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Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have evolved from their initial role as anti-

diabetic drugs to garner recognition for their remarkable cardio-protective and reno-protective attributes.

They have become a crucial component of therapeutic guidelines for congestive heart failure and pro-

teinuric chronic kidney disease (CKD). These benefits extend beyond glycemic control, because im-

provements in cardiovascular and renal outcomes occur swiftly. Recent studies have unveiled the

immunomodulatory properties of SGLT2 inhibitors; thus, shedding light on their potential to influence the

immune system and inflammation. This comprehensive review explores the current state of knowledge

regarding the impact of SGLT2 inhibitors on the immune system and inflammation, focusing on preclinical

and clinical evidence. The review delves into their antiinflammatory and immunomodulating effects, of-

fering insights into clinical implications, and exploring emerging research areas related to their pro-

spective immunomodulatory impact.
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S
GLT2 inhibitors, originally introduced as antidia-
betic drugs, have gained recognition for their

remarkable cardio-protective and reno-protective attri-
butes.1-4 SGLT2 inhibitors have now become an integral
part of the therapeutic guidelines for managing conges-
tive heart failure and proteinuric CKD. The reduction in
the incidence of adverse cardiovascular and renal
events occurs relatively quickly, indicating that factors
beyond enhanced glycemic control contribute signifi-
cantly to these advantageous outcomes because the clin-
ical outcomes related to improved glycemic control
typically require a longer time to become measurable.

Chronic low-grade inflammation stands out as a
prominent characteristic of type 2 diabetes and its
complications, notably atherothrombotic cardiovascular
disease (CVD).5 In addition, inflammation plays a pivotal
role in the pathogenesis of diabetic kidney disease.6 As
found in metformin and glitazones, certain antidiabetic
medications demonstrate antiinflammatory effect
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beyond their glucose-lowering capabilities,7-9 which
holds the potential to improve clinical outcomes for
patients with high-risk CVD and renal issues.10

In recent years, many studies have unveiled novel
facets of SGLT2 inhibitors beyond glycemic control,
shedding light on their potential immunomodulatory
properties (Figure 1).11-14 This comprehensive review
aims to provide the current state of knowledge sur-
rounding the influence of SGLT2 inhibitors on the
immune system and inflammatory processes with a
focus on both preclinical and clinical evidence. This
review offers insights into the clinical implication of
SGLT2 inhibitors focusing on its antiinflammatory and
immunomodulating effects. Finally, we explore
emerging research areas related to the prospective
immunomodulatory impact of SGLT2 inhibitors.
IMMUNOMODULATORY MECHANISM OF

SGLT2 INHIBITORS AND ITS IMPACT ON

KIDNEY AND CARDIOVASCULAR HEALTH

Glucose Lowering Effect of SGLT2 Inhibitors

The glucose-lowering effects of SGLT2 inhibitors may
contribute to the amelioration of proinflammatory
1601
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Figure 1. Immunomodulatory effects of SGLT2 inhibitors on various medical conditions. SGLT2 inhibitors, sodium-glucose cotransporter-2 in-
hibitors. Created with BioRender.com.
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reactions by mitigating glucotoxicity.15 Several studies
have shown the direct detrimental effect of hypergly-
cemia on inflammation. An earlier human experimental
study demonstrated that hyperglycemia could trigger
an abrupt increase in circulating cytokine levels,
including interleukin (IL)-6, tumor necrosis factor
(TNF)-a, and IL-18 through oxidative process,
implying a causal link between hyperglycemia and
immune activation in diabetes.16 A murine study by
Dror et al. demonstrated that eating triggers IL-1ß
expression in macrophages in a glucose-dependent
manner compared to fasting status.17 IL-1ß contrib-
utes to postprandial insulin secretion, reinforcing a
proinflammatory state, promoting reactive oxygen
species production, and activating inflammasome.18

This study also showed that decreasing serum glucose
1602
level via inhibition of SGLT2 could decrease post-
prandial IL-1ß level in the circulation.17

However, additional subgroup analyses of data from
multiple cardiovascular outcome trials involving
SGLT2 inhibitors have shown that the cardiovascular
benefits of SGLT2 inhibitors were not dependent on the
extent of their hypoglycemia effects.19,20 This implies
the existence of potentially intricate, glucose-
independent mechanism at play in the immunomodu-
latory impact of SGLT2 inhibitors, which we delve into
in the subsequent section.

Neurohormonal Effect of SGLT2 Inhibitors

The substantial renal and cardiovascular benefits of
SGLT2 inhibitors prompted further studies to investi-
gate their potential impact on the renin-angiotensin-
Kidney International Reports (2024) 9, 1601–1613
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aldosterone system (RAAS). However, these studies
produced varying results, leaving the question unre-
solved.21-23 Theoretically, enhanced sodium delivery to
renal distal tubule by SGLT2 inhibitors can decrease
renin secretion, whereas osmotic diuresis induced by
SGLT2 inhibitors might stimulate baroreceptors, leading
to increased renin secretion.24 Filippatos et al. suggested
that SGLT2 inhibitors may act through nonclassic RAAS
pathways in the presence of RAAS blockades in the
system via the angiotensin (1–7)/type 2 angiotensin II
receptor pathway.25 As previously known, most pa-
tients involved in the major cardiovascular outcome
trials of SGLT2 inhibitors were on angiotensin-
converting enzyme inhibitors or angiotensin-II recep-
tor blockers. Through the activation of nonclassic RAAS
pathways, SGLT2 inhibitors may promote vasodilata-
tion, enhance sodium excretion, and offer anti-
proliferative and antiinflammatory effects.26

In contrast, SGLT2 inhibitor-induced sympathetic
nervous system inhibition has been suggested as a
potential mechanism for its cardiovascular protective
effect.27,28 Renal sympathetic nerve activation is
implicated in CKD progression by mediating renal
interstitial inflammation and fibrosis through the
stimulation of intrarenal angiotensin II and activation
of a2 adrenoreceptors.29,30 Renal denervation, in
contrast, has demonstrated protective antiinflammatory
effects on the heart and kidneys in various animal
models.31,32 A preclinical study by Hasan et al.
revealed that canagliflozin, when used in chronic
sympathetic nervous system overactivation model,
could augment antiinflammatory and antioxidant
signaling pathways.33 This finding suggests immuno-
modulatory impact of SGLT2 inhibitors via sympa-
thetic nervous system deactivation.

Suppression of Inflammatory Signaling by

SGLT2 Inhibitors
NOD-, LRR-, and Pyrin Domain-Containing Protein 3

(NLRP3) Inflammasome

The inflammasome is a multiprotein complex that ac-
tivates inflammatory responses by promoting the
release of proinflammatory cytokines in response to
infection or cellular stress. NLRP3 inflammasome acti-
vation plays a significant role in driving sterile
inflammation, leading to cardiovascular complications
in patients with diabetes.34 Key products of NLRP3
inflammasome activation include IL-1b and IL-18,
which play a pivotal role in both the initiation and
progression of atherosclerosis.35,36 The use of SGLT2
inhibitors can suppress the activation of NLRP3
inflammasome. A recent small randomized controlled
trial conducted by Kim et al. demonstrated that the use
of SGLT2 inhibitors in patients with diabetes with a
Kidney International Reports (2024) 9, 1601–1613
high cardiovascular risk leads to a significant sup-
pression of NLRP3 inflammasome activation and the
decreased secretion of IL-1b and TNF-a from circu-
lating macrophages, as compared to the sulfonylurea-
treated group, irrespective of glycemia control.37

Their ex vivo study further elucidated that this effect
might be mediated by an increased serum beta-
hydroxybutyrate level and the decreased serum insu-
lin level.

Nuclear Factor Kappa-B (NF-kB), Mitogen-Activated

Protein Kinase, and Janus Kinase/Signal

Transducer and Activator of Transcription Signaling

Pathways

NF-kB, mitogen-activated protein kinase, and Janus ki-
nase/signal transducer and activator of transcription are
critical signaling pathways in the immune system.38

They mediate immune activation and differentiation
by regulating gene expression, cytokine production,
and immune cell function. SGLT2 inhibitors have
shown some evidence to exert their antiinflammatory
effects via those signaling pathways in multiple in vivo
and in vitro studies irrespective of glucose concentra-
tion.39-43 An in vitro study using LPS-stimulated RAW
264.7 macrophages demonstrated that empagliflozin
attenuated the release of proinflammatory cytokines and
proinflammatory mediators such as nitric oxide or
prostaglandin E2 via downregulating the NF-kB,
mitogen-activated protein kinase, and Janus kinase/
signal transducer and activator of transcription
signaling pathways.41 Another in vitro study involving
human ventricular cardiac myoblasts revealed that
empagliflozin mitigated the high glucose-induced DNA
demethylation changes in NF-kB and superoxide dis-
mutase 2 genes, and this finding was correlated with the
decreased reactive oxygen species level and lower IL-6
gene expression.42 The exact mechanism or receptor
target that led to this effect upon SGLT2 inhibition on
innate cells and myocytes was not determined.

Modulation of Nutrient Deprivation and Surplus

Signaling by SGLT2 Inhibitors

As described in a well-written review article by
Packer,44 SGLT2 protein behaves like an energy sensor
by discerning the nutritional excess status when there
is increased glucose in the proximal renal tubules. This
signal parallels changes in other nutrient sensors,
including adenosine monophosphate-activated protein
kinase (AMPK), sirtuins, and mammalian target of
rapamycin (mTOR). These 3 master regulators orches-
trate the cellular catabolic and anabolic responses ac-
cording to the environmental challenges. AMPK and
sirtuins mediate nutrient deprivation signaling whereas
mTOR pathway is activated by a surplus of environ-
mental amino acids. We review how SGLT2 inhibitors
1603
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regulate the nutrient deprivation and surplus signaling
in the next section.

AMPK Pathway

AMPK pathway is activated when the adenosine
triphosphate-to-adenosine monophosphate ratio is low.
AMPK signaling promotes catabolism and decreases
anabolism, resulting in increased adenosine triphos-
phate production. Activation of AMPK weakens
oxidative stress, proinflammation pathways, apoptosis,
and mitochondrial dysfunction.45 Several studies
showed that the use of SGLT2 inhibitors induced
increased phosphorylation of AMPK and the activity of
the AMPK pathway.46,47 The use of empagliflozin
improved sunitinib-induced cardiac dysfunction by
restoring AMPK-mediated autophagy.46 In another
study, it was demonstrated that canagliflozin could
mitigate cisplatin-induced kidney damage through an
AMPK-dependent mechanism.47 These studies also
revealed the cardiorenal protective effects of SGLT2
inhibitors are abolished by AMPK inhibition.

Sirtuins

The sirtuin family, encompassing SIRT 1 to 7, plays a
vital role in preserving homeostasis by detecting the
body’s bioenergy demands and fine-tuning cellular
nutrient allocation accordingly.48 The cardiovascular
benefits of caloric restriction are known to be partially
mediated by SIRT1, because it enhances lipolysis,
augments insulin sensitivity, and limits proin-
flammatory macrophage activity.49,50 Notably, chronic
inflammation leads to diminished SIRT expression, and
various studies have elucidated the antiinflammatory
properties of SIRT1 in atherosclerosis and CVD.51,52

The use of SGLT2 inhibitors can induce nutrient
deprivation status by its glucosuric effect and amplify
SIRT1/PGC-1a/FGF21 signaling pathway.53 The acti-
vation of the sirtuin pathway is believed to contribute
partially to the cardiorenal protective effect associated
with SGLT2 inhibitors.

mTOR Pathway

The mTOR pathway not only integrates signals from the
nutritional microenvironments but also plays a crucial
role in regulating immune function, establishing a vital
link between metabolism and the immune system.54 The
activation of mTOR signaling is related to clinical car-
diomyopathy and nephropathy.55,56 Several studies
have reported the suppressive effect of SGLT2 in-
hibitors on mTOR pathway. 57,58 A recent in-depth
single-cell transcriptional study in young patients
with diabetes by Schaub et al. reported that the use of
SGLT2 inhibitor induced less expression of mTORC1 in
all nephron segments and phosphorylated S6 protein,
an mTORC1 activity marker.59 SGLT2 inhibitors
restored the mTORC1-signaling pathway toward
1604
healthy control levels in all tubular segments. This
study suggested that the SGLT2 inhibitor treatment can
ameliorate the metabolic disturbance of kidney tubules
via mTORC1 signaling in patients with diabetes.

Metabolic Reprograming of T Cell Response by

SGLT2 Inhibitors

Several studies have unveiled the impact of SGLT2
inhibitors on T cell effector function and differentia-
tion via metabolic reprograming.12,60 A recent study by
Jenkins et al. demonstrated that in vitro exposure to
canagliflozin inhibits T cell receptor signaling, leading
to compromised ERK and mTORC1 activity in T cells.
In addition, canagliflozin inhibited mitochondrial
glutamate dehydrogenase and complex I in T cells,
whereas another SGLT2 inhibitor, dapagliflozin, had no
effect on T cells. The impaired T cell receptor response
induced by canagliflozin led to compromised metabolic
reprogramming and T cell effector function.12 In
addition, the study showed when CD4 T cells from
patients with autoimmune disease were treated with
canagliflozin in vitro, they produced less proin-
flammatory cytokines and exhibited reduced activa-
tion. These findings suggest that canagliflozin may
attenuate pathogenic T cell function in autoimmunity.
Importantly, SGLT2 is minimally expressed on T cells,
suggesting an SGLT2-independent mechanism of action
of canagliflozin, which may vary across different
SGLT2 inhibitors.

Another in vitro experiment involving T cells iso-
lated from immune thrombocytopenia patients revealed
that empagliflozin increased the regulatory T cell sub-
set while decreasing the Th1 and Th17 T cell subsets.60

This effect was counteracted by the use of an mTOR
agonist. This study suggests that SGLT2 inhibitors may
modulate the metabolic reprogramming of CD4 T cells
through the mTOR signaling pathway.

Augmented Autophagy and Mitochondrial

Function by SGLT2 Inhibitors

Starvation-mimicking conditions, induced by the glu-
cosuric effect of SGLT2 inhibitors, can trigger pleio-
tropic effects, including the enhancement of autophagy.
There has been a growing attention on the role of
autophagy in renal inflammation and renal senescence.61

The suppression of autophagy is associated with the
progression of diabetic nephropathy, including mesan-
gial expansion, thickening of glomerular basement
membrane, and podocytopathy.62 Korbut et al. demon-
strated that caloric reduction, induced by significant
glycosuria through empagliflozin, could promote auto-
phagy in db/db mice.63 In this experiment, SGLT2 in-
hibitors also mitigated mesangial expansion, podocyte
foot process effacement, and urinary albumin excretion.
Kidney International Reports (2024) 9, 1601–1613
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SGLT2 inhibitors can alleviate mitochondrial
dysfunction in renal tubules by reducing the proximal
tubular workload through the inhibition of sodium and
glucose reabsorption.64,65 Given that aberrant mito-
chondrial homeostasis and elevated reactive oxygen
species levels can contribute to renal inflammation and
fibrosis, the mitochondrial protective properties of
SGLT2 inhibitors demonstrated in numerous preclinical
studies hold promise as an immunomodulatory agent in
chronic renal inflammatory conditions, preventing
acute kidney injury-to-CKD transition.63,66

Insulin Lowering and Insulin Sensitizing Effect

of SGLT2 Inhibitors

SGLT2 inhibitors do not rely on insulin or islet beta-
cells to achieve their glucose-lowering effects.
Insulin-lowering effect is one of the distinctive char-
acteristics of SGLT2 inhibitors when compared to in-
sulin secretagogues such as sulfonylureas or glinides,
as well as exogenous insulin. In addition, several
studies involving patients with type 2 diabetes have
demonstrated that SGLT2 inhibitors increase the insu-
lin sensitivity as evidenced by increased peripheral
glucose uptake.67,68 Because elevated insulin levels and
insulin resistance can induce inflammation, mitochon-
drial dysfunction, mesangial proliferation, and
dysfunction of podocytes and endothelial cells in kid-
neys,69 the impact of SGLT2 inhibitors on insulin level
and peripheral insulin sensitivity may offer a partial
explanation for their renal protective effects.

Alleviation of Ectopic Fat Deposition and

Adipose Tissue Inflammation by SGLT2

Inhibitors

Ectopic fat deposition around the kidney and the heart
can induce local tissue inflammation. Perirenal fat is
known to affect the progression of diabetic nephropa-
thy and ectopic fat deposition in the heart can induce
the development of coronary artery disease and heart
failure by secreting a cocktail of cytokines, adipokines,
microRNAs, and cellular mediators.70 Okuma et al.71

revealed that the use of ipragliflozin reduced leptin
production from the perirenal fat tissue and this was
associated with attenuated high-fat diet-induced
inflammation, fibrosis, and cell death in perirenal fat
tissue in mice. SGLT2 inhibitors have also shown to
reduce the epicardial fat mass independent of weight
loss in patients with diabetes.72,73

Several studies suggest the positive impact of SGLT2
inhibitors in obesity-induced adipose tissue inflamma-
tion. SGLT2 inhibitors can regulate the recruitment of
macrophages and induce M2-like polarization within
adipose tissue macrophages.74,75 SGLT2 inhibitors can
improve insulin sensitivity and inflammation in white
Kidney International Reports (2024) 9, 1601–1613
adipose tissue and liver through the polarization to M2-
like macrophages. By inhibiting SGLT2 and promoting
glucose excretion through urine, SGLT2 inhibitors can
enhance fat utilization through AMPK activation in
muscle.74 In addition, SGLT2 inhibitors encourage the
browning of white adipose tissue, thereby inducing
thermogenesis and increasing overall energy expendi-
ture.75 Several studies have also explored the influence
of SGLT2 inhibitors on adipokines such as leptin and
adiponectin and its impact on antiinflammatory ef-
fect.76,77 These multifaceted effects contribute to
improvement in obesity, alleviation of inflammation,
and enhanced insulin sensitivity.

Alleviation of Vascular Inflammation

Several preclinical studies suggested that the use of
SGLT2 inhibitors may improve vascular function by
attenuating endothelial cell activation and vascular
inflammation, and by improving vaso-relaxation and
arterial wall stiffness.78-80 In a human substudy of the
EMPA-HEART Cardiolink-6 trial by Hess et al., empa-
gliflozin administration increased the circulating pro-
vascular progenitor cells and shifted the balance of
circulating monocytes toward M2 polarization.81 These
findings were concomitant with reduced systemic
oxidative stress and decreased inflammatory gran-
ulocytes. The collective changes suggested that the use
of SGLT2 inhibitors may generate a microenvironment
that is permissive to blood vessel regeneration,
reversing the oxidative stress-induced regenerative cell
exhaustion.

The use of SGLT2 inhibitors can also enhance the
stability of atherosclerotic plaque. A study revealed
that atherosclerotic plaques of patients with diabetes
express increased level of SGLT2 as compared to those
from individuals without diabetes, and the use of
SGLT2 inhibitors could induce more stable plaque
phenotype.14 A recent clinical study by the same in-
vestigators also unveiled the data from patients with
multivessel nonobstructive coronary artery disease,
demonstrating that the use of SGLT2 inhibitors im-
proves the stability of atherosclerotic coronary pla-
que.82 This was evidenced by an increase in coronary
fibrous cap thickness and a decrease in the degree of
lipid deposition within atherosclerotic plaques.

Enhanced Urinary Uric Acid Excretion by SGLT2

Inhibitors

SGLT2 inhibitors gained attention for their ability to
induce uricosuria, although the exact mechanism re-
mains elusive.83,84 A recent meta-analysis by Banerjee
et al. revealed that SGLT2 inhibitors significantly
reduce the acute gout events or gout flares and the need
to initiate new antigout medications.85 Hyperuricemia
1605
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exhibits a strong association with a diverse range of
cardiovascular conditions, including hypertension,
coronary artery disease, and kidney disease.86,87 It is
also believed that inflammation is partially mediating
this correlation. Several studies have provided evi-
dence that elevated uric acid levels can trigger a
proinflammatory response through NF-kB signaling,
resulting in the infiltration of inflammatory cell and the
activation of endothelial cells.88,89 In a study using
dotinurab, a selective inhibitor of cardiac urate
transporter-1 which reduces uric acid uptake by car-
diomyocytes, there was a significant reduction in car-
diac fibrosis, inflammatory responses, and cardiac
dysfunction in obese mice fed a high-fat diet.90

Whether the uricosuric effect of SGLT2 inhibitors in-
duces immunomodulatory effect and contributes to its
cardiovascular benefit requires further investigation.

EXPANDING THE ANTIINFLAMMATORY

POTENTIAL OF SGLT2 INHIBITORS BEYOND

RENAL AND CARDIOVASCULAR SYSTEMS

Recent clinical studies have explored the immuno-
modulatory effects of SGLT2 inhibitors on various or-
gan systems, extending beyond the kidney and heart.
In this section, we review the immunological implica-
tion of SGLT2 inhibitors on serum biomarkers and
multiple organ systems beyond just kidney and heart,
leveraging available clinical data with further comple-
mentation from preclinical data.

Serum Biomarkers

Numerous proinflammatory biomarkers, such as C-
reactive protein, IL-6, TNF-a, and adipokines, have
been established to be significantly associated with the
development of CVD and CKD.91,92 In addition, the
leptin-to-adiponectin ratio is recognized as a reliable
and predictive biomarker for several metabolic disor-
ders, such as CVD, type 2 diabetes, and insulin resis-
tance.93,94 Inflammatory cytokines can induce
endothelial dysfunction and elevate extracellular ma-
trix turnover, ultimately resulting in tissue fibrosis.95

The influence of SGLT2 inhibitors on the reduction of
proinflammatory biomarkers has been explored in
various human studies, indicating a promising antiin-
flammatory potential of SGLT2 inhibitors.96-98

More intriguingly, the post hoc analysis of the Can-
agliflozin Cardiovascular Assessment Study unveiled a
significant correlation between the decrease of TNF
receptor-1 and TNF receptor-2 levels and reduced risk
of adverse kidney outcomes among a canagliflozin-
treated group. In a recent meta-analysis conducted by
Wang et al., the effects of SGLT2 inhibitors on
inflammation-related biomarkers were comprehensively
assessed across various randomized controlled trials.99
1606
The key findings from this analysis revealed re-
ductions in ferritin, C-reactive protein, leptin, plas-
minogen activator inhibitor-1, along with an increased
adiponectin levels when compared to placebo-
controlled studies. These findings suggest a promising
application of SGLT2 inhibitors for immunomodulation
in metabolic disorders.

The Immunological Influence of SGLT2

Inhibitors on Nonalcoholic Fatty Liver Disease

There is a growing interest in the potential benefits of
SGLT2 inhibitors for the treatment of nonalcoholic
fatty liver disease, a condition that arises when the
liver’s capacity to regulate metabolic energy substrates
becomes overwhelmed due to excessive dietary
intake.100 This surplus of energy leads to dysfunction
in hepatocytes and triggers de novo lipogenesis in the
liver.101 The imbalance between lipogenesis and lipol-
ysis results in the accumulation of free fatty acids
within liver cells, causing hepatocellular damage,
apoptosis, inflammation, and eventual fibrosis.102 A
recent meta-analysis has demonstrated that the use of
SGLT2 inhibitors can improve hepatic steatosis and
fibrosis in patients with diabetes with nonalcoholic
fatty liver disease.103 The protective mechanisms of
SGLT2 inhibitors against nonalcoholic fatty liver dis-
ease appears to be mediated by the promotion of
lipolysis and b-oxidation of free fatty acids in mito-
chondria, which in turn reduces oxidative stress, he-
patic inflammation, and apoptosis.11,104,105

SGLT2 Inhibitors in Neuroinflammatory Disease

Growing evidence support the beneficial role of SGLT2
inhibitors in neuroinflammatory diseases, including
cognitive dysfunction and cerebral atherosclerosis.106

Contrary to earlier beliefs, recent studies confirmed
the expression of SGLT2 in specific brain areas, such as
the hippocampus and cerebellum.107,108 Because of its
lipid-soluble characteristics, SGLT2 inhibitors can
penetrate the central nervous system with a brain-to-
serum ratio ranging from 0.3 to 0.5, allowing it to
exert its immunomodulatory function within the cen-
tral nervous system.106

The use of SGLT2 inhibitors can mediate a neuro-
protective effect either by directly modulating central
nervous system inflammation or indirectly by amelio-
rating the systemic inflammation outside the central
nervous system. For instance, the use of dapagliflozin
reduced cerebral inflammation, as evidenced by
decreased NF-kB signaling in high-fat diet-induced
obese rats. This finding correlated with the prevention
of cognitive decline and the restoration of hippocampal
synaptic plasticity. By using a complex mouse model
combining Alzheimer’s disease and diabetes, Hierro-
Kidney International Reports (2024) 9, 1601–1613
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Bujalance et al.109 revealed that empagliflozin usage
reduced microglia burden, a marker of brain inflam-
mation. The empagliflozin-treated group also exhibited
improvements in senile plaque burden and amyloid-b
levels, as well as an overall enhancement in learning
and memory compared to the control group. In another
study conducted by Jayarathne et al.,110 it was
demonstrated that canagliflozin can lead to notable
reductions in age-associated hypothalamic gliosis along
with a decrease in inflammatory cytokine production
by microglia in old male mice. Moreover, the utilization
of canagliflozin resulted in the down-regulation of
mTOR signaling in the hypothalamus and hippocampus
in old male mice.

Systemic inflammation is recognized to play a critical
role in neuroinflammation by disrupting the integrity
of the blood-brain barrier, impairing the endothelium
of brain microvessels, and inducing a shift in the
phenotype of astrocytes and microglia toward a
proinflammatory state.106 The indirect immunomodu-
lating mechanism of SGLT2 inhibitors in neuro-
protection largely overlaps with the systemic
antiinflammatory effect of SGLT2 inhibitors, which
have been extensively discussed in the aforementioned
sections.
FUTURE IMPLICATIONS OF HARNESSING THE

IMMUNOMODULATORY EFFECTS OF SGLT2

INHIBITORS FOR VARIOUS MEDICAL

CONDITIONS

Aging

The persistent, low-grade sterile inflammation is a
pivotal factor in the process of aging and the develop-
ment of age-related illnesses, commonly referred to as
“inflamma-aging.”111 This phenomenon is thought to be
driven by several fundamental mechanisms, including
cell senescence, mitochondrial dysfunction, oxidative
stress, impaired autophagy, activation of inflamma-
somes, and alterations in the composition of gut
microbiota.112,113 Although there is limited clinical data
due to the challenges of studying aging in humans,
there exists a substantial body of preclinical evidence
supporting the potential of SGLT2 inhibitors in the
realm of antiaging. A recent review article by Schön-
berger et al. highlights the potential benefit of SGLT2
inhibitors in the aging process, driven by their antiin-
flammatory, antioxidative, and favorable metabolic
properties.114 IL-6, a well-known cytokine in geron-
tology society, is strongly associated with the aging-
related diseases including diabetes, CVD, and mortal-
ity. Studies have demonstrated that the use of SGLT2
inhibitors can reduce circulating IL-6 levels.13,115

Furthermore, the glucosuria induced by SGLT2
Kidney International Reports (2024) 9, 1601–1613
inhibitors is considered to mimic caloric restriction, a
known factor in slowing down the aging process.116

Autoimmune Nephritis

Although most of the large randomized controlled trials
excluded patients with autoimmune kidney diseases
due to potential necessities of acute immunosuppres-
sion, the Dapagliflozin and Prevention of Adverse
Outcomes in Chronic Kidney Disease trial sought to
assess the impact of dapagliflozin in combination with
RAAS blockades in renal outcome among CKD pop-
ulations, including those with IgA nephropathy.117

This study revealed a remarkable 39% reduction in
the primary outcome, defined as a $50% decline in
estimated glomerular filtration rate, end-stage kidney
disease, or death from cardiovascular or renal causes,
with SGLT2 inhibitor use among the general CKD
population. The results were even more striking among
patients with IgA nephropathy, with an unprece-
dented 71% reduction in the primary outcome.118 This
substantial improvement far exceeded the efficacy of
RAAS blockades alone, indicating a potential additional
benefit of SGLT2 inhibitors in patients with autoim-
mune kidney diseases.

Even though the utilization of SGLT2 inhibitors in
autoimmune nephritis is increasingly gaining attention,
there exists very limited data regarding the efficacy and
safety of SGLT2 inhibitors in populations with anti-
neutrophilic cytoplasmic autoantibody-associated
glomerulonephritis and lupus nephritis. Only 2 studies
related to lupus nephritis were identified on www.
clinicaltrials.gov (NCT05748925 and NCT05704088).
CVD continues to be a paramount cause of mortality,
alongside malignancy and infection, with CKD standing
out as a robust predictor of unfavorable prognosis for
patients with antineutrophilic cytoplasmic
autoantibody-associated glomerulonephritis and lupus
nephritis.119 Therefore, it is imperative that future
prospective controlled studies be implemented to
furnish additional evidence regarding the potential
impact of SGLT2 inhibitors to improve kidney and
cardiovascular health among individuals with anti-
neutrophilic cytoplasmic autoantibody-associated
glomerulonephritis and lupus nephritis.

Solid Organ Transplant Recipients

The seminal randomized controlled trials examining the
efficacy of SGLT2 inhibitors did not include solid organ
transplant recipients due to concerns that these agents
might promote infection, compromise graft function,
and alter immunosuppressive drug levels.1-4,20 Conse-
quently, there is only limited evidence regarding the
use of SGLT2 inhibitors in this specific patient
population.
1607
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The utilization of SGLT2 inhibitors in solid organ
transplant recipients is an attractive prospect, particu-
larly given the high prevalence of both preexisting and
de novo posttransplant diabetes mellitus, as well as the
elevated cardiovascular risk observed in this popula-
tion.120,121 Numerous observational studies and sys-
temic reviews have explored the safety and efficacy of
SGLT2 inhibitors in kidney transplant recipients.122,123

However, the clinical benefits of SGLT2 inhibitors on
cardiovascular and kidney health in the transplant
population remain inconclusive due to substantial het-
erogeneity in study population and limited power in
most of these investigations.124

Therefore, it remains imperative to conduct further
assessments of the efficacy and safety of SGLT2 in-
hibitors in kidney transplant recipients through pro-
spective controlled studies; in particular the potential
Figure 2. Potential multifaceted impact of SGLT2 inhibitors via immunom
amino acid; AMPK, 5’ adenosine monophosphate-activated protein kinase;
fatty acid; HF, heart failure; KB, ketone body; MACE, major adverse cardiov
LRR- and pyrin domain-containing protein 3; ROS, reactive oxygen specie
sympathetic nervous system. Created with BioRender.com.
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increased risk in urinary tract infections and fungal
infections. Several ongoing studies were identified on
www.clinicaltrials.gov, enrolling various types of
transplant recipients and focusing on diverse aspects
of clinical outcomes (NCT04965935, NCT06013865,
NCT05013112, NCT04906213, NCT05788276,
NCT05938712, NCT04918407, NCT04743453, and
NCT03642184 for kidney transplant recipients;
NCT05321706 for heart transplant recipients;
NCT05042505 for liver transplant recipients; and
NCT03113110 for all posttransplant diabetes mellitus).
CONCLUSION

SGLT2 inhibitors have demonstrated pleiotropic effects
that extend well beyond their initial role as a hypo-
glycemic agent (Figure 2), prompting investigators to
odulation and its crosstalk over multilayer of biological system. AA,
ATP, adenosine triphosphate; CKD, chronic kidney disease; FFA, free
ascular event; mTOR, mammalian target of rapamycin; NLRP3, NOD-,
s; SGLT2 inhibitors, sodium-glucose cotransporter-2 inhibitors; SNS,

Kidney International Reports (2024) 9, 1601–1613

http://www.clinicaltrials.gov
http://BioRender.com


SA Lee and LV Riella: Immune Modulation by SGLT2 Inhibitors REVIEW
conduct further investigations. Through extensive
preclinical studies, SGLT2 inhibitors have been shown
to exert immunomodulatory effects, either directly or
indirectly influencing various targets and pathways
crucial for immune activation. Amid the influx of new
data, the challenge still remains in understanding the
dominant mechanism of the significant benefits on
cardiovascular and renal outcome. Bridging this
knowledge gap and translating this information from
research back to bedside will hopefully lead to more
precise and targeted use of SGLT2 inhibitors in patients
with proinflammatory conditions.
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