionic liquid was immobilized on CoFe2O4/

MIL-88B(Fe)-NH2 by the acid and base reaction between the sulfonic

acid functional group of the acidic ionic liquid and the amino group

of MIL-88B(Fe)-NH2 through the ionic bond. The obtained acid

catalyst with an acid capacity of 4.37 mmol g−1 and a specific surface

area of 35.44 m2 g−1 exhibited oil conversion of 95.6% via

transesterification under the condition of the methanol to oil

molar ratio of 30:1 and catalyst amount of 8 wt% at 140°C for 8 h.

Summary and future perspectives

Acidic or basic ionic liquids (especially, sulfonic acid- and

heteropoly acid-functionalized ionic liquids and quaternary

ammonium hydroxide-based basic ionic liquids) have been proven

to have excellent catalytic activity in the production of biodiesel.

Nevertheless, shortcomings of ionic liquids, such as high cost, high

viscosity, and recycling difficulty, limit their industrial application. To

overcome the aforementioned shortcomings, immobilization of the

ionic liquid on support is an effective strategy for the heterogeneous

ionic liquid. Thus, this review primarily focuses on supported acid/base

ionic liquids as catalysts for biodiesel production. The merits and

demerits of various supports, including mesoporous silica, porous

polymers, carbonaceousmaterials,MOFs, and ferromagneticmaterials,

are compared to immobilize ionic liquids for the production of

biodiesel. The methods of immobilizing ionic liquids on supports

were described for the synthesis of ionic liquid-functionalizedmaterials.

Based on the green and efficient production of biodiesel, the

following guidelines for the synthesis of efficient, stable, and low-

cost ionic liquid-functionalized materials may still need to be

taken into consideration:

(1) The support with excellent thermal and chemical stability

would be highly desirable to improve the stability of ionic

liquid-functionalized material. The reported supports such

as mesoporous silica, MOFs, and ferromagnetic materials

exhibit limited chemical stability. Specifically, in the presence

of strong acid and base media, they are unstable. The

polymer support exhibits excellent chemical stability, but

its thermal stability is mediocre. Enormous effort should be

devoted to develop suitable material with remarkable

thermal and chemical stabilities for supporting ionic liquids.

(2) Compared with the immobilization of the ionic liquid on the

support, encapsulation of the ionic liquid in the cage of the porous

support is a superior strategy for the synthesis of ionic liquid-

functionalizedmaterial with an outstanding catalytic activity. The

active sites of the catalyst synthesized by encapsulation strategy

are free and easily accessible to the substrate, which is beneficial to

improve the catalytic activity of the catalyst.

(3) Although various ionic liquid-functionalized materials have

been fabricated for the catalytic transformation of oil into

biodiesel, their complex synthesis process and expensive raw

materials inevitably lead to high catalyst costs. Hence, it is

desirable to develop a simple method for the synthesis of

ionic liquid-functionalized materials using cheap biomass.
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