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Abstract

Clinical adoption of immune checkpoint inhibitors in cancer management has highlighted

the interconnection between carcinogenesis and the immune system. Immune cells are inte-

gral to the tumour microenvironment and can influence the outcome of therapies. Better

understanding of an individual’s immune landscape may play an important role in treatment

personalisation. Peripheral blood is a readily accessible source of information to study an

individual’s immune landscape compared to more complex and invasive tumour bioipsies,

and may hold immense diagnostic and prognostic potential. Identifying the critical compo-

nents of these immune signatures in peripheral blood presents an attractive alternative to

tumour biopsy-based immune phenotyping strategies. We used two syngeneic solid tumour

models, a 4T1 breast cancer model and a CT26 colorectal cancer model, in a longitudinal

study of the peripheral blood immune landscape. Our strategy combined two highly accessi-

ble approaches, blood leukocyte immune phenotyping and plasma soluble immune factor

characterisation, to identify distinguishing immune signatures of the CT26 and 4T1 tumour

models using machine learning. Myeloid cells, specifically neutrophils and PD-L1-express-

ing myeloid cells, were found to correlate with tumour size in both the models. Elevated lev-

els of G-CSF, IL-6 and CXCL13, and B cell counts were associated with 4T1 growth,

whereas CCL17, CXCL10, total myeloid cells, CCL2, IL-10, CXCL1, and Ly6Cintermediate

monocytes were associated with CT26 tumour development. Peripheral blood appears to

be an accessible means to interrogate tumour-dependent changes to the host immune land-

scape, and to identify blood immune phenotypes for future treatment stratification.

Introduction

Carcinogenesis is a complex and multi-layered process involving various cellular and tissue

networks. Although tumours can be recognised by the immune system, resulting in their
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growth suppression or elimination, they can also evolve to escape and/or suppress immune

responses resulting in tumour growth and metastasis [1]. This interplay between tumour

growth and the immune system is accompanied by specific perturbations to the immune land-

scape, manifested as changes to leukocyte frequencies and to the concentrations of immune

soluble factors, both locally at the tumour site and systemically [2, 3]. Understanding the rela-

tionship between immune landscape changes and cancer subtype, disease progression and

response to treatment has the potential to advance the development of new treatments, per-

sonalise therapies and improve outcomes.

Conventional cancer treatment strategies are comprised of the local modalities of surgery

and radiotherapy, and the systemic approaches of endocrine treatment, cytotoxic chemother-

apy, molecular targeted therapy and immunotherapy [4]. Whilst the latter two systemic thera-

pies have, in recent years, brought the promise of dramatically improving cancer outcomes,

their effect remains limited to only a subset of cancer patients [5]. Generic approaches to can-

cer treatment based only on tumour histology do not take into consideration the complexity of

the cellular and tissue networks involved, and as such often result in variable outcomes. Mov-

ing beyond generic approaches and improving the outcome of novel immunotherapies

requires robust preclinical interrogations to navigate the increasingly crowded arsenal of treat-

ments. Preclinical models enable tumour-immune system networks to be studied in a con-

trolled manner to establish clinically translatable workflows. Studying the peripheral immune

system to identify tumour subtype-specific immune dysregulation signatures that could be

associated with tumour growth and treatment outcome is one such avenue of focus in this

approach.

The immunome–the genes and proteins that constitute the immune system and an ever-

increasing number of immune cell types–is defined through complex patterns of antigen

expression representing quantifiable metrics of an individual’s immune landscape. Over a

hundred different phenotypes of immune cells, representing the cellular immunome, have

been identified. These include parental cell types such as T cells, B cells, natural killer (NK)

cells, NK T cells, dendritic cells (DCs), granulocytes and monocytes. Each of these parental cell

types can give rise to multiple subtypes defined by activation and/or suppressive functions.

The soluble immunome consists of the chemokine system, which comprises nearly 50 chemo-

kine ligands, and the cytokine system that includes over 30 glycoproteins regulating the func-

tions of the immune system [6, 7]. Analysis of the complex interactions of these parameters is

now possible, with machine learning (ML) techniques offering a means to generate models of

multivariate data and facilitate the prediction of disease progression and treatment outcomes.

ML techniques can also help with inference of underlying biological mechanisms based on

explanatory algorithms [8].

This study examines a multiparameter immune phenotyping approach, using blood cellular

and soluble immune signatures, in a tightly controlled preclinical environment of two well-

established syngeneic tumour models: a triple-negative breast cancer, 4T1, and a colorectal

cancer, CT26, both implanted subcutaneously in BALB/c mice. These tumour models were

selected to allow the assessment of different immune signatures, as the 4T1 line is known to

generate highly aberrant immune signatures [9, 10], whereas the CT26 line generates more

subtle immune phenotype changes [11, 12]. To monitor changes to the systemic cellular and

soluble immune signatures of tumour-bearing animals, a small volume of blood was obtained

from the animals’ tail veins in a minimally invasive, feature-rich and high-throughput strategy

for clinical translation. Multiparameter flow cytometry was used to generate cell-surface

immune signatures, while soluble immune profiles were readily obtained from the plasma

using a bead-based immunoassay based on the same basic principles as sandwich immunoas-

says. This approach allows relatively high throughput generation of data and was coupled with
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statistical modelling to make predictions and inferences about tumour outcomes and biology.

Predictive modelling and feature ranking was performed using Random Forest models, in con-

junction with SHapley Additive Explanations and correlation matrices, to make inferences

about the underlying immune biology of the tumour models. This relatively simple strategy

successfully generated reasonably accurate models that are able to (i) confirm the presence of a

tumour, (ii) differentiate between tumour types and (iii) predict current and future tumour

burden, and highlighted that both tumour models generate unique blood immune signatures.

This study aims to assess the utility of blood cellular and soluble immune signatures cou-

pled with ML to predict cancer subtype and tumour progression in a tightly controlled preclin-

ical environment. It provides evidence of potential clinical application of immune signature-

based systemic immune phenotyping to improve overall cancer diagnosis and surveillance.

The study also identifies key immune features for predictive modelling and possible candidate

parameters for therapeutic intervention based on those models.

Methods

To monitor changes to the systemic cellular and soluble immune signatures of tumour-bearing

animals, a small volume of blood was obtained from the animals’ tail veins in a minimally inva-

sive, feature-rich and high-throughput strategy for clinical translation. Multiparameter flow

cytometry was used to generate cell-surface immune signatures, while soluble immune profiles

were obtained from the plasma using a bead-based immunoassay established on the same

basic principles as sandwich immunoassays. This approach allows relatively high throughput

generation of data and was coupled with statistical modelling to make predictions and infer-

ences about tumour outcomes and biology. Predictive modelling and feature ranking was per-

formed using Random Forest models, in conjunction with SHapley Additive Explanations and

correlation matrices, to make inferences about the underlying immune biology of the tumour

models. This relatively simple strategy successfully generated reasonably accurate models that

are able to (i) confirm the presence of a tumour, (ii) differentiate between tumour subtypes

and (iii) predict current and future tumour burden, and highlighted that both tumour models

generate unique blood immune signatures.

Animals

Female BALB/c mice aged between 6–10 weeks sourced from the Australian Phenomics Facil-

ity (ANU) were used throughout the study. Animals were fed ad libitum, housed in a specific-

pathogen free environment and used under strict adherence to protocols approved by the

institutional Animal Experimentation Ethics Committee (AEEC), ANU, under protocols

A2017/43 and A2020/39. At experimental end points, animals were euthanised by cervical dis-

location according to AEEC approved procedures.

Cell lines

The 4T1-Luc2 (4T1) mammary carcinoma and CT26 colorectal carcinoma (kindly gifted by

Dr. Aude Fahrer, ANU) cell lines were originally sourced from American Type Culture Collec-

tion (ATCC) and confirmed clear of pathogens by Cerberus Sciences (ISO 9001 Licence No.

AU843-QC) before use in animals. Both adherent cell lines were cultured in RPMI-1640

(11875093, ThermoFisher Scientific) supplemented with 10% (v/v) fetal bovine serum (F8192,

Sigma), 2mM L-glutamine (250300810, ThermoFisher Scientific), 10mM HEPES (15630080,

ThermoFisher Scientific), 1mM sodium pyruvate (11360070, ThermoFisher Scientific) and 55

nM 2-mercaptoethanol (21985023, ThermoFisher Scientific), detached using warmed trypsin/
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0.05% (v/v) EDTA solution (15400054, ThermoFisher Scientific) then passaged and main-

tained at up to 70–80% confluency.

Tumour establishment

Tumour cells were injected at 1 x 105 cells in 50 μL of sterile normal saline solution subcutane-

ously in the right-hind flank of mice randomised across several housing cages. Fur around the

injection site was removed by clippers prior to tumour inoculation. Tumours were left to grow

for up to 14 days, and monitored daily to ensure wellbeing was maintained. In 21 of 98 of the

4T1-bearing mice, a single dose of the Src-inhibitor eCF506 (1914078-41-3, Sun-shine Chemi-

cal) at 0.1 (eC100), 1 (eC1000), or 10 (eC10000) mg/kg was administered i.p. 7 days post-

tumour establishment, which appeared to have little, if any impact on the parameters assessed

in the study, and so these mice were included to increase sample size (S1 File). At end-point,

the mice were humanely sacrificed by cervical dislocation, and their tumours excised and

weighed.

Blood collection

At 7/8 (referred to as day 7) and 14 days post tumour establishment, mice were briefly heated

(~4 minutes) under a lamp to promote vasodilation, placed in a restraint, their tail vein punc-

tured with a 29G needle, and a 20 μL sample of blood collected into 4 μL of citrate-dextrose

solution (ACD, Sigma) anticoagulant. A 5 μL sample of this blood was immediately used for

antibody labelling and flow cytometry. The remaining blood was centrifuged at 16,000 x g for

10 minutes and 7 μL of plasma collected and stored in a sealed 96 well polypropylene micro-

plate (249943, ThermoFisher Scientific) at -20˚C for future cytokine and chemokines measure-

ments using the LEGENDplex assays.

Immunophenotyping of blood leukocytes by flow cytometry

The 5 μL blood samples for cellular analysis were initially incubated for 10 minutes on ice in

wells of a v-bottom 96-well microplate with 25 μL of 5 mg/mL TruStain FcXTM (anti-mouse

CD16/32) antibody (101320, Biolegend) diluted in 1x RBC BD Pharm Lyse lysing buffer

(555899, BD Bioscience). Samples were then incubated with 25 μL of 1x RBC BD Pharm Lyse

containing fluorescent antibodies listed in S1 Table for 30 minutes on ice in the dark. In addi-

tion, 5000 Flow-Count Fluorospheres (7547053, Beckman Coulter) were spiked in to each

sample with the fluorescent antibodies to allow enumeration of total cells per sample. Cells

were then washed twice by resuspension in a total of 200 μL of PBS containing 5 mM EDTA,

sedimentation by centrifugation at 300 x g for 5 minutes and flicking off supernatant. Samples

were then resuspended in 50 μL of PBS containing 5 mM EDTA, 1% BSA (w/v) and 1 μg/ml of

the dead cell dye Hoechst 33258 ready for flow cytometry.

LEGENDplex assay

Frozen plasma samples were thawed on ice, then assayed using the Macrophage/microglial

(Mac/Mic) 13-plex LEGENDplex kit and the Proinflammatory (Proinflam) 13-plex LEGEN-

Dplex Kit (740451 and 780846, Biolegend). Assay methods were as described by the manufac-

turer, except the assay was scaled down to use 6 μL of sample/standards for each kit as follows.

Seven μL of each plasma sample was diluted in 7 μL of kit assay buffer and 6 μL of this mix (or

6 μL of pre-titrated kit standard) was added to 12 μL of kit capture beads (pre-diluted 1:1 (v/v)

with assay buffer) in a v-bottom 96-well microplate, and incubated with shaking for 2 hours.

Beads were then pelleted at 250 x g for 5 minutes and the supernatant flicked off. Beads were
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washed with 50 μL of kit wash buffer and pelleted and supernatant removed as above.

Twelve μL of kit biotinylated detection antibodies (pre-diluted 1:1 (v/v) in assay buffer) were

then added to beads, then beads resuspended by pipetting and the mixture incubated with

shaking for 1 hour at room temperature. Six μL of kit streptavidin-PE was then added to the

mixture, which was incubated with shaking for a further 30 minutes. Beads were then pelleted

and washed as described above and resuspended in 40 μL of kit 1x wash buffer ready for flow

cytometry.

Flow cytometry

Flow cytometry was performed on a BD LSRII (BD Bioscience) flow cytometer with FACS-

Diva, with quality assurance performed before each experimental run using BD FACSDiva

Cytometer Setup and Tracking (CS&T) beads (655051, BD Bioscience). Application Settings

were applied to standardise fluorescence intensity readings between experiments and these

were monitored using SpheroTM 8-peaks Rainbow Beads Fluorescence (110620, BD Biosci-

ence). Voltages were initially setup using unlabelled RBC-lysed blood leukocytes for cellular

analysis and LEGENDplex Raw Setup beads (as described by the manufacturer). BD Comp-

Beads (552843, BD Bioscience) were labelled with selected antibodies (S1 Table) as described

by the manufacturer and used as compensation controls for cellular analysis. Cell samples

were acquired until a total of 2000 Flow-Count Fluorosphere beads were collected based on

side scatter (log) and forward scatter (linear) plot gating. LEGENDplex beads were acquired to

a total of 4000 beads. Raw Flow Cytometry Standard (FCS) files of the data are available upon

request at the ANU DATA COMMONS repository (https://dx.doi.org/10.25911/

6153a8ab5747c).

Flow cytometry analysis

Blood cells and LEGENDplex beads were analysed using FlowJo v10 software (BD Bioscience).

A combination of manual gating and unsupervised Fast Interpolation-based t-distributed Sto-

chastic Neighbour Embedding (FIt-SNE) analysis was use to delineate leukocyte populations,

which were then named based on this analysis (S1 Fig). LEGENDplex beads were gated for

each analyte as describe in S2 Fig and median PE fluorescence-intensity generated for each

bead analyte. Data was then normalised as describe below for analysis.

Data normalisation and processing

To reduce the influence of inter-experimental variability on conclusions, data was normalised

at several levels. Firstly, cell numbers in each flow cytometry acquisition were normalised to

counting beads spiked into the sample, with each sample normalised to 2000 counting beads

(a fifth of the spike load), to give the number of cells in ~2 μL of blood (“counting bead nor-

malised” values). Secondly, these normalised counts were normalised to the mean counts from

the blood of non-tumour bearing control animals within each experiment. These “nil normal-

ised” values were used in machine learning pipelines. To get “normalised cell counts” per 2 μL

of blood, for an estimate of the overall cells across the groups, the “nil normalised values” were

multiplied to the overall mean of the “bead normalised cell count” from all non-tumour-bear-

ing animals for each feature.

For the LEGENDplex assays, the raw PE median analyte values were normalised as a ratio

to the mean PE median analyte values from the blood of non-tumour bearing control animals

within each experiment. These “nil normalised” values were used in machine learning pipe-

lines. To get “normalised plasma concentrations”, the “nil normalised” values were multiplied

to the overall mean PE median from the blood of non-tumour bearing control animals, and
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concentrations interpolated using mean standard curves pooled from all experiments, with

Hyperbola, 5-parameter logistic regression (5PL) and Random Forest models employed. Since

5PL models failed for many data points and Random Forest resulted in non-gaussian multi-

cluster distributions, hyperbola models were used as they overcame these issues. t-distributed

stochastic neighbour embedding (t-SNE) unsupervised clustering was used to monitor experi-

mental clusters within the pooled data and helped to confirm experimental cluster minimisa-

tion using the normalisation approach. All raw and calculated data are in S1 File.

Supervised machine learning

Supervised machine learning was performed using Orange 3 software. Random Forest model-

ling used 500 trees, with a maximum tree depth of 3, a maximum number of features consid-

ered at each node was 4 (except when considering smaller feature numbers in which case the

hyperparameter changed accordingly), subsets smaller than 5 not split, and balanced class dis-

tribution enabled in the case of classification learning since data groups were unbalanced.

Missing data (that included a single sample without the 13 Proinflammatory LEGENDplex

panel) was imputed using the “hot deck” 1-NN learner, which replaces the missing values with

the values from the most similar example (as implemented in Orange 3 software). Initially, a

learning curve was generated by plotting progressively smaller data set size (randomly gener-

ated from the entire data set) against modelling skill (assessing classification of the tumour

subtype; 4T1, CT26 and Nil) to evaluate if the data set size was sufficient for the outcomes tar-

geted (S3 Fig). This revealed the data set size at 20% appeared to plateau in modelling skill, sug-

gesting data size was sufficient for the outcomes targeted. For the rest of the study, Random

Forest model training was performed and cross-validated on 100%, 80% and/or 60% of ran-

domized sample data and tested on any remaining data. The training data was validated using

leave-one-out cross-validation. Feature ranking was done using Random Forest (built in to the

Random Forest model in Orange 3 software) and the explain model function on Orange 3,

which uses the SHapely Additive exPlanation (SHAP) to explain feature importance. Feature

number and model fitting was optimised for classification predictions based on area under

curve of the receiver operating characteristics (AUC; to assess separability of the classes), clas-

sification accuracy (CA; proportion of correct classification), precision (ratio of correct posi-

tive prediction to all predicted positive), recall (ratio of correct positive prediction to actual

positive), and F1 score (weighted average of precision and recall) classification scores and for

regression using, Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE) scores. Each train and test modelling was done a minimum of 3 times

to assess variability. Once optimal features were assigned based on the above, the final predic-

tions were modelled on all the data and results displayed using cross-validation via leave-one-

out on the entire data set, either as a confusion matrix for classification analysis, or a bivariate

plot to actual values for regression analysis (with Pearson correlation coefficient reported and

associated p values calculated using prism software). Orange 3 workflows are provided in S2

File (for classification workflow) and S3 File (for regression workflow).

Statistical analysis

For means comparisons between Nil, CT26 and 4T1 cohorts, data was transformed using the

formula Y = Log(Y+0.0001) to help normalise distributions and equalise variance, and then

assessed by 2-way ANOVA using GraphPad Prism software. Multiple comparisons were per-

formed between the cohorts for each feature using Tukey correction and p values reported to

test the null hypothesis that the means are equal. For analysis of important features in tumour

size, a bivariate correlation matrix was designed using the top assigned features from the
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machine leaning pipeline described above and Spearman’s correlation coefficients and associ-

ated p values determined using R. To determine interaction of top assigned features, a distance

matrix was constructed using the absolute Spearman’s coefficients and global absolute Spear-

man distances summarised using multidimensional scaling with network lines (at maximum

levels) using Orange 3 software (see S4 Files for Orange 3 workflow).

Results

Composition of blood immune features in cancer models reveals unique

tumour immune phenotypes

To characterise tumour-bearing animal blood immune profiles, a 4T1 breast cancer cell line

tumour or a CT26 colorectal cancer cell line tumour was established subcutaneously in the

right-hind flank of BALB/c mice. Animals with no tumours were used as controls (Nil), bench-

marking the ‘normal’ immune landscape. Tumours were left to establish and grow for 14 days

and immune features assessed from a single drop of blood taken at 7 (D7) and 14 (D14) days

post tumour establishment (Fig 1A). A total of 180 animals were included in the study with

animal cohorts described in Fig 1B. Absolute leukocyte count per unit volume of blood were

assessed using flow cytometry (S1 Fig). The cell populations were delineated using 17 leuko-

cyte-reactive mAbs and identified using manual gating cross-checked with unsupervised

dimensional reduction. The strategy also included simple light-scattering profiles to delineate

lymphocytes and myeloid cells, to determine if this simple approach would be beneficial for

the study aims. Blood plasma cytokine and chemokine concentrations were also assessed using

two 13-plex LEGENDplex kits (S2 Fig). At the end-point (D14), solid tumours were extracted

and weighed and revealed highly variable tumour mass in the two tumour models, ranging

from 10 mg to>800 mg (Fig 1C).

To gain an overall impression of the blood immune landscape, the means of blood leuko-

cytes and plasma factor composition were quantified across the 3 groups from the 180 animals

at both D7 and D14 time points (Fig 1D), and differences further highlighted by normalising

the underlying data to the mean values from Nil animals to give fold-change above normal lev-

els (S4 Fig). This revealed a large increase in leukocytes in the blood of 4T1-bearing mice, com-

pared to the Nil mice, a difference that increased further over time (Fig 1D). This was largely

driven by expansion of myeloid cells but also a subtler trend of lymphocyte increase. In con-

trast, there was only a slight trend of myeloid cell increase and a concomitant trend of lympho-

cyte decrease in CT26-bearing animals, which became more exaggerated over time. The

changes in myeloid cells in both models was largely attributed to an expansion of neutrophils

and monocytes. Expansion of other minor myeloid cell populations was also apparent (Fig

1D). The initial increase in lymphocytes in 4T1-bearing mice at D7 was mostly due to an

increase in B cell count, which reversed with a decrease from normal at D14 and was compen-

sated for by slight increases in CD4 T cells, CD8 T cells and NK cells at this later time point.

The decrease in blood lymphocytes in CT26-bearing mice was mainly attributed to diminish-

ing circulating B cells. There were also changes in minor subpopulations of leukocytes in

tumour-bearing animals not obvious in the compositional data due to their small numbers;

these included changes to CD4 T regulatory cells, DC, macrophages and PD-L1-expressing

myeloid cell populations (S4 Fig). In terms of plasma factor composition, there was a notable

increase in macrophage/microglial factors in 4T1-bearing mice at D7, mainly ascribed to a

large increase in G-CSF, which decreased at D14, although was still several-fold above normal

levels (Fig 1D). Mice with 4T1 tumours also had a subtler increase in CXCL13 relative to nor-

mal levels, and a subtle increase in IL-6 and a subtle decrease in CXCL1 compared to

CT26-bearing animals (Fig 1D and S4 Fig). In CT26-bearing mice, there was a slight rise in the
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Fig 1. Blood immune phenotyping in animal tumour models. CT26 or 4T1 tumours were established and grown in female, BALB/c

mice for 14 days, with blood immune phenotype determined by flow cytometry 7-(D7) and 14-(D14) days post tumour implantation,

and tumours excised and weighed at end-point (D14). Animals with no tumours (Nil) were used as control to provide normal blood

immune phenotype (a). A total of 180 animals were included in the study, and animals were randomly allocated to groups at D0, as

indicated in (b). End-point (D14) CT26 and 4T1 tumour mass are shown in (c) with mean and SEM overlayed in black. A 20 μl of

blood sample from each animal was phenotyped for immune cell populations (using cell surface marker labelling and reported as

normalised cells per ~2μl of blood) and plasma analytes (using two LEGENDplex screening kits and reported as approximations of

blood concentrations) at D7 and D14 by flow cytometry. Blood cell compositions at D7 (top, left panel) and D14 (bottom, left panel),
and plasma analyte compositions at D7 (top, right panel) and D14 (bottom, right panel) in Nil, CT26- and 4T1-tumour bearing animals,

respectively, are shown in (d). Cell data in (d) was reported as total absolute mean cell count of each population being a subset of

upstream lineages. Plasma analytes were reported as a subset of total mean of analytes in the two LEGENDplex screening kits, which

included the macrophage/microglial 13-plex kit (Mac/Mic) and the proinflammatory 13-plex kit (Proinflam). Three analytes

overlapped in the kits, namely CCL22, CXCL1 and CCL17, and are labelled with a (1) if from the Mac/Mic panel or (2) if they are from

the Proinflam panel.

https://doi.org/10.1371/journal.pone.0264631.g001
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proinflammatory factors in plasma, which increased marginally over time, and appeared to be

due to subtle changes in a number of factors such as CCL11, CXCL1, CXCL9 and CXCL10

(Fig 1D). These changes, however, were not statistically significant from control animals

(S4 Fig).

Classification of cancer models using blood immune signatures

From these initial results, it was clear that 4T1 and CT26 tumour growth results in aberrant

blood immune parameters in mice, with some common changes (such as neutrophil and

monocyte expansion), but also tumour-specific changes (such as the plasma factor changes),

while overall changes appear to be subtler in CT26-bearing mice. To investigate how these

changes might be used to predict tumour outcomes, supervised ML was used on the normal-

ised data (S4 Fig). Random Forest was chosen as our learner, since it could be used for predic-

tion of both our classification (tumour subtype) and regression (mass of current and future

tumours) questions and has in-built feature ranking of importance in predictions allowing fea-

ture reduction and biological inference [13].

After hyperparameter tuning, Random Forest was initially used to investigate if blood

immune phenotypes were unique enough to classify whether animals had no tumour (Nil), or

had a CT26 or a 4T1 tumour. Our approach was to train and test the model using progressively

reduced numbers of blood immune features, sorted based on importance rank. We scored the

model using several prediction classification indicators (S5 Fig and Fig 2A). To train and test

the model, we used data from both D7 and D14 time points, to see if there were features that

could be used across time to classify a tumour-subtype. From this we found the modelling was

stable and had congruent scores in both the training and test data sets across a range of features

fed into the model. However, the minimum feature number needed to maintain this was 5,

suggesting 5 key features could result in accurate predictions (Fig 2A). Looking at the top 21

Random Forest ranked features, there were several that were highly ranked at both the D7 and

D14 time points (Fig 2B). Overall, the 5 highest ranked immune features, in descending order,

were G-CSF, neutrophils, total myeloid cells, monocytes and total leukocytes. To look at how

these features contributed to the model in more detail, we used the SHapley Additive exPlana-

tions (SHAP) algorithm [8] (S5 Fig). SHAP highlighted the contribution of these 5 features:

generally, as they increased, they tended to suggest a 4T1 phenotype, while there was a more

complex relationship in distinguishing Nil from CT26-bearing animals. We performed dimen-

sional reduction using t-distributed Stochastic Neighbour Embedding (t-SNE) to see if these 5

features could cluster tumour classes better than all features combined (Fig 2C). Using this

unsupervised approach showed the 5 top-ranked features appeared to separate the tumour

classes better than all features combined, particularly the 4T1 class. Therefore, we generated

the final model incorporating these features from both time points (Fig 2D). This resulted in

successful classification of all 4T1-bearing animals and most of the CT26-bearing (CA ~80%)

and Nil (CA ~75%) classes (2 of each being misclassed as the other out of 72 individuals in

these classes). The 5 features showed the capacity to predict class at each time point alone, but

generally predicted and separated classes best at the later time point (Fig 2E and 2F). Finally,

looking at their quantity in the blood of all animals showed that, while these features were all

significantly higher in 4T1-bearing animals compared to CT26-bearing and Nil animals, only

neutrophils and monocytes showed a significant increase in CT26-bearing mice compared to

Nil (while still being lower than in 4T1-bearing mice) (Fig 2G). This highlights the association

of myeloid factors with tumour presence and their potential use in tumour classification and

may also suggest an underlying association of G-CSF, neutrophils and monocytes in the devel-

opment of some tumours.
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Fig 2. Tumour classification using blood immune phenotype. Normalised blood immune features (S4 Fig) taken from

the 130 animals that had both D7 and D14 blood samples (Fig 1B), were used in Random Forest modelling to predict

presence of tumour and tumour subtype (targets class being Nil, 4T1 and CT26). The model was trained initially on 80%

(S5 Fig) and 60% of data, cross-validated using leave-one-out and tested using the remaining data. Modelling was done

on a progressively smaller number of features, from lowest to highest ranked based on in-built Random Forest

importance for class determination, and the process repeated 3 times. Model performance was assessed by several

classification indicators, including area under curve of the receiver operating characteristics (AUC; to assess separability

of the classes), classification accuracy (CA; proportion of correct classification), precision (ratio of correct positive

prediction to all predicted positive), recall (ratio of correct positive prediction to actual positive), and F1 score (weighted

average of precision and recall) with values being from 0 to 1 (and toward the latter being the best) (a). The Random

Forest feature importance scores for classification of the top 21 features (ranked from lowest to highest) from the

modelling are show in (b) from n = 6 modelling repeats. Based on peak modelling performance (S5 Fig), the top 5

features from both time points were compared with all features in t-distributed stochastic neighbour embedding (t-SNE)
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Model fitting of CT26 tumour size using blood immune signatures resulted

in moderate predictability

We next wanted to see if underlying blood immune signatures could be used to predict tumour

size and growth, which are often fundamental to prognosis. To do this we used the D14 end-

point tumour mass as the target outcome. We first assessed whether blood immune signatures

could predict current and future CT26 tumour mass with D14 and D7 blood data respectively.

As with the classification approach, we trained and tested the model using progressively

reduced numbers of blood immune features sorted based on importance rank, but scored the

model using several regression prediction indicators (S6 Fig and Fig 3). Testing if D14 blood

could predict current tumour mass, we found Random Forest modelling was stable and had

similar scores in both the training and test data sets across a range of features fed into the

model; however, the minimum feature number to maintain this was 3, suggesting 3 key fea-

tures could result in optimal current tumour mass predictions (S6 Fig and Fig 3A). Myeloid

cell populations ranked high in modelling (Fig 3B), with Ly6Cintermediate monocytes, total mye-

loid cells, and PD-L1-expressing Ly6C-Ly6G- (PD-L1+) myeloid cells contributing promi-

nently to the model based on SHAP values (Fig 3C). Mice with higher numbers of these cells

in the circulation typically had bigger tumours. We therefore generated the final Random For-

est model with these 3 features to predict the current mass of CT26 tumour, which resulted in

a significant moderate linear correlation with the actual mass (Fig 3D).

Testing if D7 blood immune features could predict future D14 CT26 tumour mass, we

found the minimum feature number to maintain modelling peaked at 10 features (S6 Fig and

Fig 3E). While myeloid cells were an important feature, there were also several plasma immune

factors, notably CCL17, CXCL10, CXCL1 and CXCL13, that had high importance (Fig 3F and

3G). However, from the SHAP explanations, it was apparent that extreme values of many of

these features in only a few animals impacted on the model, suggesting poor general associa-

tion with tumour size (Fig 3G). Generating the final Random Forest model with these 10 fea-

tures to predict the future mass of CT26 tumour resulted in a significant moderate linear

correlation with the actual mass (Fig 3H).

CT26 tumour mass prediction modelling suggests several key blood

immune features associate with tumour development

SHAP values of immune features predicting CT26 tumour mass suggest several features have a

relationship with tumour size that together allow moderately strong tumour mass predictions

to be made. To investigate this in more detail, and possibly infer some immune mechanisms

supporting tumour growth, a correlation matrix was plotted of the 5 key predictive features

from both D7 and D14 blood samples, and their monotonic relationship reported via Spear-

man’s correlation coefficient (Fig 3I). While there appeared to be significant weak-to-strong

relationships among the 5 key D7 features, only CXCL10 had a significant, but weak, relation-

ship with end-point CT26 tumour mass. In contrast, 4 of 5 key D14 features of tumour growth

unsupervised clustering to highlight capacity of reduced features to maximise class distinction based on the overlap of

groups, with dot sizing representing relative end-point tumour mass to assess for how this relates to clusters (c). These

top 5 features from both time points were used to generate the final classification modelling, which was performed on

the entire data set and assessed using leave-one-out cross-validation and results shown as a confusion matrix of all

animals (d). The top 5 features from D7 (e) or D14 (f) samples were also used in modelling (presented as confusion

matrices) and t-SNE analysis to highlight time differences. The top 5 features were plotted as estimated quantities in

blood for all animals at each time point (Fig 1B) and their means and SEM displayed in yellow, and means equality

tested using 2-way ANOVA on Log (y+0.0001) transformed data and multiple comparison with Tukey’s correction

shown (g).

https://doi.org/10.1371/journal.pone.0264631.g002
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had significant direct association with tumour mass and one another. The relationship of the

key D14 features and the key D7 features was complex, with both negative and positive signifi-

cant relationships (Fig 3I). Generally, CCL17 weakly and positively correlated with early fac-

tors of tumour grow (CXCL10), but then weakly and negatively correlated with late factors of

tumour growth (myeloid cell populations); CXCL1 and CCL2 acted like CCL17 in this respect.

To summarise all these interactions, the distance of absolute values of the Spearman’s correla-

tions was plotted using multidimensional scaling, which shows the global relationships of the

features and tumour size in 2 dimensions (Fig 3J). This emphasised the key association of D14

neutrophils, PD-L1+ myeloid cells and Ly6Cintermediate monocytes with CT26 tumour size, and

a more distant relationship with D7 myeloid cells, CCL17, CXCL1, CCL2, CXCL10 levels, and

D14 IL-10 level. From this we could postulate that CCL17, CXCL1 and CCL2 act early and in a

similar way to indirectly help tumour growth, possibly by upregulating CXCL10 production

and myeloid cell expansion, which act more directly on tumour growth. These correlations

change with time, with early low expression of CCL17, CXCL1 and CCL2 eventually promot-

ing myeloid cell development that maintains/promotes larger tumours. A possible model of

blood immune features associated with CT26 tumour growth is depicted in Fig 3K.

Model fitting of 4T1 tumour size using blood immune signatures resulted

in strong predictability

To determine if 4T1 tumour growth could also be predicted by blood immune phenotype, a

similar work flow to the above was employed. First, we tested if D14 blood features could pre-

dict current 4T1 tumour mass. Random Forest modelling was stable and had similar scores in

both the training and test data sets across a range of features fed in to the model, with scores

peaking with 3–5 features (S7 Fig and Fig 4A). Myeloid cells and neutrophils ranked highest in

modelling, and high values of these associated with larger tumours (Fig 4B and 4C). B cell

count was also among the 3 top ranked features and, generally, lower B cell numbers correlated

with a higher 4T1 tumour mass (Fig 4B and 4C). There was a more complex relationship

Fig 3. Predicting CT26 tumour size and growth using blood immune phenotypes. Normalised blood immune

features (S4 Fig) taken from the 48 CT26-bearing animals that had both D7 and D14 blood samples (Fig 1B), were used

in Random Forest modelling to predict CT26 tumour size at D14. The model was trained initially on 100%, 80% and

60% of data (S5 Fig) and cross-validated using leave-one-out and tested using the remaining data. Modelling was done

on a progressively smaller number of features, from lowest to highest ranked, based on in-built Random Forest

importance, and the process repeated 3 times (mean and standard error of mean shown). Model performance was

assessed by several regression indicators, including the error scores, Mean Squared Error (MSE), Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) (which we hoped to minimise), and the coefficient of determination

score R2 (which we hoped to maximise). Initially, D14 tumour size was used as the target using D14 blood samples to

assess if blood immune features could predict current tumour size (a, b, c and d). Then D14 tumour size was used as

the target using D7 blood samples to assess if blood immune features could predict future tumour size (e, f, g, h).

Model performance was summarised showing the 60%:40%, training:testing split and equality of test and train

performance score means (using the top assigned features) assessed using ANOVA (a) and (e). The Random Forest

feature importance scores for regression of the top-10 features from the modelling are show in (b) and (f), and the

SHAP scores of these shown in (c) and (g). Based on peak modelling performance, the top-3 features from D14 blood

data (d) or top-10 features from D14 blood data (h) were used to generate the final regression modelling to predict

current and future tumour mass respectively. Final modelling was performed on the entire data set and assessed using

leave-one-out cross-validation and predicted mass of tumour plotted against actual tumour mass (the y-axis), in

scatter-plots with dot sizing representing actual end-point tumour mass to assess for how this relates to any clusters,

and the linear relationship assessed using Pearson correlation coefficient (r) and associated two-tailed p-values (d and

h). Using the top-5 ranked features at each time point a correlation matrix was constructed, which displayed all pair-

wise bivariate plots with loess curve fitting (lower-left half), feature names and distributions (diagonal) and Spearman’s

correlation coefficient (rs) with associated p-values to test for monotonic relationships (upper-right half), which was

also colour-scaled based on rs values that had p-values<0.05) (i). A distance matrix of the absolute rs (|rs|) from the

correlation matrix was calculated and distances plotted in 2D using multidimensional scaling (j) and a model of the

interactions summarised in (k).

https://doi.org/10.1371/journal.pone.0264631.g003
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Fig 4. Predicting 4T1 tumour size and growth using blood immune phenotypes. Normalised blood immune

features (S4 Fig) taken from 58 4T1-bearing animals that had both D7 and D14 blood samples (Fig 1B), were used in

Random Forest modelling to predict D14 4T1 tumour size. The modelling and assessment was performed as described

in Fig 3. Initially, D14 tumour size was used as the target using D14 blood samples to assess if blood immune features

could predict current tumour size (a, b, c and d). Then D14 tumour size was used as the target using D7 blood samples

to assess if blood immune features could predict future tumour size (e, f, g, h). Model performance was summarised

showing the 60%:40% training:testing split and equality of test and train performance score means (using the top

assigned features) assessed using ANOVA (a and e). The Random Forest feature importance scores for regression of

the top-10 features from the modelling are shown in (b) and (f), and the SHAP scores of these shown in (c) and (g).

Based on peak modelling performance, the top-3 features from D14 blood data (d) and D7 blood data (h) were used to

generate the final regression modelling to predict current and future tumour mass respectively. Final modelling was

performed on the entire data set and assessed using leave-one-out cross-validation and predicted mass of tumour

plotted against actual tumour mass (the y-axis), in scatter-plots with dot sizing representing actual end-point tumour
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between the next highest ranked feature, PD-L1+ myeloid cells and the model, with lower

numbers of these cells associating with high and lower tumour size. Using the top 3 key fea-

tures in the final model resulted in predictions with a significant strong linear relationship

with actual current 4T1 tumour mass (Fig 4D).

Testing if D7 features could be used to predict future 4T1 tumour mass at D14, the Random

Forest modelling had peak performance with ~3 key features (S7 Fig and Fig 4E). The 3 main

model drivers were plasma G-CSF, CXCL13 and IL-6 levels, with higher plasma amounts of

these factors generally associating with larger 4T1 tumours (Fig 4F and 4G). Using these 3 fea-

tures in the final model resulted in predictions with a significant strong linear relationship

with actual future 4T1 tumour mass (Fig 4H).

4T1 tumour mass prediction modelling suggests a few key blood immune

features associate with tumour development

SHAP values of immune features predicting 4T1 mass suggest there were 6–7 features that

have a relationship with tumour size that together have strong tumour mass prediction value.

A correlation matrix was plotted of the 7 key features collectively from D7 and D14 blood sam-

ples, and their monotonic relationship reported via Spearman’s correlation coefficient (Fig 4I).

These interactions were also summarised using multidimensional scaling to plot the distance

matrix of the Spearman’s correlations’ absolute values (Fig 4J). From this it appeared that

plasma G-CSF level associated directly with 4T1 tumour mass and blood neutrophil count; the

latter also associated directly with 4T1 tumour growth. Plasma CXCL13 level also had a direct

positive association with 4T1 tumour growth, but did not appear to correlate with plasma

G-CSF level or myeloid cell counts. In contrast, plasma IL-6 level had no direct association

with 4T1 tumour size, but correlated positively with factors that did, namely plasma G-CSF

and CXCL13 levels. The role of B cells and PD-L1+ myeloid cells is unclear using monotonic

measures, suggesting that if they do have a role, it is more complex. From this, we could postu-

late and form a model (Fig 4K) that IL-6 acts to promote CXCL13 and G-CSF production,

which may act independently to aid 4T1 growth, and that G-CSF also promotes neutrophil

expansion that supports 4T1 tumour growth.

Summary of key tumour mass associated features

From the above analysis, there were a number of features that were important in modelling

predictions for tumour growth and that associated directly or indirectly with specific tumour

size. The estimated quantities of these features in blood and their comparisons between the

models are summarised in Fig 5. From these pairwise comparisons it is apparent that most of

the blood features that are important for modelling and correlating with CT26 growth, namely

CCL17, CXCL10, total myeloid cells, CCL2, IL-10 and PD-L1+ myeloid cells, were not signifi-

cantly different from the healthy levels in Nil mice (Fig 5). Indeed, of the identified important

features for CT26 growth, only CXCL1, Ly6Cintermediate monocytes and neutrophils had quan-

tities in CT26-bearing animals significantly different from normal blood of Nil animals, and in

all cases higher than normal.

mass to assess for how this relates to any clusters, and the linear relationship assessed using Pearson correlation

coefficient (r) and associated two-tailed p-values (d and h). Using the top ranked features at each time point a

correlation matrix was constructed, which displayed all pairwise bivariate plots with loess curve fitting (lower-left half),

feature names and distributions (diagonal) and Spearman’s correlation coefficient (rs) with associated p-values to test

for monotonic relationships (upper-right half, which was also colour-scaled based on rs values that had p-values

<0.05) (i). A distance matrix of the absolute rs (|rs|) from the correlation matrix was calculated and distances plotted

in 2D using multidimensional scaling (j) and a model of the interactions summarised in k.

https://doi.org/10.1371/journal.pone.0264631.g004
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In contrast, most features associated with 4T1 tumour growth were significantly different

from normal levels in Nil animals, with G-CSF level and neutrophil count being >10-fold

higher, PD-L1+ myeloid cell count being ~2-fold higher, and both CXCL13 and IL-6 levels

being ~<2-fold higher than normal (Fig 5). B cell number, an important early feature for 4T1

growth modelling, was the only key feature not significantly different from normal levels,

although the cells at D14 had a trend of being lower than normal in these mice.

Based on the modelling there were only 2 main features in common contributing to both

tumour models’ growth, D14 blood neutrophil count and D14 PD-L1+ myeloid cell count (Fig

5). The unique features associated with each tumour were mostly plasma factors. Overall, the

Fig 5. Blood immune features associating with tumour growth. The quantities in blood of key immune features associated with both CT26 and 4T1 tumour

growth from both D7 (early) and D14 (late) samples were plotted for animals with no tumours (Nil), CT26 tumours and 4T1 tumours, displaying all values, as

well as box plots with min to max whiskers and means as ‘+’symbols. These were divided into tumour-specific features and common features between the

tumour subtypes. Number of samples was as described in Fig 1B. p-values to investigate significance between the cohort means as assessed using 2-way

ANOVA on Log (y+0.0001) transformed data using Tukey’s multiple comparisons with �, p� 0.05. ��, p� 0.01. ���, p� 0.001. and ����, p� 0.0001.

https://doi.org/10.1371/journal.pone.0264631.g005
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blood immune phenotype of 4T1-bearing mice was definitively abnormal with a few obvious

aberrant immune parameters, while CT26-bearing mice had less drastic changes, making

inference of key immune factors more difficult without further study.

Discussion

In this study we aimed to investigate the utility of a high-throughput multiparameter flow

cytometry method, coupled with a machine learning (ML)-based statistical analysis, to screen

blood for immune features capable of predicting cancer presence and growth, and also make

inferences about underlying cancer-immune biology. Using two syngeneic solid tumour mod-

els, a 4T1 breast cancer model and a CT26 colorectal cancer model, our workflow revealed that

myeloid factors in the blood, such as neutrophils, monocytes and the levels of the myeloid cell-

propagator G-CSF, feature prominently as key determinants of tumour classification (Fig 2).

Myeloid cells, specifically neutrophils and PD-L1-expressing myeloid cells, were also common

associates of tumour size in both models (Fig 5). Tumour-specific blood immune features

were also identified, with elevated levels of G-CSF, IL-6 and CXCL13, and B cell counts associ-

ating with prediction of 4T1 growth, while blood CCL17, CXCL10, CXCL1, total myeloid cells,

CCL2, Ly6Cintermediate monocytes, and IL-10 levels were involved with predicting CT26

tumour growth. Many of these factors have been implicated in cancer progression showing the

potential utility of our approach.

With a growing appreciation of immune responses as a hallmark of cancer development,

immune phenotyping is becoming an increasingly interesting area of research in cancer man-

agement [2]. ML is recognised as an important approach to optimising future cancer diagno-

sis, prognosis and treatment personalisation, and is ideally suited for interpretating the

abundant and complex immune parameters involved [14]. ML approaches can also be used to

help make inferences about the underlying biological mechanisms that are modelled for, with

the development of model explanatory algorithms [8]. In this study, we have chosen to use the

Random Forest model [13] as our learner, since it is flexible (in that it can be used in both clas-

sification and regression questions), has in-built feature ranking (to help with feature selec-

tion), has fewer overfitting issues than some other models, is relatively interpretable, and

performs well in real-life clinical applications compared to other shallow models and more

extensive deep learning modalities [15, 16]. The applied Random Forest modelling presented

here identified several key blood immune features that, in combination, predicted tumour

class (with misclassification of only 4 animals of 130) and size (with moderate to strong linear

correlation of predicted to actual current and future tumour sizes). In addition, we used the

combination of Random Forest feature ranking [13, 17], SHAP explanatory values [8] and

Spearman’s-based bivariate correlations [18] to help make inferences about underlying fea-

tures important for outcomes. Intriguingly, while these factors ranked highly in predictive

modelling, and several had significant correlations either directly or indirectly with tumour

growth, many did not differ significantly from levels measured in non-tumour bearing ani-

mals. This raises the question of potential additive or even synergistic roles for these factors in

tumour development; the alternative possibility of chance association, however, cannot be dis-

counted. This latter hypothesis can only be probed with further experimental input, such as

blocking and/or knockdown/out studies of the identified key features in in vivo studies. While

this is beyond the scope of the current study, we note that independent reports support a role

for these factors in cancer development and these will be discussed below.

One of the most upregulated factors we identified as a potential early driver of 4T1 growth

was G-CSF. Previous observations have shown that 4T1 tumour cells are potent producers of

G-CSF [19, 20] and that abrogating G-CSF production significantly diminishes tumour growth
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in preclinical breast cancer models [19]. We also showed that elevated neutrophils (annotated

CD11b+Ly6G+ cells) strongly correlated with advancing tumours (Fig 5). Previous reports

show 4T1 tumour cells induce profound granulocytosis in vivo [9, 21] and separate reports

reveal a critical role for G-CSF in 4T1 growth and metastasis through changes in granulocyte

frequencies (referred to in those reports as myeloid-derived suppressor cells, MDSCs, which

can have a CD11b+Ly6G+ phenotype) [22]. Clinically, G-CSF can be significantly higher in the

plasma of breast cancer patients and plasma levels correlate with more advanced disease [23],

as do blood levels of neutrophils [24]. Intriguingly, IL-6, another early signature of 4T1 growth

that we identified, cooperates with G-CSF to promote pro-tumour function of neutrophils

[25]. IL-6 is often associated with the tumour microenvironment [26] and clinically, circulat-

ing IL-6 level is associated with poor prognosis and low survival rate in patients with breast

cancer [27], while IL-6 polymorphisms are linked to increased breast cancer risk [28]. Thus,

IL-6 and G-CSF may work in concert on neutrophil function to promote breast cancer

growth.

We also identified CXCL13 as another early factor correlating with 4T1 tumour growth,

and its role in breast cancer has been widely reported [29–31]. However, published studies are

conflicting with regards to its role in the 4T1 model, with support for both pro-tumour activity

[32] and anti-tumour activity [33]. Indeed, generally, CXCL13 has been shown to drive growth

and invasive signals in many tumours, but also correlates with improved survival in other

tumours [34], suggesting a context-dependent role for this cytokine in cancer progression. A

further intriguing aspect of CXCL13 biology is that it acts as a chemoattractant for B cells [34],

which were also identified as an important feature of 4T1 tumour growth in our analysis. The

contribution of B cells in antitumour immunity remains controversial [35], with both pro- and

anti- tumour effects. In addition, CXCL13 production from bone marrow endothelial cells

occurs in response to IL-6 [36], which is also known to be a B cell differentiation and activation

factor [34]. Based on these reports, and our data, we can formulate a model for all these factors

that potentiates breast cancer growth (Fig 4K). Here, IL-6, promoted by the tumour microen-

vironment, may interact in concert with G-CSF to drive neutrophil protumour activity and

also production of CXCL13. CXCL13 may then act as a protumour factor and, with IL-6, pro-

mote B cell responses which also act on tumour growth. Finally, we have identified a

PD-L1-expressing myeloid population, a third top feature of our 4T1 ML model (Fig 4I),

which correlates with circulating B cell number and thus may also act indirectly to support

tumour growth. While circulating PD-L1-expressing myeloid populations are less well docu-

mented than the factors described above, it has been reported that, in lung cancer, treatment

with PD-1/PD-L1 blockade response correlated with systemic PD-L1+ CD11b+ myeloid cell

frequency, suggesting a potential for stratification based on systemic PD-L1+ myeloid cell sub-

sets [37]. Further study of these cells is warranted.

In the CT26 tumour model, we identified early levels of CXCL1, CCL2 and CCL17 as hav-

ing important roles in predicting tumour growth as well as similar pairwise correlations with

factors directly correlating with tumour growth and one another (Fig 3I), suggesting they

played similar roles in this context. CXCL1, is known to promote recruitment and activation

of neutrophils [38], premetastatic niche formation [39], tumour invasive potential [40] and

tumorigenicity in metastatic colorectal cancer patients [41], and therefore, not surprisingly,

serves as a biomarker for poor prognosis. Similarly, CCL2 promotes the recruitment of immu-

nosuppressive tumour-associated macrophages [42], promotes CT26 tumour growth [43] and

associates with poor outcomes in metastatic human colorectal cancer [42]. In contrast, CCL17

has been reported to play a complex and somewhat contradictory role in cancer development

and progression [44]. CCL17 can promote anti-CT26 tumour immune response [45], and

high serum levels are associated with improved survival rates in advanced melanoma patients

PLOS ONE Predicting cancer outcomes from blood immune signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0264631 February 28, 2022 18 / 26

https://doi.org/10.1371/journal.pone.0264631


[46]. On the other hand, tumour-associated neutrophils can produce CCL17, recruiting CD4

T regulatory cells that promote immune evasion and cancer development in non-small cell

lung cancer [47, 48]. It is possible that the location, timing and context of CCL17 expression

determines its impact on cancer establishment and progression. Indeed, this may also be the

case with CXCL1 and CCL2, since all these three factors associated positively with early corre-

lates of CT26 growth, such as blood myeloid cells and plasma CXCL10 levels, but then also

associated negatively with late factors correlating with CT26 growth, such as monocytes with a

Ly6G-Ly6Cintermediate phenotype and neutrophils (Fig 3).

CXCL10 was identified as an early weak correlate of CT26 growth in our analysis. Clini-

cally, CXCL10 been associated with pro- and anti- tumour responses in colorectal cancer

patients [49, 50]. A recent study across 3,763 colorectal cancer patients suggested lower

CXCL10 expression was significantly associated with disease spread, recurrence and overall

survival, and this association was dependent on other factors such as age and population-

based genetic differences [50]. This suggests that CXCL10 expression may have potential as a

predictive biomarker in colorectal cancer management, once these variables are taken into

account. Similarly, IL-10, a feature involved in prediction of CT26 growth in our analysis, is

also associated with colorectal cancer patient prognosis, but in a context dependent manner,

being generally lower in patients compared to controls, but higher in patients with poor prog-

nosis [51].

While several myeloid cells were identified as late associates of CT26 growth, the late

appearance of monocytes with a Ly6G-Ly6Cintermediate phenotype had the strongest association

with tumour size (Fig 4). Tumour monocyte subsets are known to have diverse roles in tumour

progression [52]. Related to this, CCL2 is a primary recruiter of tumour monocyte subsets [52]

and CXCL10 is known to be a monocyte recruitment factor [53]. In our study, early levels of

CCL2 and CXCL10 were associated with one another and early CXCL10 levels had a weak cor-

relation with the later appearance of Ly6G-Ly6Cintermediate monocytes. Based on these observa-

tions and reports by others, a potential model for the role of key blood immune factors

identified can be postulated in colorectal cancer development (Fig 3K). Here, early production

of CCL2 and CXCL1 may help with shaping the initial myeloid cell compartment in cancer-

bearing individuals, which promotes tumour development and production of CCL17 and

CXCL10 [54] which in turn modulates recruitment of leukocytes. The early soluble factors

may then help shape later tumour associated factors such as IL-10, neutrophils, PD-L1-expres-

sing myeloid cells and Ly6G-Ly6Cintermediate monocytes, which play roles in tumour

development.

Undoubtedly, our work is limited by the choice of models used to develop the workflow.

While murine syngeneic cell line models are among the most widely used tools for studying

cancer [55, 56] and have been involved in landmark discoveries [57, 58], there are several limi-

tations to this approach. Cell line-derived models are non-autochthonous, and thus may not

have the normal architecture or development that occurs in tumours evolving de novo. Indeed,

the injection of the cell lines may in itself alter the inflammatory environment in a way that

would not be seen in de novo tumour growth [59]. The loss of genetic heterogeneity and irre-

versible changes in gene expression resulting from long-term in vitro propagation of tumour

cell lines may also mean that we do not observe the same level of intra-individual heterogeneity

that is common in human tumours [56, 60]. Furthermore, the use of inbred mouse strains

does not reflect the vast inter-individual heterogeneity present in the clinic [56]. While we

have attempted to overcome some of these issues by using two distinct and diverse cell lines,

there would be obvious benefit to increasing this diversity with additional models, given the

resources. Nevertheless, there is clinical evidence to support our findings (as discussed above)

and thus our study provides an approach that may work clinically, which is the ultimate goal.
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While beyond the scope of this current study, the workflow developed here is now being modi-

fied for clinical implementation in cancer patients. This will involve initial high-dimensional

screens (using protein arrays and LEGENDScreenTM technologies) to identify blood cell and

plasma features that may be associated with cancer-specific progression. Key features will then

be rationalised in a high-throughput assay/machine learning pipeline analogous to that

reported here and used to phenotype blood of cancer patients and closely matched healthy

controls to assess capacity to predict patient outcomes over time.

In summary, our work demonstrates the benefit of a high-dimensional data pipeline for the

identification of key immune features that interact with tumour development. Our analysis

has highlighted the great complexity in the relationship between the immune response and

tumour development, where expression of a single molecule may well be insufficient to predict

or explain tumour progression. Indeed, it is clear that many immune factors have context-

dependent roles in cancer development [34, 44, 61]. With this in mind, we believe a multivari-

ate approach to “biomarker” identification for use in the prognostication and treatment perso-

nalisation of cancer is well warranted. Furthermore, we are confident that this work

demonstrates the utility of an immune-based workflow in combination with ML to enable

identification of context-dependent predictive immune features for the study of tumour out-

come. It will be of further interest if such an approach can be utilised to predict treatment out-

comes, justifying a role for assessing multivariate immune biomarkers for cancer treatment

personalisation.

Supporting information

S1 Fig. Gating and population names for leukocyte subsets. FlowJo software was used to

delineate leukocyte populations using manual and boolean gates on concatenated samples

with the scheme shown in (a) acting as a template for the entire study. FIt-SNE plots from

concatenated live CD45+ samples, generated with default FlowJo setting, were overlayed with

each manual gated population to ensure the gating scheme generated similar populations to

those generated from the unsupervised approach (b), with the manual gate population identi-

fied by colour and name (c). The process was refined until the two approaches were good

approximations of each other, resulting in the manual gates displayed in a. Generic and short

form names of each population were then assigned based on marker expression and used

throughout the manuscript (d).

(TIFF)

S2 Fig. Gating and names for LEGENDplex beads. FlowJo software was used to delineate

LEGENDplex bead populations using manual gates for both the Macrophage/microglial (Mac/

Mic) 13-plex LEGENDplex kit (a) and the Proinflammatory (Proinflam) 13-plex LEGENDplex

Kit (Biolegend) (b), which acted as a template for the entire study.

(TIFF)

S3 Fig. Random Forest learning curve for data set size to model performance evaluation.

Normalised blood immune features (S4 Fig) taken from the 130 animals that had both day 7

and day 14 blood samples (Fig 1B), were used in Random Forest modelling to predict presence

of tumour and tumour subtype (targets class being Nil, 4T1 and CT26). Modelling was done

on a progressively smaller number of random samples and model performance assessed using

cross-validation with a training set of 80% of randomly obtained data and tested on the

remaining data and this repeated 100 x. Model performance was assessed by several classifica-

tion indicators, including area under curve of the receiver operating characteristics (AUC; to

assess separability of the classes), classification accuracy (CA; proportion of correct
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classification), precision (ratio of correct positive prediction to all predicted positive), recall

(ratio of correct positive prediction to actual positive), and F1 score (weighted average of preci-

sion and recall) with values being from 0 to 1 (and toward the latter being the best).

(TIFF)

S4 Fig. Normalised blood immune phenotypes in animal tumour models. CT26 or 4T1

tumours were grown in female, BALB/c mice and blood immune phenotype determined at D7

and D14, as described in Fig 1. Animals with no tumours (Nil) were used as normal immune

phenotype controls. A total of 180 animals were included in the study, and animals divided

into the groups indicated in Fig 1B. A 20 μl of blood sample from each animal at each time

point was phenotyped for leukocyte populations and plasma analytes (Fig 1). Cell and plasma

analytes were reported as fold-changes from the mean of Nil mice or “nil normalised”, as

described in the methods for both the D7 and D14 time points and presented on a log-scale

(with numbers of 0-value data points indicated on the axis). Means and SEM are indicated

(shown in yellow) and mean equality was tested using ANOVA on Log (y+0.0001) trans-

formed data using Tukey’s multiple comparisons correction, with 2-way ANOVA and multi-

ple comparison p-values indicated (�, p� 0.05. ��, p� 0.01. ���, p� 0.001. ����, p� 0.0001.).

Heatmap summaries of the data highlighting the changes are also shown. Three analytes over-

lapped in the LEGENDplex kits, namely CCL22, CXCL1 and CCL17, and are labelled with a

(1) if from the Mac/Mic panel or (2) if they are from the Proinflam panel.

(TIFF)

S5 Fig. Tumour classification Random Forest modelling using blood immune phenotype.

Normalised blood immune features (S4 Fig) taken from the 130 animals that had both D7 and

D14 blood samples (Fig 1B), were used in Random Forest modelling to predict presence of

tumour and tumour subtype (target classes being Nil, 4T1 and CT26). The model was trained

on 80% (a) and 60% (b) of randomly selected data and cross-validated using leave-one-out,

and tested using the remaining data. Modelling was done on a progressively smaller number

of features, from lowest to highest ranked, based on in-built Random Forest importance for

class determination, and the process repeated 3 times. Model performance was assessed by sev-

eral classification indicators, including area under curve of the receiver operating characteris-

tics (AUC; to assess separability of the classes), classification accuracy (CA; proportion of

correct classification), precision (ratio of correct positive prediction to all predicted positive),

recall (ratio of correct positive prediction to actual positive), and F1 score (weighted average of

precision and recall) with values being from 0 to 1 (and toward the latter being the best). The

SHapley Additive exPlanations (SHAP) algorithm feature importance scores for classification

using the top-15 features (ranked from highest to lowest) from the SHAP values are shown in

(c), and show how the feature values impact on classification of each animal cohort, namely

healthily control (Nil), CT26-bearing and 4T1-bearing cohorts.

(TIFF)

S6 Fig. Random Forest modelling to predicting CT26 tumour size and growth using blood

immune phenotypes. Normalised blood immune features (S4 Fig) taken from 48 CT26-bear-

ing animals that had both D7 and D14 blood samples (Fig 1B) were used in Random Forest

modelling to predict CT26 tumour size at D14. The model was trained initially on 100%, 80%

and 60% of randomised data and cross-validated using leave-one-out (Train panels) and tested

using the remaining data (Test panels). Modelling was done on a progressively smaller number

of features, from lowest to highest ranked based on in-built Random Forest importance, and

the process repeated 3 times (mean and standard error of mean shown). Model performance

was summarised showing the 60%:40%, training:testing split, and equality of test and train
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performance score means (using the top assigned features) assessed using ANOVA and shown

in the main Fig (Fig 3). The Random Forest rank (RF rank) scores for the top-10 features are

shown. Model performance was assessed by several regression indicators, including the error

scores, Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE) (which we hoped to minimise), and the coefficient of determination score R2.

D14 tumour size was used as the target using D14 blood samples to assess if blood immune

features could predict current tumour size (a). D14 tumour size was used as the target using

D7 blood samples to assess if blood immune features could predict future tumour size (b).

(TIFF)

S7 Fig. Random Forest modelling to predicting 4T1 tumour size and growth using blood

immune phenotypes. Normalised blood immune features (S4 Fig) taken from 58 4T1-bearing

animals that had both D7 and D14 blood samples (Fig 1B), were used in Random Forest

modelling to predict 4T1 tumour size at D14. The model was trained initially on 100%, 80%

and 60% of randomised data and cross-validated using leave-one-out (Train panels) and tested

using the remaining data (Test panels). Modelling was done on a progressively smaller number

of features, from lowest to highest ranked based on in-built Random Forest importance, and

the process repeated 3 times (mean and standard error of mean shown). Model performance

was summarised showing the 60%:40%, training:testing split and equality of test and train per-

formance score means (using the top assigned features) assessed using ANOVA and shown in

the main Fig (Fig 4). The Random Forest rank (RF rank) scores for the top-10 features are

shown. Model performance was assessed by several regression indicators, including the error

scores, MSE, MAE and RMSE (which we hoped to minimise), and the coefficient of determi-

nation score R2. D14 tumour size was used as the target using D14 blood samples to assess if

blood immune features could predict current tumour size (a). D14 tumour size was used as the

target using D7 blood samples to assess if blood immune features could predict future tumour

size (b).

(TIFF)
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