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Abstract: Recent studies have revealed the importance of the gut microbiota in the regulation of
metabolic phenotypes of highly prevalent metabolic diseases such as obesity, type II diabetes mellitus
(T2DM) and cardiovascular disease. Peroxisome proliferator-activated receptors (PPARs) are a family
of ligand-activated nuclear receptors that interact with PPAR-γ co-activator-1α (PPARGC1A) to
regulate lipid and glucose metabolism. Genetic polymorphisms in PPARD (rs 2267668; A/G) and
PPARGC1A (rs 8192678; G/A) are linked to T2DM. We studied the association between the single-
nucleotide polymorphisms (SNPs) rs 2267668 and rs 8192678 and microbiota signatures and their
relation to predicted metagenome functions, with the aim of determining possible microbial markers
in a healthy population. Body composition, physical exercise and diet were characterized as potential
confounders. Microbiota analysis of subjects with PPARGC1A (rs 8192678) and PPARD (rs 2267668)
SNPs revealed certain taxa associated with the development of insulin resistance and T2DM. Kyoto
encyclopedia of gene and genomes analysis of metabolic pathways predicted from metagenomes
highlighted an overrepresentation of ABC sugar transporters for the PPARGC1A (rs 8192678) SNP.
Our findings suggest an association between sugar metabolism and the PPARGC1A rs 8192678 (G/A)
genotype and support the notion of specific microbiota signatures as factors related to the onset
of T2DM.

Keywords: PPARD; PPARGC1A; microbiota; diabetes

1. Introduction

Recent studies attribute a central role to microbiota in the regulation of metabolic
phenotypes related to highly prevalent metabolic diseases such as obesity, type 2 diabetes
mellitus (T2DM) and many cardiovascular diseases [1–3]. This regulation is likely mediated
by signaling molecules produced by the intestinal microbiota with potentially important
effects at the level of the liver, including bile salts metabolism, cholesterol deposits and
energy expenditure, and on insulin sensitivity in peripheral tissues [4]. The composition of
the intestinal microbiota is influenced by several exogenous factors, such as diet, antibiotic
intake and physical exercise, and also by endogenous factors, such as host genetics [5–8].
Indeed, host genetic variation can shape microbial diversity and the metabolites produced by
these microorganisms [7–9], particularly in the case of specific genetic polymorphisms [9–12].
In this line, a pioneering genome-wide association study carried out on the Dutch LifeLines
DEEP cohort identified different genetic loci that could directly influence the richness of the
human microbiome [13]. Several of the 32 genetic markers identified in that study belong
to the functional category of metabolic regulation.

Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated
nuclear receptors. Three PPAR protein subtypes of PPARs, α (PPARA), γ (PPARG) and δ

Genes 2022, 13, 289. https://doi.org/10.3390/genes13020289 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13020289
https://doi.org/10.3390/genes13020289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-5201-906X
https://orcid.org/0000-0003-2688-6922
https://orcid.org/0000-0001-5530-4958
https://orcid.org/0000-0002-8863-4686
https://orcid.org/0000-0001-9799-0570
https://doi.org/10.3390/genes13020289
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13020289?type=check_update&version=3


Genes 2022, 13, 289 2 of 15

(PPARD), have been identified with distinct roles in lipid and glucose metabolism. PPARα
and γ, produced mainly in the liver and adipocytes, regulate fatty acid oxidation and
adipogenesis, whereas PPARD is ubiquitously expressed, with higher levels reported in
skeletal muscle and adipose tissue [14]. PPARD expression in skeletal muscle increases
upon fasting [15] and during exercise [16], indicating a role in the adaptive response of
skeletal muscle to the increased demand for fatty acid oxidation. In the liver, PPARD
enhances glucose flux through the pentose-phosphate pathway and has insulin-sensitizing
activity [17]. A genetic polymorphism in PPARD (rs 2267668; A/G intron variant) affects
insulin sensitivity by modifying skeletal muscle glucose uptake [18] and also predicts
the conversion from impaired glucose tolerance to T2DM [19]. The minor “G” allele
has been associated with suppressed mitochondrial function in skeletal muscle [20]. In
studies conducted in OLETF rats, a model of T2DM with obesity, the synthetic PPARD
agonist GW0742 attenuated hepatic fat accumulation and improved insulin signaling [21],
validating PPARD as a potential mediator of metabolic disease and a promising target for
prevention and/or therapy.

PPAR-γ co-activator-1α (PPARGC1A) is a transcriptional coactivator that interacts
with PPARs and functions as a master regulator of mitochondrial biogenesis and activ-
ity, including oxidative phosphorylation and reactive oxygen species detoxification [22].
PPARGC1A also plays a critical role in the maintenance of glucose and energy homeosta-
sis and is likely involved in pathological disorders such as diabetes, neurodegeneration,
obesity and cardiomyopathy [23]. Along this line, recent reports have suggested that the
PPARGC1A Gly482Ser (rs 8192678; G/A coding sequence) missense polymorphism is asso-
ciated with the onset of T2DM [24,25]. PPARD and PPARGC1A interact in the regulation of
insulin action and modulate glucose and lipid metabolism in mitochondria during aerobic
exercise [20].

The past decade has witnessed an explosion of interest in the gut microbiota as an
important regulator of host metabolism as alterations in its composition, for example,
by host genetics, are known to contribute to the development of obesity and insulin
resistance [26]. Several studies support crosstalk between PPARs and the gut microbiota
that influences the development of metabolic diseases, likely through the production of
metabolites, such as short-chain fatty acids (SCFAs), which function as signaling molecules
(reviewed in [27]). Some microbiota metabolites are also transported to the liver, adipose
tissue, heart, blood vessels and other organs through systemic circulation. In these organs,
the metabolites act as ligands of PPARs. The activation of PPARs modulates, between
others, carbohydrate and fat metabolism [28].

In the present study, we searched for a relationship between single-nucleotide poly-
morphisms (SNPs) in PPARD and PPARGC1A and microbiota signatures and investigated
the possible consequences at the phenotypic level, including glucose metabolism.

2. Materials and Methods
2.1. Ethics Approval and Consent to Participate

The study was performed in accordance with the Declaration of Helsinki, and the
protocol was approved by the Research Ethics Committee of the Community of Madrid
(CEIm-R; Ref: 47/560280.9/18). Written and informed consent was obtained from all
participants.

2.2. Participant Characteristics

Seventy-six healthy participants (40 men and 36 women), aged 18–48 years, were
included in the study. Exclusion criteria were any kind of pathology (during or six months
prior to the study); previous gastrointestinal surgery; antibiotics intake during three months
prior to the study; smoking; use of prebiotics, probiotics or nutritional complements; being
vegetarian or vegan; and pregnancy or lactation. All participants were Caucasian.
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2.3. Anthropometry and Body Composition

Height and weight were measured with a tallimeter (Asimed T2, Barcelona, Spain) and
a balance scale (Ano Sayol SL, Barcelona, Spain), respectively and body mass index (BMI)
was calculated as weight (kg)/height (m2). Body composition was evaluated on the day
of stool sample collection by dual-energy X-ray absorptiometry (DEXA) (Hologic DEXA
scan, Hologic Inc., Barcelona, Spain). Body composition measurements with DEXA were as
follows: estimated visceral adipose tissue (VAT), body fat percentage (BFP), body fat mass
(BFM), total lean mass, and fat and lean mass distribution in the trunk and extremities. The
following indices were calculated using the obtained values: adiposity index (AI) = total
fat/height2; muscular mass index (MMI) = total muscle mass/height2 and appendicular
muscular mass index (AppMMI) = lean mass in arms + legs/height2.

2.4. Physical Activity

The levels of physical activity of the study population were recorded for one week
(5 weekdays and 2 weekend days) with an ActiSleep V.3.4.2 accelerometer (Actigraph,
Manufacturing Technology Inc., Shalimar, FL, USA). Acceleration, energy expenditure, the
intensity of physical activity and body position were registered. The results were analyzed
with Actilife software (Actilife6, Actigraph). Participants were instructed to wear the
accelerometer on the right wrist all day except when they had a shower or performed pool
activities. Data were considered valid when they contained a record of at least five valid
days, including at least one weekend day and at least 10 h of activity. The time-sampling
interval (epoch) was every minute during the 7 days. Physical activity was considered
as light when the activity count was 100–1951 counts/minute, and moderate-to-vigorous
when counts were 1952–5724 counts/minute according to the methodology described by
Freedson et al. [29].

2.5. Dietary Habits

Dietary characterization was performed using a validated food frequency question-
naire (FFQ) with 93 food items, which was analyzed using DietSource software 3.0 (Novar-
tis, Barcelona, Spain) to obtain the total energy macronutrients (fat, carbohydrates, fiber
and proteins) and fiber intake.

2.6. Sample Collection

Participants were provided with the Fe-Col® Fecal Sample Collection Kit (Alpha
Laboratories, Hampshire, UK), an insulated bag and ice blocks to preserve the samples
until they were delivered to the laboratory. Stool samples were stored at −80 ◦C until
extraction.

2.7. Short-Chain Fatty Acids

Fecal SCFAs were extracted according to the protocol described by García-Villalba
et al. [30]. For sample analyses, 1 µL of the supernatants was injected into an Agilent
GC System 7820A chromatograph equipped with a DBWax 121-7037LT column and an
Agilent Series MSD 5975 detector (Agilent Technologies, Inc., Santa Clara, CA, USA). Data
acquisition was performed by selective ion monitoring. SCFAs were quantified using
the peak area of their target ions against an eight-point external calibration curve (0.02 to
5.00 ppm) of reference standards (Sigma-Aldrich, St. Louis, MO, USA). 4-Methylvaleric
acid was used as an internal standard.

2.8. DNA Extraction

Human and bacteria DNA were extracted from 100 mg of stool sample using the
commercial E.Z.N.A.® Stool DNA Kit (Omega Biotek, Norcross, GA, USA) and a bead-
beating homogenizer (Bullet Blender Storm, Next Advance, New York, NY, USA). The
concentration and purity of DNA were measured using the Quant-iT PicoGreen dsDNA
Assay Kit (ThermoFisher Scientific, Waltham, MA, USA) and an FP-8300 spectrofluorimeter
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(Jasco, Tokyo, Japan). Bacterial DNA was used to analyze the microbiota, while human
DNA was used for PPARD and PPARGC1A genotyping.

2.9. PPARD and PPARGC1A Genotyping

Allelic discrimination analysis was performed with predesigned Applied Biosys-
tems TaqMan® SNP Genotyping Assays: PPARD A/G (rs 2267668) (ID: C__15872729_10),
PPARGC1A (rs 8192678) Gly482Ser (C/T) (ID: C___1643192_20) and the StepOnePlus Real-
Time PCR system from ThermoFisher Scientific. The protocol included a denaturation
stage at 95 ◦C for 10 min, 50 cycles of denaturation at 92 ◦C for 15 s, annealing/extension at
60 ◦C for 1 min and a final extension step of 30 s at 60 ◦C.

After genotyping, participants were classified according to the PPARD or PPARGC1A
genotypes. For the PPARD A/G (rs 2267668) gene, those participants carrying the AA
genotype were classified as PPARD-1 and AG as PPARD-2 for further analysis (partici-
pants with GG genotypes were not considered because of the low number.). In the case of
the PPARGC1A (rs 8192678) Gly482Ser (C/T) gene, those participants with the CC geno-
type were classified as PPARGC1A-1 and the heterozygotes CT (TT participants were not
considered as in PPARD for further analysis).

2.10. Sequencing and Bioinformatics

The hypervariable V3 and V4 regions were amplified using the primer pair 5′-TCGTC
GGCAGCGTCAGATGTGTATAAGAGACAG-3′ and 5′-GTCTCGTGGGCTCGGAGATGTG
TATAA GAGACAG-3′. The amplicon of 459 bp was visualized in a 0.8% agarose gel stained
with ethidium bromide, and bands were cut and cleaned using the MinElute Gel Extraction
Kit (Qiagen, Hilden, Germany). DNA amplicons were sequenced on a MiSeq Illumina
platform (Illumina, San Diego, CA, USA). Sequence outputs were analyzed using the Quan-
titative Insights into Microbial Ecology (QIIME2) program, v2019.10 [31]. The 16s paired
reads were imported in QIIME2 and processed with the DADA2 plugin [32], adjusting the
maximum expected error threshold to 2.0 (both forward and reverse). The taxonomy assign-
ments were performed with the classify-sklearn method [33] and an in-house customized
classifier based on the SILVA reference database [34,35]. To build the customized reference
database, sequences, according to our primers (forward primer sequence: CCTACGGGNG-
GCWGCAG, reverse primer sequence: GACTACHVGGGTATCTAATCC), were extracted
from the SILVA 132 database clustered at 99% identity. The classifier was trained using
our tailored reference reads and SILVA 7-levels for reference taxonomy, including the
species probability (weights) likely to be observed for human stool (downloaded from
https://github.com/BenKaehler/readytowear, accessed on 10 September 2020) [36,37].
Diversity analyses were performed through QIIME 2′s q2-diversity plugin. β-diversity
was evaluated by calculating the Bray–Curtis, Jaccard, unweighted and weighted Unifrac
distance metrics. To study α-diversity, observed operational taxonomic units (OTUs),
evenness and Shannon and Faith’s Phylogenetic Diversity indices were calculated. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances predictions
were obtained with the Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt2) software [38] using default “max parsimony” method for
hidden-state prediction and a Nearest Sequenced Taxon Index (NSTI) value of 2.0.

2.11. Statistical Analysis

Statistical analysis was carried out using QIIME2 v2019.10, SPSS software v26.0 (SPSS,
Chicago, IL, USA) and the R statistical package v4.1.1. Variable normal distribution was
assessed using the Shapiro–Wilk test; non-parametric tests were performed when normal
distribution was not assumed. Comparisons of variables were performed with t-tests or
the Mann–Whitney test. Linear discriminant analysis coupled with effect size (LEfSe v1.0)
was performed to identify bacterial associated pathways differentially represented between
groups with default settings. Significance was set at p < 0.05. To verify whether the allele
frequencies were in Hardy–Weinberg equilibrium for the PPARD genotypes, we used the

https://github.com/BenKaehler/readytowear
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Chi-square (χ2) test. Differential abundance analysis was carried out using the edgeR algo-
rithm [39]. The p-value was corrected for multiple testing using the Benjamini–Hochberg
false discovery rate (FDR) procedure, and the results were considered as significant for
FDR < 0.001.

3. Results
3.1. Subjects, Genotypes and Allelic Frequencies

Seventy-six people were recruited for the study (40 men and 36 women). Participants
were genotyped for PPARD (rs 2267668) and PPARGC1A (rs 8192678), and the proportions of
genotypes and allelic frequencies were calculated (Table 1). Participants with the genotype
PPARD (rs 2267668) G/G were not included in the gut microbiota study due to the low
number (three participants).

Table 1. Genotypes and allelic proportions.

PPARD (rs 2267668) PPARGC1A (rs 8192678)

Genotype
Frequency

Expected
Frequency * Allelic Frequencies Genotype

Frequency
Expected

Frequency ** Allelic Frequencies

AA 0.62 0.67 Allele A 0.79 CC 0.934 0.445 Allele C 0.967

AG 0.34 0.29 Allele G 0.21 CT 0.066 0.444 Allele T 0.033

GG 0.039 0.035 TT 0 0.111

* (European origin; source: SNPedia). ** (European origin; source: [40]).

To verify that the genotypes were in accordance with other populations previously
reported to be in Hardy–Weinberg equilibrium, we applied the χ2 test to compare experi-
mental and expected data. No significant differences were found for PPARD rs 2267668
(Gly482Ser) carriers, indicating that our population was in equilibrium for this SNP. Con-
versely, significant differences were found for PPARGC1A (rs 8192678), which is likely
because we used a healthy population rather than a disease-related group such as a T2DM
population where the mutant allele is overrepresented [40].

3.2. Body Composition, Physical Activity and Dietary Habits

We next examined for effects of the polymorphisms on body composition, physical
activity and dietary habits. Age and body composition parameters were analyzed according
to sex (Table S1) and genotype (Table 2).

Body composition parameters did not differ between groups when participants were
classified according to the PPARD or PPARGC1A genotypes except for the MMI, which
was significantly greater in subjects with PPARGC1A genotype 2 (PPAGC1A-2) than in
those with genotype 1 (PPARGC1A-1). No significant differences were found in energy
expenditure and intensity of physical activity during weekdays or weekends according to
the PPARD (genotypes PPARD-1 or PPARD-2) or PPARGC1A genotype.

Foods and food groups were recorded from the FFQ and analyzed to obtain en-
ergy, macronutrients and fiber intake. No significant differences between the PPARD and
PPARGC1A genotypes were observed for any of the studied macronutrients (carbohy-
drates, protein, fat, protein/carbohydrate, protein/fat ratio), fiber and total energy intake
(Table S2).

3.3. Short-Chain Fatty Acids

No within-group differences were found for fecal levels of SCFAs (acetic acid, propi-
onic acid, butyric acid, isobutyric acid, valeric acid and isovaleric acid) according to the
polymorphisms studied (Table S3).
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Table 2. Age, sex and body composition parameters of participants according to their genotype.

PPARD-1 PPARD-2 p PPARGC1A-1 PPARGC1A-2 p

Sex (n/%) 23/50 M
23/50 W

15/55.6 M
12/44.4 W 0.796 36/51.4 M

34/48.6 W
4/66.7 M
2/33.3 W 0.677 *

Age (years) 33.73 ± 7.40 33.73 ± 8.06 1.00 33.26 ± 7.87 36.83 ± 2.04 0.27

Body mass (kg) 69.25 ± 13.05 70.27 ± 12.20 0.75 69.22 ± 12.93 73.75 ± 8.11 0.40

BMI (kg/m2) 24.21 ± 3.61 23.77 ± 3.12 0.61 23.94 ± 3.53 25.40 ± 1.42 0.32

BFP (%) 26.07 ± 7.48 27.82 ± 8.56 0.39 27.21 ± 7.90 23.22 ± 6.26 0.28

BFM (kg) 17.36 ± 6.59 18.95 ± 6.02 0.33 18.15 ± 6.47 17.03 ± 4.90 0.71

VAT (g) 332.98 ± 192.11 356.20 ± 181.26 0.63 343.53 ± 179.66 368.80 ± 257.95 0.77

AI (kg/m2) 6.06 ± 2.12 6.4 ± 2.32 0.45 6.32 ± 2.20 5.76 ± 1.69 0.58

MMI (kg/m2) 16.05 ± 2.21 15.77 ± 2.57 0.63 15.77 ± 2.36 17.98 ± 1.41 0.04 **

AppMMI (kg/m2) 7.17 ± 1.29 6.99 ± 1.42 0.60 7.02 ± 1.35 8.08 ± 0.74 0.09

BMI: body mass index; BFP: body fat percentage; BFM: body fat mass; VAT: estimated visceral fat; AI: adiposity
index; MMI: muscular mass index; AppMMI: appendicular muscular mass index. M: men; W: women. Values
are mean ± standard deviation. PPARD-1: PPARD genotype 1. PPARD-2: PPARD genotype 2. PPARGC1A-1:
PGC1-α genotype 1. PPARGC1A-2: PGC1-α genotype 2. * Fisher’s exact test. ** p < 0.05.

3.4. Fecal Microbiota

The average number of reads per sample was 100,818. No significant differences in
α-diversity parameters were observed between PPARGC1A-1 and PPARGC1A-2: observed
OTUs (p = 0.810), Shannon index (p = 0.345), Pielou evenness (p = 0.114) or Faith’s Phylo-
genetic Diversity index (p = 0.969) (Figures S1–S4); or between PPARD-1 and PPARD-2:
observed OTUs (p = 0.954), Shannon index (p = 0.810), Pielou evenness (p = 0.715) or
Faith’s Phylogenetic Diversity index (p = 0.854) (Figures S5–S8). Likewise, no significant
differences were observed for β-diversity for PPARGC1A or PPARD in relation to genotypes
(Figures S9 and S10): PPARGC1A; Bray–Curtis (p = 0.313), Jaccard (p = 0.690), unweighted
Unifrac (p = 0.790) and weighted Unifrac (p = 0.222) distance metrics. PPARD; Bray–
Curtis (p = 0.837), Jaccard (p = 0.733), unweighted Unifrac (p = 0.65) and weighted Unifrac
(p = 0.693) distance metrics.

3.5. Differential Abundance Analysis

Differential abundance analysis revealed variations at several taxonomic levels for the
PPARGC1A and PPARD polymorphisms (Figures 1 and 2). Of note, Bacteriodetes and Firmi-
cutes were the phyla that showed the most significant variations between PPARGC1A-2 and
PPARGC1A-1; more specifically, Prevotella 9, Megasphaera, Bacteroides and Lachnospiraceae
UCG-007 genera. Analysis of PPARD polymorphisms indicated that Bacteriodetes was the
phylum with more differences between the PPARD genotypes (Figure 2). The microbiota
of participants with PPARD-1 showed an overrepresentation of Ruminiclostridium 6, Ru-
minococcus 1, Agathobacter, Prevotella 9 and Barnesiella, whereas the microbiota of peers with
PPARD-2 was enriched in three genera of the Ruminicoccaceae family, Rikenellaceae RC9 gut
group, Paraprevotella, Parabacteroides, Escherichia, Alloprevotella and Alistipes.
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3.6. Predicted Functional Metagenome by PICRUSt

The functionality of the different metagenomes, grouped by genotypes for PPARGC1A
(PPARGC1A-1 and PPARGC1A-2) and PPARD (PPARD-1 and PPARD-2), was predicted
using PICRUSt, which uses the 16S rRNA reads to predict functional pathway abundance.
No differences between metabolic pathways were identified based on PPARD genotypes.
However, for PPARGC1A, PICRUSt analysis predicted several pathways associated with
the PPARGC1A-1 or PPARGC1A-2 genotypes (Figure 3).

The functional pathways overrepresented in genotype PPARGC1A-1 versus genotype
PPARGC1A-2 were as follows: gluconeogenesis I, adenosine nucleotides degradation II,
gondoate biosynthesis and phosphopantothenate biosynthesis I. By contrast, the func-
tional pathways more present in genotype PPARGC1A-2 and less represented in genotype
PPARGC1A-1 were as follows: peptidoglycan biosynthesis IV, sucrose degradation IV, ni-
trate reduction VI, reductive TCA cycle I and CMP-legionaminate biosynthesis I. Analysis
of the KEGG metabolic pathways predicted from metagenomes revealed an overrepre-
sentation of ABC sugar transporters in participants with the PPARG1A-2 genotype when
compared with those presenting the PPARG1A-1 genotype (Figure 4).
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linear discriminant analysis.
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4. Discussion

The establishment of the gut microbiota is a multifactorial process influenced by host
genetics, diet and physical exercise, among other factors, and is now considered to have
an important role in the onset of several metabolic diseases [5–8]. Indeed, a genome-wide
association study in humans reported a large number of genetic polymorphisms associated
with increased risk of obesity and diabetes, with each gene, individually, seeming to have a
small summative effect [41].

PPARGC1A is a transcriptional coactivator of the PPAR family that regulates insulin
sensitivity and influences the onset of T2DM [42]. Poor insulin sensitivity or insulin
resistance is a predictor of T2DM and is observed in hypertension, dyslipidemia and
cardiovascular diseases [43–45]. Insulin resistance in skeletal muscle has been attributed to
several pathological conditions such as mitochondrial dysfunction [46], impaired glycogen
synthesis [47] and the accumulation of diacylglycerol, with subsequent impairment of
insulin signaling [48]. The PPARGC1A SNP rs 8192678 (in exon 8, G1444A/Gly482Ser; C/T)
is the most important polymorphism identified to date in PPARGC1A [49]. The Gly482Ser
(T) allele has been associated with poorer mitochondrial function in skeletal muscle [20],
with an increased risk of T2DM [24], and the presence of the minor T allele seems to
be overrepresented in studies focused on T2DM susceptibility [40]. However, there is
controversy over this claim, as some studies have reported an increased risk [50,51], and
others have failed to demonstrate a significant effect or have even observed a decreased risk
of T2DM in the heterozygotes (CT) and homozygotes (TT) of this polymorphism [49,52–55].
One of the reasons for the disparity of results could be the disparity of populations studied;
some of them were performed in populations with a higher risk of developing T2DM,
where the prevalence of the minor allele is probably overrepresented when compared
with the general population. Further studies in well-established samples from healthy
populations are needed to have a more accurate estimation of the risk due this genetic
factor in a particular context.
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Gut microbiota may have a role in this interplay between genetics and the onset
of metabolic disorders, probably through microbial metabolites [56]. We found that the
microbiota of participants with the PPARGC1A-2 genotype was enriched in Prevotella 9,
Megasphaera, Bacteroides and Lachnospiraceae UCG-007 genera, which have previously been
associated with insulin resistance and diabetes. For example, Megasphaera and Prevotella 9
have been linked to prediabetes in an Indian population [57], in whom Megasphaera exhib-
ited significant positive correlations with fasting plasma glucose and glycated hemoglobin
levels and weak negative correlations with high-density lipoprotein, suggesting an in-
fluence on susceptibility to diabetes for carriers of the minor Ser(T) allele. Additionally,
advanced stage type 1 diabetic (T1DM) rats had a higher relative abundance of Prevotella
9 and Bacteroides [58]. Of note, the Lachnospiraceae family has been reported to actively
impair glucose metabolism, leading to inflammation and promoting the onset of type 1
diabetes [59], and other metagenomics studies have shown an association between Lach-
nospiraceae and T2DM in both humans and in mouse models [60–62].

Microbial metabolites from the gut microbiota have important roles in maintaining
host metabolic homeostasis. PICRUSt analysis can infer associations between gut micro-
biota and host metabolic changes and functional capabilities. Focusing on the relevant
functional categories highlighted by PiCRUSt, we found that the genotype PPARGC1A-
2 was positively associated with sucrose phosphorylase enzymes, which function in the
metabolism of sucrose [63]. Sucrose metabolism could be a factor implicated in the multifac-
torial etiology of T2DM and a possible source of dysbiosis [64]. Carriers of the PPARG1A-2
genotype also showed an overrepresentation of the oxoglutarate synthase pathway. 2-
Oxoglutarate is a fundamental metabolic intermediate that is key for regulating the tricar-
boxylic acid cycle (TCA). In addition, 2-oxoglutarate acts as the major carbon skeleton for
nitrogen-assimilatory reactions, indicating that intracellular levels of 2-oxoglutarate fluctu-
ate according to nitrogen and carbon availability [65]. Bacteria in the gut produce various
metabolites, such as amino acids, SCFAs, bile acids, indole propionic acids, trimethylamine
and nitrogen oxide, which mediate host metabolism and are essential to maintain an intact
intestinal barrier. The microbiota of patients with T2DM is characterized by a reduced
number of butyrate-producing bacteria [66,67]. Nevertheless, we failed to find significant
differences in SCFAs between genotypes for the two genes studied.

Based on the KEGG pathways analysis, carriers of PPARGC1A-2 showed an overrep-
resentation of ABC transporters. An association between membrane transporters (ABC
transporters) and obesity has recently been reported [68]. ABC transporters are linked to
the transport of glucose and lipids, and this is currently being exploited to treat T2DM, for
example, gliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor. Several transporter
families, including SLC2A (GLUT, ABCT) and SLC5A (SGLT) transporters, are either linked
to glucose or with the homeostasis of cholesterol [69]. ABC transporters and butyrate
and acetate levels are significantly enriched in the microbiota of genetically determined
obesity (ob/ob mice), likely because of a specialization of the gut microbiota to increase the
capacity to harvest energy from the diet [70]. However, we failed to find differences in the
production of butyrate or acetate between the different genotypes.

Beyond the genetic factors, intrinsic factors, such as dietary habits or physical activity
levels, could influence the presence of different microbiota patterns. Participants in our
study did not show differences in potential confounders such as diet, physical exercise or
body composition in relation to genotypes of the studied genes with the exception of MMI
related to PPARGC1A polymorphisms. This difference might be explained by the small
number of women carrying the Gly482Ser allele in our sample.

Genetic polymorphism in PPARD (rs2267668; A/G: PPARD-2) has also been de-
scribed to affect insulin sensitivity and the conversion from impaired glucose tolerance to
T2DM [18]. Several studies have reported gut microbiota dysbiosis as a factor in the rapid
progression of insulin resistance in T2DM. The gut microbiota of participants with the
PPARD-2 genotype showed a decrease in Prevotella 9 and Barnesiella. A lower abundance of
Prevotella has been reported in T2DM [71,72], and Barnesiella has been found to decrease
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in obesity [73]. However, results obtained with Prevotella 9 are controversial as it has been
found to increase [57] or decrease [71,72] in T2DM in different studies. Beneficial and
pathogenic effects of members of Prevotella could be related to distinct roles of different
species ([57,72,74]. Likewise, Alistipes, Parabacteroides and Escherichia, enriched in PPARD-2
participants, were also increased in T2DM, correlating with less butyrate-producing bac-
teria and more opportunistic pathogens (Clostridium, Escherichia) [60,75,76]. Nonetheless,
Parabacteroides conversely decreases in T2DM patients in a study conducted in China [67].

A limitation of the present study was the small sample size because of the unequal
distribution of genotypes in the population, which ruled out the possibility of studying
the two genes and associated polymorphisms together. Our findings reveal an associ-
ation between different microbiota features, sugar metabolism (ABC transporters) and
the PPARGC1A Gly482Ser genotype and some microbiota features associated with the
PPARD-2 genotype. The sum of all these genetics and microbiota-related factors likely
interact and contribute to the onset of diabetes or pre-diabetes-like phenotypes; however,
further studies are needed to provide insight into these interactions. Future studies should
examine the relationship between these microbiota taxa and host physiology factors as
glucose and insulin levels, or the Homeostatic Model Assessment for Insulin Resistance
(HOMA index), as potential early predictive markers of T2DM. More studies focusing on
healthy populations are needed to establish a stratification risk, which would be important
for the prevention of non-transmissible diseases in a particular genetic context. For this
purpose, the synergistic factors of host genetics and microbiota could be used as biomarkers
to better predict the onset of the disease in patients with prediabetes. Our studies constitute
a first step in establishing the role of gut microbiota in the complex scenario of multifactorial
and highly prevalent non-transmissible diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13020289/s1. Table S1: Age and body composition param-
eters of participants according to gender; Table S2: Total energy, macronutrients and fiber dietary
intake; Table S3: Short-chain fatty acids in fecal samples form PPARGC1A and polymorphisms;
Figure S1: Observed features and PPARGC1A polymorphisms; Figure S2: Shannon index and
PPARGC1A polymorphisms; Figure S3: Pielou evenness and PPARGC1A polymorphisms; Figure S4:
Faith diversity and PPARGC1A polymorphisms; Figure S5: Observed features and PPARD poly-
morphisms; Figure S6: Shannon index and PPARD polymorphisms; Figure S7: Pielou evenness and
PPARD polymorphisms; Figure S8: Faith diversity and PPARD polymorphisms; Figure S9: Principal
Coordinate Analysis (PcoA) plots of unweighted (A) and weighted (B) Unifrac distance metrics
Bray–Curtis (C) and Jaccard for PPARGC1A polymorphisms; Figure S10: Principal Coordinates
Analysis (PcoA) plots of unweighted (A) and weighted (B) Unifrac distance metrics Bray–Curtis (C)
and Jaccard for PPARD polymorphisms.

Author Contributions: Conceptualization, R.G.-S. and M.T.; methodology, M.B., C.B. and M.T.;
software, C.B.; validation, M.B., C.B. and R.G.-S.; formal analysis, M.B. and R.G.-S.; investigation,
M.T., M.G.M.L. and R.G.-S.; resources, M.L.; data curation, C.B. and M.B.; writing—original draft
preparation, M.B., R.G.-S. and M.T.; writing—review and editing, M.B., R.G.-S. and M.L.; visualization,
M.B. and M.T.; supervision, M.L. and R.G.-S.; project administration, M.L.; funding acquisition, M.L.
and R.G.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ramón y Cajal program (grant 2012_11910), AGL2016-
77288-R project of the Ministry of Economy and Competitiveness, Spain, and the Universidad Europea
de Madrid grant 2018/UEM4.

Institutional Review Board Statement: All study participants signed the corresponding informed
consent form. The study was approved by the CEIM-R of the Community of Madrid Reference:
47/560280.9/18.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this study can be found in online repositories.
The names of the repository/repositories and accession number(s) can be found below: NCBI
BioProject; Accession No. PRJNA799142.

https://www.mdpi.com/article/10.3390/genes13020289/s1
https://www.mdpi.com/article/10.3390/genes13020289/s1


Genes 2022, 13, 289 12 of 15

Acknowledgments: The authors acknowledge the comments and suggestions coming from the rest
MAS microbiota Research group members.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472.

[CrossRef] [PubMed]
2. Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an

environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [CrossRef] [PubMed]
3. Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res. 2020, 127, 553–570. [CrossRef]

[PubMed]
4. Sonnenburg, J.L.; Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64.

[CrossRef] [PubMed]
5. Cerdá, B.; Pérez, M.; Pérez-Santiago, J.D.; Tornero-Aguilera, J.F.; González-Soltero, R.; Larrosa, M. Gut Microbiota Modification:

Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front. Physiol. 2016, 7, 51. [CrossRef]
6. Bressa, C.; Bailén-Andrino, M.; Pérez-Santiago, J.; González-Soltero, R.; Pérez, M.; Montalvo-Lominchar, M.G.; Maté-Muñoz, J.L.;

Domínguez, R.; Moreno, D.; Larrosa, M. Differences in gut microbiota profile between women with active lifestyle and sedentary
women. PLoS ONE 2017, 12, e0171352. [CrossRef]

7. Spor, A.; Koren, O.; Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev.
Microbio. 2011, 9, 279–290. [CrossRef]

8. Blekhman, R.; Goodrich, J.K.; Huang, K.; Sun, Q.; Bukowski, R.; Bell, J.T.; Spector, T.D.; Keinan, A.; Ley, R.E.; Gevers, D.; et al.
Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015, 16, 1–12. [CrossRef]

9. Khachatryan, Z.A.; Ktsoyan, Z.A.; Manukyan, G.P.; Kelly, D.; Ghazaryan, K.A.; Aminov, R.I. Predominant Role of Host Genetics
in Controlling the Composition of Gut Microbiota. PLoS ONE 2008, 3, e3064. [CrossRef]

10. Li, E.; Hamm, C.M.; Gulati, A.S.; Sartor, R.B.; Chen, H.; Wu, X.; Zhang, T.; Rohlf, F.J.; Zhu, W.; Gu, C.; et al. Inflammatory
Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial
Composition. PLoS ONE 2012, 7, e26284. [CrossRef]

11. Tong, M.; McHardy, I.; Ruegger, P.; Goudarzi, M.; Kashyap, P.C.; Haritunians, T.; Li, X.; Graeber, T.G.; Schwager, E.; Huttenhower,
C.; et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 2014, 8,
2193–2206. [CrossRef] [PubMed]

12. Knights, D.; Silverberg, M.S.; Weersma, R.K.; Gevers, D.; Dijkstra, G.; Huang, H.; Tyler, A.D.; Van Sommeren, S.; Imhann, F.;
Stempak, J.M.; et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014, 6, 1–11.
[CrossRef] [PubMed]

13. Bonder, M.J.; Kurilshikov, A.; Tigchelaar, E.F.; Mujagic, Z.; Imhann, F.; Vila, A.V.; Deelen, P.; Vatanen, T.; Schirmer, M.; Smeekens,
S.P.; et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016, 48, 1407–1412. [CrossRef]

14. Skogsberg, J.; Kannisto, K.; Roshani, L.; Gagné, E.; Hamsten, A.; Larsson, C.; Ehrenborg, E. Characterization of the human
peroxisome proliferator activated receptor delta gene and its expression. Int. J. Mol. Med. 2000, 6, 73–81. [CrossRef] [PubMed]

15. Holst, D.; Luquet, S.; Nogueira, V.; Kristiansen, K.; Leverve, X.; Grimaldi, P.A. Nutritional regulation and role of peroxisome
proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2003,
1633, 43–50. [CrossRef]

16. Russell, A.P.; Hesselink, M.K.C.; Lo, S.K.; Schrauwen, P. Regulation of metabolic transcriptional co-activators and transcription
factors with acute exercise. FASEB J. 2005, 19, 986–988. [CrossRef] [PubMed]

17. Lee, C.-H.; Olson, P.; Hevener, A.; Mehl, I.; Chong, L.-W.; Olefsky, J.M.; Gonzalez, F.J.; Ham, J.; Kang, H.; Peters, J.M.; et al. PPAR
regulates glucose metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. USA 2006, 103, 3444–3449. [CrossRef]

18. Vänttinen, M.; Nuutila, P.; Kuulasmaa, T.; Pihlajamäki, J.; Hällsten, K.; Virtanen, K.A.; Lautamäki, R.; Peltoniemi, P.; Takala,
T.; Viljanen, A.P.M.; et al. Single Nucleotide Polymorphisms in the Peroxisome Proliferator–Activated Receptor δ Gene Are
Associated with Skeletal Muscle Glucose Uptake. Diabetes 2005, 54, 3587–3591. [CrossRef]

19. Andrulionyte, L.; Peltola, P.; Chiasson, J.-L.; Laakso, M.; STOP-NIDDM Study Group. Single Nucleotide Polymorphisms
of PPARD in Combination with the Gly482Ser Substitution of PGC-1A and the Pro12Ala Substitution of PPARG2 Predict
the Conversion from Impaired Glucose Tolerance to Type 2 Diabetes: The STOP-NIDDM Trial. Diabetes 2006, 55, 2148–2152.
[CrossRef]

20. Stefan, N.; Thamer, C.; Staiger, H.; Machicao, F.; Machann, J.; Schick, F.; Venter, C.; Niess, A.; Laakso, M.; Fritsche, A.; et al.
Genetic Variations inPPARDandPPARGC1ADetermine Mitochondrial Function and Change in Aerobic Physical Fitness and
Insulin Sensitivity during Lifestyle Intervention. J. Clin. Endocrinol. Metab. 2007, 92, 1827–1833. [CrossRef]

21. Lee, M.Y.; Choi, R.; Kim, H.M.; Cho, E.J.; Kim, B.H.; Choi, Y.S.; Naowaboot, J.; Lee, E.Y.; Yang, Y.C.; Shin, J.Y.; et al. Peroxisome
proliferator-activated receptor δ agonist attenuates hepatic steatosis by anti-inflammatory mechanism. Exp. Mol. Med. 2012, 44,
578–585. [CrossRef] [PubMed]

http://doi.org/10.1007/s11154-019-09512-0
http://www.ncbi.nlm.nih.gov/pubmed/31707624
http://doi.org/10.1073/pnas.0407076101
http://www.ncbi.nlm.nih.gov/pubmed/15505215
http://doi.org/10.1161/CIRCRESAHA.120.316242
http://www.ncbi.nlm.nih.gov/pubmed/32762536
http://doi.org/10.1038/nature18846
http://www.ncbi.nlm.nih.gov/pubmed/27383980
http://doi.org/10.3389/fphys.2016.00051
http://doi.org/10.1371/journal.pone.0171352
http://doi.org/10.1038/nrmicro2540
http://doi.org/10.1186/s13059-015-0759-1
http://doi.org/10.1371/journal.pone.0003064
http://doi.org/10.1371/journal.pone.0026284
http://doi.org/10.1038/ismej.2014.64
http://www.ncbi.nlm.nih.gov/pubmed/24781901
http://doi.org/10.1186/s13073-014-0107-1
http://www.ncbi.nlm.nih.gov/pubmed/25587358
http://doi.org/10.1038/ng.3663
http://doi.org/10.3892/ijmm.6.1.73
http://www.ncbi.nlm.nih.gov/pubmed/10851270
http://doi.org/10.1016/S1388-1981(03)00071-4
http://doi.org/10.1096/fj.04-3168fje
http://www.ncbi.nlm.nih.gov/pubmed/15814608
http://doi.org/10.1073/pnas.0511253103
http://doi.org/10.2337/diabetes.54.12.3587
http://doi.org/10.2337/db05-1629
http://doi.org/10.1210/jc.2006-1785
http://doi.org/10.3858/emm.2012.44.10.066
http://www.ncbi.nlm.nih.gov/pubmed/22824914


Genes 2022, 13, 289 13 of 15

22. Rius-Pérez, S.; Torres-Cuevas, I.; Millán, I.; Ortega, Á.L.; Pérez, S. PGC-1α, Inflammation, and Oxidative Stress: An Integrative
View in Metabolism. Oxid. Med. Cell. Longev. 2020, 2020, 1452696. [CrossRef] [PubMed]

23. Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab.
2005, 1, 361–370. [CrossRef] [PubMed]

24. Ek, J.; Andersen, G.; Urhammer, S.A.; Gæde, P.; Drivsholm, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. Mutation analysis of
peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to
Type II diabetes mellitus. Diabetologia 2001, 44, 2220–2226. [CrossRef]

25. Hara, K.; Tobe, K.; Okada, T.; Kadowaki, H.; Akanuma, Y.; Ito, C.; Kimura, S. A genetic variation in the PGC-1 gene could confer
insulin resistance and susceptibility to Type II diabetes. Diabetologia 2002, 45, 740–743. [CrossRef]

26. Ussar, S.; Griffin, N.W.; Bezy, O.; Fujisaka, S.; Vienberg, S.; Softic, S.; Deng, L.; Bry, L.; Gordon, J.I.; Kahn, C.R. Interactions between
Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab. 2015, 22,
516–530. [CrossRef]

27. Oh, H.Y.P.; Visvalingam, V.; Wahli, W. The PPAR–microbiota–metabolic organ trilogy to fine-tune physiology. FASEB J. 2019, 33,
9706–9730. [CrossRef]

28. Hasan, A.U.; Rahman, A.; Kobori, H. Interactions between Host PPARs and Gut Microbiota in Health and Disease. Int. J. Mol. Sci.
2019, 20, 387. [CrossRef]

29. Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports
Exerc. 1998, 30, 777–781. [CrossRef]

30. García-Villalba, R.; Bastida, J.A.G.; Conesa, M.T.G.; Tomas-Barberan, F.; Espín, J.C.; Larrosa, M. Alternative method for gas
chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J. Sep. Sci. 2012, 35, 1906–1913.
[CrossRef]

31. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef] [PubMed]

32. Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef] [PubMed]

33. Pedregosa FABIANPEDREGOSA, F.; Michel, V.; Grisel OLIVIERGRISEL, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas,
J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-Learn: Machine Learning in Python Gaël Varoquaux Bertrand
Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. J. Mach. Learn.
Res. 2011, 12, 2825–2830.

34. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [CrossRef]

35. Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA
and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2013, 42, D643–D648. [CrossRef] [PubMed]

36. Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing
taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90.
[CrossRef]

37. Kaehler, B.D.; Bokulich, N.; Mcdonald, D.; Knight, R.; Caporaso, J.; Gregory, C.J.; Huttley, G.A. Species-Level Microbial Sequence
Classification Is Improved by Source-Environment Information. bioRxiv 2019, 406611. [CrossRef]

38. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for
prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef]

39. Anders, S.; McCarthy, D.J.; Chen, Y.; Okoniewski, M.; Smyth, G.K.; Huber, W.; Robinson, M.D. Count-based differential expression
analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 2013, 8, 1765–1786. [CrossRef]

40. Prior, S.L.; Clark, A.R.; Jones, D.A.; Bain, S.C.; Hurel, S.J.; Humphries, S.E.; Stephens, J.W. Association of the PGC-1? rs 8192678
Variant with Microalbuminuria in Subjects with Type 2 Diabetes Mellitus. Dis. Markers 2012, 32, 363–369. [CrossRef]

41. Karaderi, T.; Drong, A.W.; Lindgren, C.M. Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide
Association Studies of Obesity-Related Traits. Curr. Diabetes Rep. 2015, 15, 83. [CrossRef] [PubMed]

42. Lai, C.-Q.; Tucker, K.L.; Parnell, L.D.; Adiconis, X.; García-Bailo, B.; Griffith, J.; Meydani, M.; Ordovás, J.M. PPARGC1A Variation
Associated with DNA Damage, Diabetes, and Cardiovascular Diseases: The Boston Puerto Rican Health Study. Diabetes 2007, 57,
809–816. [CrossRef] [PubMed]

43. Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin
Resistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of
Pima Indians. N. Engl. J. Med. 1993, 329, 1988–1992. [CrossRef] [PubMed]

44. Martin, B.C.; Warram, J.H.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R.; Bergman, R.N. Role of glucose and insulin resistance in
development of type 2 diabetes mellitus: Results of a 25-year follow-up study. Lancet 1992, 340, 925–929. [CrossRef]

45. Bloomgarden, Z.T. Insulin resistance: Current concepts. Clin. Ther. 1998, 20, 216–231. [CrossRef]
46. Kim, J.A.; Wei, Y.; Sowers, J.R. Role of Mitochondrial Dysfunction in Insulin Resistance. Circ. Res. 2008, 102, 401–414. [CrossRef]
47. Sesti, G. Pathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 665–679. [CrossRef]
48. Petersen, K.F.; Shulman, G.I. Etiology of Insulin Resistance. Am. J. Med. 2006, 119, S10–S16. [CrossRef]

http://doi.org/10.1155/2020/1452696
http://www.ncbi.nlm.nih.gov/pubmed/32215168
http://doi.org/10.1016/j.cmet.2005.05.004
http://www.ncbi.nlm.nih.gov/pubmed/16054085
http://doi.org/10.1007/s001250100032
http://doi.org/10.1007/s00125-002-0803-z
http://doi.org/10.1016/j.cmet.2015.07.007
http://doi.org/10.1096/fj.201802681RR
http://doi.org/10.3390/ijms20020387
http://doi.org/10.1097/00005768-199805000-00021
http://doi.org/10.1002/jssc.201101121
http://doi.org/10.1038/s41587-019-0209-9
http://www.ncbi.nlm.nih.gov/pubmed/31341288
http://doi.org/10.1038/nmeth.3869
http://www.ncbi.nlm.nih.gov/pubmed/27214047
http://doi.org/10.1093/nar/gks1219
http://doi.org/10.1093/nar/gkt1209
http://www.ncbi.nlm.nih.gov/pubmed/24293649
http://doi.org/10.1186/s40168-018-0470-z
http://doi.org/10.3929/ethz-b-000431207
http://doi.org/10.1038/s41587-020-0548-6
http://doi.org/10.1038/nprot.2013.099
http://doi.org/10.1155/2012/416138
http://doi.org/10.1007/s11892-015-0648-8
http://www.ncbi.nlm.nih.gov/pubmed/26363598
http://doi.org/10.2337/db07-1238
http://www.ncbi.nlm.nih.gov/pubmed/18162502
http://doi.org/10.1056/NEJM199312303292703
http://www.ncbi.nlm.nih.gov/pubmed/8247074
http://doi.org/10.1016/0140-6736(92)92814-V
http://doi.org/10.1016/S0149-2918(98)80086-6
http://doi.org/10.1161/CIRCRESAHA.107.165472
http://doi.org/10.1016/j.beem.2006.09.007
http://doi.org/10.1016/j.amjmed.2006.01.009


Genes 2022, 13, 289 14 of 15

49. Csép, K.; Szigeti, E.; Vitai, M.; Koranyi, L. The Ppargc1A-Gly482Ser Polymorphism (RS8192678) and the Metabolic Syndrome in a
Central Romanian Population. Acta Endocrinol. 2017, 13, 161–167. [CrossRef]

50. Zhu, S.; Liu, Y.; Wang, X.; Wu, X.; Zhu, X.; Li, J.; Ma, J.; Gu, H.F.; Liu, Y. Evaluation of the association between the PPARGC1A
genetic polymorphisms and type 2 diabetes in Han Chinese population. Diabetes Res. Clin. Pract. 2009, 86, 168–172. [CrossRef]

51. Bhat, A.; Koul, A.; Rai, E.; Sharma, S.; Dhar, M.K.; Bamezai, R.N.K. PGC-1α Thr394Thr and Gly482Ser variants are significantly
associated with T2DM in two North Indian populations: A replicate case-control study. Qual. Life Res. 2007, 121, 609–614.
[CrossRef] [PubMed]

52. Esterbauer, H.; Oberkofler, H.; Linnemayr, V.; Iglseder, B.; Hedegger, M.; Wolfsgruber, P.; Paulweber, B.; Fastner, G.; Krempler,
F.; Patsch, W. Peroxisome Proliferator-Activated Receptor-γ Coactivator-1 Gene Locus: Associations with Obesity Indices in
Middle-Aged Women. Diabetes 2002, 51, 1281–1286. [CrossRef] [PubMed]

53. Vohl, M.-C.; Houde, A.; Lebel, S.; Hould, F.-S.; Marceau, P. Effects of the peroxisome proliferator-activated receptor-γ co-activator-1
Gly482Ser variant on features of the metabolic syndrome. Mol. Genet. Metab. 2005, 86, 300–306. [CrossRef]

54. Lacquemant, C.; Chikri, M.; Boutin, P.; Samson, C.; Froguel, P. No association between the G482S polymorphism of the proliferator-
activated receptor-gamma coactivator-1 (PGC-1) gene and Type II diabetes in French Caucasians. Diabetologia 2002, 45, 602.
[CrossRef]

55. Stumvoll, M.; Fritsche, A.; T’Hart, L.M.; Machann, J.; Thamer, C.; Tschritter, O.; Van Haeften, T.W.; Jacob, S.; Dekker, J.M.;
Maassen, J.A.; et al. The Gly482Ser Variant in the Peroxisome Proliferator-Activated Receptor γ Coactivator-1 is not Associated
with Diabetes-Related Traits in Non-Diabetic German and Dutch Populations. Exp. Clin. Endocrinol. Diabetes 2004, 112, 253–257.
[CrossRef] [PubMed]

56. Franson, J.; Grose, J.; Larson, K.; Bridgewater, L. Gut Microbiota Regulates the Interaction between Diet and Genetics to Influence
Glucose Tolerance. Medicines 2021, 8, 34. [CrossRef]

57. Pinna, N.K.; Anjana, R.M.; Saxena, S.; Dutta, A.; Gnanaprakash, V.; Rameshkumar, G.; Aswath, S.; Raghavan, S.; Rani, C.S.S.;
Radha, V.; et al. Trans-ethnic gut microbial signatures of prediabetic subjects from India and Denmark. Genome Med. 2021, 13, 36.
[CrossRef]

58. Gao, H.; Jiang, Q.; Ji, H.; Ning, J.; Li, C.; Zheng, H. Type 1 diabetes induces cognitive dysfunction in rats associated with alterations
of the gut microbiome and metabolomes in serum and hippocampus. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865,
165541. [CrossRef]

59. Kostic, A.; Gevers, D.; Siljander, H.; Vatanen, T.; Hyötyläinen, T.; Hämäläinen, A.-M.; Peet, A.; Tillmann, V.; Pöhö, P.; Mattila, I.;
et al. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host
Microbe 2015, 17, 260–273. [CrossRef]

60. Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association
study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [CrossRef]

61. Kameyama, K.; Itoh, K. Intestinal Colonization by a Lachnospiraceae Bacterium Contributes to the Development of Diabetes in
Obese Mice. Microbes Environ. 2014, 29, 427–430. [CrossRef] [PubMed]

62. Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut
Lachnospiraceae. Microorganisms 2020, 8, 573. [CrossRef] [PubMed]

63. Reid, S.J.; Abratt, V.R. Sucrose utilisation in bacteria: Genetic organisation and regulation. Appl. Microbiol. Biotechnol. 2005, 67,
312–321. [CrossRef] [PubMed]

64. Hashimoto, Y.; Hamaguchi, M.; Kaji, A.; Sakai, R.; Osaka, T.; Inoue, R.; Kashiwagi, S.; Mizushima, K.; Uchiyama, K.; Takagi, T.;
et al. Intake of sucrose affects gut dysbiosis in patients with type 2 diabetes. J. Diabetes Investig. 2020, 11, 1623–1634. [CrossRef]

65. Huergo, L.; Dixon, R. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Microbiol. Mol. Biol. Rev. 2015, 79,
419–435. [CrossRef]

66. Arora, A.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Sobarzo-Sanchez, E.; Bungau, S. Unravelling the involvement of
gut microbiota in type 2 diabetes mellitus. Life Sci. 2021, 273, 119311. [CrossRef]

67. Li, Q.; Chang, Y.; Zhang, K.; Chen, H.; Tao, S.; Zhang, Z. Implication of the gut microbiome composition of type 2 diabetic patients
from northern China. Sci. Rep. 2020, 10, 1–8. [CrossRef]

68. Hou, Y.-P.; He, Q.-Q.; Ouyang, H.-M.; Peng, H.-S.; Wang, Q.; Li, J.; Lv, X.-F.; Zheng, Y.-N.; Li, S.-C.; Liu, H.-L.; et al. Human Gut
Microbiota Associated with Obesity in Chinese Children and Adolescents. BioMed Res. Int. 2017, 2017, 7585989. [CrossRef]

69. Behl, T.; Sehgal, A.; Grover, M.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Aleya, L.; Bungau, S. Uncurtaining the pivotal
role of ABC transporters in diabetes mellitus. Environ. Sci. Pollut. Res. 2021, 28, 41533–41551. [CrossRef]

70. Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with
increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [CrossRef]

71. Candela, M.; Biagi, E.; Soverini, M.; Consolandi, C.; Quercia, S.; Severgnini, M.; Peano, C.; Turroni, S.; Rampelli, S.; Pozzilli, P.;
et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br. J. Nutr. 2016, 116, 80–93.
[CrossRef] [PubMed]

72. Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F.
Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab.
2015, 22, 971–982. [CrossRef] [PubMed]

http://doi.org/10.4183/aeb.2017.161
http://doi.org/10.1016/j.diabres.2009.09.020
http://doi.org/10.1007/s00439-007-0352-0
http://www.ncbi.nlm.nih.gov/pubmed/17390150
http://doi.org/10.2337/diabetes.51.4.1281
http://www.ncbi.nlm.nih.gov/pubmed/11916956
http://doi.org/10.1016/j.ymgme.2005.07.002
http://doi.org/10.1007/s00125-002-0783-z
http://doi.org/10.1055/s-2004-817972
http://www.ncbi.nlm.nih.gov/pubmed/15146371
http://doi.org/10.3390/medicines8070034
http://doi.org/10.1186/s13073-021-00851-9
http://doi.org/10.1016/j.bbadis.2019.165541
http://doi.org/10.1016/j.chom.2015.01.001
http://doi.org/10.1038/nature11450
http://doi.org/10.1264/jsme2.ME14054
http://www.ncbi.nlm.nih.gov/pubmed/25283478
http://doi.org/10.3390/microorganisms8040573
http://www.ncbi.nlm.nih.gov/pubmed/32326636
http://doi.org/10.1007/s00253-004-1885-y
http://www.ncbi.nlm.nih.gov/pubmed/15660210
http://doi.org/10.1111/jdi.13293
http://doi.org/10.1128/MMBR.00038-15
http://doi.org/10.1016/j.lfs.2021.119311
http://doi.org/10.1038/s41598-020-62224-3
http://doi.org/10.1155/2017/7585989
http://doi.org/10.1007/s11356-021-14675-y
http://doi.org/10.1038/nature05414
http://doi.org/10.1017/S0007114516001045
http://www.ncbi.nlm.nih.gov/pubmed/27151248
http://doi.org/10.1016/j.cmet.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26552345


Genes 2022, 13, 289 15 of 15

73. Thingholm, L.B.; Rühlemann, M.C.; Koch, M.; Fuqua, B.; Laucke, G.; Boehm, R.; Bang, C.; Franzosa, E.A.; Hübenthal, M.;
Rahnavard, G.; et al. Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and
Composition. Cell Host Microbe 2019, 26, 252–264. [CrossRef] [PubMed]

74. Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.;
Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381.
[CrossRef] [PubMed]

75. Chen, J.; Zhao, J.; Cao, Y.; Zhang, G.; Chen, Y.; Zhong, J.; Huang, W.; Zeng, J.; Wu, P. Relationship between alterations of urinary
microbiota and cultured negative lower urinary tract symptoms in female type 2 diabetes patients. BMC Urol. 2019, 19, 78.
[CrossRef] [PubMed]

76. Tao, S.; Li, L.; Li, L.; Liu, Y.; Ren, Q.; Shi, M.; Liu, J.; Jiang, J.; Ma, H.; Huang, Z.; et al. Understanding the gut–kidney axis among
biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: An analysis of the gut microbiota composition.
Geol. Rundsch. 2019, 56, 581–592. [CrossRef]

http://doi.org/10.1016/j.chom.2019.07.004
http://www.ncbi.nlm.nih.gov/pubmed/31399369
http://doi.org/10.1038/nature18646
http://www.ncbi.nlm.nih.gov/pubmed/27409811
http://doi.org/10.1186/s12894-019-0506-0
http://www.ncbi.nlm.nih.gov/pubmed/31438919
http://doi.org/10.1007/s00592-019-01316-7

	Introduction 
	Materials and Methods 
	Ethics Approval and Consent to Participate 
	Participant Characteristics 
	Anthropometry and Body Composition 
	Physical Activity 
	Dietary Habits 
	Sample Collection 
	Short-Chain Fatty Acids 
	DNA Extraction 
	PPARD and PPARGC1A Genotyping 
	Sequencing and Bioinformatics 
	Statistical Analysis 

	Results 
	Subjects, Genotypes and Allelic Frequencies 
	Body Composition, Physical Activity and Dietary Habits 
	Short-Chain Fatty Acids 
	Fecal Microbiota 
	Differential Abundance Analysis 
	Predicted Functional Metagenome by PICRUSt 

	Discussion 
	References

