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Abstract: Skin cancer (melanoma and non-melanoma) is one of the most common cancer types and
leads to hundreds of thousands of yearly deaths worldwide. It manifests itself through abnormal
growth of skin cells. Early diagnosis drastically increases the chances of recovery. Moreover, it may
render surgical, radiographic, or chemical therapies unnecessary or lessen their overall usage. Thus,
healthcare costs can be reduced. The process of diagnosing skin cancer starts with dermoscopy,
which inspects the general shape, size, and color characteristics of skin lesions, and suspected lesions
undergo further sampling and lab tests for confirmation. Image-based diagnosis has undergone
great advances recently due to the rise of deep learning artificial intelligence. The work in this paper
examines the applicability of raw deep transfer learning in classifying images of skin lesions into
seven possible categories. Using the HAM1000 dataset of dermoscopy images, a system that accepts
these images as input without explicit feature extraction or preprocessing was developed using
13 deep transfer learning models. Extensive evaluation revealed the advantages and shortcomings
of such a method. Although some cancer types were correctly classified with high accuracy, the
imbalance of the dataset, the small number of images in some categories, and the large number of
classes reduced the best overall accuracy to 82.9%.
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1. Introduction

Skin cancer is considered one of the most dangerous types of cancer in the world [1,2],
and the number of deaths is increasing daily as a result of this disease [3,4]. Moreover, it
is one of the fastest spreading types of cancer [5]. However, treatment is possible if it is
detected in its early stages [6]. According to recent statistics, it was reported that 20% of
skin cancer reached a point where survival is not possible due to the disease progression [7].
Worldwide, approximately 50,000 people die each year from skin cancer [7,8], which
represents 0.7 of the death rate due to cancer [8]. The estimated cost of treatment is
approximately USD 30 million, which is prohibitive for treatment [5].

Doctors use multiple methods to detect skin cancer [9]. Visual detection is the initial
way to identify the possibility of the disease [10,11]. The American Center for the Study
of Dermatology developed a guide for the possible shape of melanoma, which is called
ABCD (asymmetry, border, color, diameter) [2,12,13] and is used by doctors for initial
screening of the disease. If a suspected skin lesion is found, the doctor takes a biopsy of the
visible lesion on the skin [14], and examines it microscopically for a benign or malignant
diagnosis and the type of skin cancer [15]. Dermoscopy is a technique that doctors use to
diagnose skin cancer [16]. It involves taking bright pictures of the shape of the skin lesion,
which comes in the form of dark spots [17]. However, this method faces many difficulties,
the most important of which is the inability to determine the nature of the lesion due to
the surrounding conditions such as the presence of hair, blood vessels, correct lighting,
inability to take the correct shape of the spot, and the similarity of the shape of the spots
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among cancerous and non-cancerous diseases [18,19]. Moreover, some people may ignore
skin lesions due to poverty, lack of access to proper healthcare, or misdiagnosis. Given
an image of a skin lesion, the goal of this work to easily and automatically classify this
image into benign or possible cancer. Such a system can be deployed as an easy-to-use
smartphone application.

The contributions of this paper are as follows:

1. Develop an artificial intelligence-based screening system for skin cancer (melanoma
and non-melanoma) using dermoscopic images of the skin lesions as input. Such a
system can aid in clinical screening tests, reduce errors, and improve early diagnosis;

2. Implement transfer learning of 13 deep convolutional neural networks models for the
classification of skin lesion images into seven categories, including melanoma, benign
keratosis-like lesions, and five other non-melanoma cancers;

3. Evaluate classification performance using common relevant metrics for all models. In
addition, the training behavior and time requirements were also included.

The remainder of this paper is organized as follows: the related work is discussed
in Section 2, the dataset, deep learning models, and performance evaluation metrics and
setup are explained in detail in Section 3, Section 4 presents the performance evaluation
results along with a comparison to the related literature and discussion of the models, and
we conclude in Section 5.

2. Related Work

Recent advances in artificial intelligence (AI) during the past decade and specifically in
the field of deep learning and convolutional neural networks (CNNs) have opened the door
for the development of reliable screening and diagnosis image-based medical systems [20].
The research landscape has recently witnessed a shift from image segmentation (i.e., separa-
tion of relevant areas in the image) and feature extraction toward automated classification
using deep learning. The literature in the context of skin cancer detection/screening fol-
lowed a similar trajectory with the traditional approach of image processing to remove
irrelevant artifacts (e.g., hair) being overcome by using sophisticated deep learning artificial
intelligence. Such recent techniques do not require explicit feature extraction and are
generally immune to noise factors that affect images (e.g., light intensity, color, translation,
reflection, etc.) [21]. However, they tend to be computationally intensive [22].

Li et al. [1] proposed digital hair removal (DHS) to filter the hair out of the skin lesion
image, and analyzed the effect of hair removal using intra-structural similarity (Intra-SSIM).
In another study, Liu et al. [23] developed a new method using deep learning to segment
lesion images according to regions of interest (ROI). They used a new mid-level feature
representation, where pre-trained neural networks (e.g., ResNet and DenseNet) were used
to extract information from the ROI. Similarly, Pour and Seker [24] used convolutional
neural networks for the segmentation of lesions and dermoscopic features. They used the
CIELAB color space in addition to RGB color channels instead of excessive augmentation
or using a pertained model. Almansi et al. [25] proposed a new segmentation methodology
using full-resolution convolutional networks (FrCN). They worked on the image without
pre/post-processing, and their results showed that the proposed method (FrCN) yielded
better results than the other deep learning segmentation approaches. Dash et al. [26] pro-
posed a new segmentation method based on a deep fully convolutional network comprised
of 29 layers. Xie et al. [27] proposed the segmentation of dermoscopy images based on
a convolutional neural network with an attention mechanism, which can preserve edge
details. Serte and Demirel [28] proposed a novel Gabor wavelet-based deep learning model
for the classification of melanoma and seborrheic keratosis. This model builds on an en-
semble of seven Gabor wavelet-based CNN models. Furthermore, their model fuses the
Gabor wavelet-based model and an image-based CNN model. The performance evaluation
results showed that an ensemble of the image and Gabor wavelet-based models outper-
formed the individual separate image and Gabor wavelet-based models. This ensemble
also outperformed the group of only Gabor wavelet-based CNN models.
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Deep transfer learning has been widely deployed in the medical imaging literature
for powerful, automatic, and internal (i.e., implicit) feature extraction. In this regard,
Manzo et al. [29] employed a three-step approach for melanoma detection. In the first
step, the images are converted into the proper size and the dataset is balanced. After that,
deep transfer learning is used for feature extraction. These features feed an ensemble of
traditional classification algorithms, including support-vector machine (SVM), logistic label
propagation (LLP), and k-nearest neighbors (KNN). Jain et al. [30] compared six different
transfer learning networks for multiclass lesion classification. However, their reported
results relied upon increasing the size of the dataset by augmentation. Augmentation
is typically used to introduce changes into the input images without duplication. Thus,
making several augmented copies of the same image in the dataset will result in biased
results that do not represent the actual performance [21].

3. Materials and Methods

Figure 1 shows the steps used to develop the skin cancer classification system using
images of skin lesions. The methods used in this work do not need any feature extraction,
nor does it perform any segmentation (i.e., separation of lesions from the rest of the image).
All of these are automatically handled by the complexities of the deep learning model
layers and operations. The next few subsections explain each part in detail.
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Figure 1. A graphical abstract of the general steps used in this paper.

3.1. Dataset

This work uses the dataset called HAM1000 (Human Against Machine) [2], which
is comprised of 10,015 dermatoscopic images of the most common skin cancers. The im-
ages are divided into seven categories: 327 actinic keratosis and intraepithelial carcinoma
(AKIEC), 514 basal cell carcinoma (BCC), 1099 benign keratosis-like lesions (BLS), 115 der-
matofibroma (DF), 1113 melanoma (Mel), 6705 melanocytic nevi (NV), and 142 vascular
lesions (VASC). Two augmentation operations were applied: random x-y scaling in the
range (0.9, 1.1), and random x-y translation in the pixel range (−30, 30).

3.2. Deep Learning Models

Transfer learning has been found to be extremely effective in many image-based
medical applications [31]. It replaces ad hoc deep convolutional neural network (CNN)
designs with pre-trained, well-designed, and extensively-tested models. The initial layers
of such models are trained to detect generic image features such as color, contrast, etc. On
the other hand, later layers toward the output need to be customized and retrained on
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specific task-related features. Such methodology has proved its worth in a wide range
of studies [20,22,32]. In this paper, 13 deep learning models were customized, retrained,
evaluated individually, and compared on their ability to classify skin lesions into the
seven aforementioned categories in the HAM1000 dataset. These were: SqueezeNet [33],
GoogLeNet [34], Inceptionv3 [35], DenseNet-201 [36], MobileNetv2, ResNet18, Rest-
Net50, ResNet101, Xception [37], Inception-ResNet, ShuffleNet [38], DarkNet-53 [39],
and EfficientNet-b0 [40]. These models require input images to be of a certain size. More
specifically, these models require the input to be of size 224 × 224 × 3, 227 × 227 × 3,
256 × 256 × 3, 299 × 299 × 3, or 331 × 331× 3. However, all of them were pre-trained
using ImageNet [41].

3.3. Performance Evaluation Metrics and Setup

The performance was evaluated using five metrics [42]: accuracy, precision, recall,
specificity, and F1 score. The accuracy measures the ratio of true positive plus true negatives
for all the images. Precision measures the ratio of true positives to all elements identified
as positives (including false positives). Recall (i.e., sensitivity) measures the ratio of true
positives to all relevant elements (i.e., the actual positives). Specificity (i.e., selectivity)
measures the ratio of true negatives to all images that are actually negative, and the F1
score is the harmonic mean of the recall and precision and expresses the accuracy of
classification in unbalanced datasets. The five measures are defined in Equations (1)–(5).
The reported results refer to the mean overall value when each separate class is considered
as the positive case.

The model parameters were commonly set for all models as follows: minimum
batch size = 16 (higher values are more computationally efficient but require significantly
more memory), maximum number of epochs = 10 (no need to do further training if the
loss/validation curve flattens out after a certain number of epochs with no improvement),
initial learning rate = 0.0003, and the network solver = stochastic gradient descent with
momentum (SGDM). Three strategies for data splitting into training and validation were
used (i.e., 70/30, 80/20, and 90/10), which will measure the models’ improvement if more
input images were available and their ability to generalize without overfitting the input
images. Input images were augmented to increase their variety by using standard image
processing operations as follows: random axis translation (i.e., image movement over the x
and y axes) = (−30, 30), and random scaling using the range (0.9, 1.1).

The implementation and evaluation of the models was conducted using MATLAB
R2021a software running on an HP OMEN 30L desktop GT13 with 64 GB RAM, an NVIDIA
GeForce RTX 3080 GPU, an Intel Core i7-10700K CPU @ 3.80 GHz, and a 1TB SSD.

Accuracy =
TP + TN

P + N
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

F1 = 2 × Recall × Precision
Recall + Precision

(5)

where TP represents the number of correctly classified images, FP represents the number
of wrongly classified images as another class, FN indicates the number of images missed
by the classifier, P indicates the number of all images considered as the positive class, and
N is the number of all images other than the positive class.



Sensors 2022, 22, 4963 5 of 16

4. Results and Discussion

The related work in the literature has already established that high performance is
achievable in binary (i.e., benign vs. melanoma) or ternary (i.e., benign vs. melanoma
vs. non-melanoma) classification of skin lesion images. The goal of the experiments was
to evaluate the ability of transfer learning of the deep convolutional network models to
correctly classify skin lesion images into one of the seven aforementioned categories in
the dataset. Moreover, the training was repeated for 10 times to account for variability in
the random data split of images into training and validation, and the mean values were
reported. In addition, due to the high computational cost of deep learning models, the
training and validation times were also included in the results.

Table 1 shows the mean overall performance metrics over 10 runs of each of the 13 deep
learning models and using 70% of the data for training. All models achieved comparable
accuracy values, with Resnet101 performing the best with 76.7%. The sample confusion
matrix with row and column summaries in Figure 2 provides further insight into the results.
First, due to the imbalanced number of images in each class and with smaller-sized classes
achieving lower accuracies, the F1 score numbers are lower than the accuracy values. The
NV class with the largest number of images achieved the highest precision (92.5%; see the
NV column summary) and highest recall (82.5%; see the NV row summary). In comparison,
the melanoma class was detected with 71% sensitivity (i.e., recall) but 43.1% precision.
However, the other classes show less precision/recall variation.

Figure 3 shows a sample training/validation progress curve for Resnet101 and a
70/30 data split. This figure shows two possible observations: first, the model is unable
to achieve consistently reduced loss and produce high testing accuracy, even when the
number of epochs is increased (not reported here), and second, due to the small number of
images in most classes (deep learning requires large datasets [43]), there is an obvious gap
between the validation vs testing performance (i.e., overfitting or inability to generalize to
the validation data).

Table 2 shows the mean overall performance metrics over 10 runs of each of the
13 deep learning models using 80% of the data for training. The 10% increase in the size
of the training set did not have a significant effect on the performance metrics, with the
best F1 score being 66.1% (DenseNet201 model). The confusion matrix in Figure 4 shows
that a major source for errors was the misclassification of NV images as melanoma. Most
classes achieved relatively high precision but low recall. Moreover, the same training and
overfitting trends appear in Figure 5.

Table 1. The mean overall Accuracy, F-score, Precision, Recall, and Specificity for each deep learning
model and 70/30 data split.

Model F1 Score Precision Recall Specificity Accuracy

SqueezeNet 51.2% 63.1% 49.6% 93.8% 71.7%
GoogLeNet 55.4% 63.2% 53.4% 94.3% 74.0%
Inceptionv3 61.5% 65.5% 60.7% 94.5% 74.2%

DenseNet201 64.8% 70.9% 62.7% 94.7% 75.8%
MobileNetv2 61.0% 67.2% 58.4% 94.1% 75.6%

Resnet101 64.3% 67.6% 63.8% 95.0% 76.7%
Resnet50 63.4% 68.5% 62.4% 94.7% 74.4%
Resnet18 59.3% 64.7% 57.8% 94.6% 75.3%
Xception 60.9% 66.5% 59.2% 94.7% 75.4%
Inception-
ResNet-v2 61.4% 65.3% 60.8% 94.4% 75.5%

ShuffleNet 60.6% 64.9% 58.7% 93.5% 74.6%
DarkNet-53 61.9% 66.8% 61.9% 94.5% 71.6%

EfficientNetb0 57.6% 70.3% 53.7% 94.1% 73.8%
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Figure 2. Sample confusion matrix for Resnet101 model and 70/30 data split.

Figure 3. Sample training/validation progress curve for Resnet101 and 70/30 data split.
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Table 2. The mean overall accuracy, F-score, precision, recall, and specificity for each deep learning
model and an 80/20 data split.

Model F1 Score Precision Recall Specificity Accuracy

SqueezeNet 52.6% 64.0% 50.8% 93.4% 68.0%
GoogLeNet 56.2% 70.0% 53.8% 93.4% 68.5%
Inceptionv3 61.1% 64.2% 62.6% 94.0% 68.8%

DenseNet201 66.1% 74.7% 63.3% 94.3% 73.5%
MobileNetv2 61.5% 65.9% 60.2% 93.9% 73.0%

Resnet101 62.3% 69.0% 62.2% 94.2% 70.2%
Resnet50 63.2% 71.7% 61.8% 93.9% 67.7%
Resnet18 62.2% 64.7% 63.2% 93.8% 69.6%
Xception 56.1% 61.3% 55.9% 94.0% 70.2%
Inception-
ResNet-v2 58.5% 63.9% 59.7% 93.8% 67.4%

ShuffleNet 61.2% 70.2% 57.8% 93.3% 70.0%
DarkNet-53 61.4% 70.7% 58.5% 93.6% 70.2%

EfficientNetb0 56.0% 69.8% 52.6% 93.6% 72.2%
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Figure 4. Sample confusion matrix for DenseNet201 model and 80/20 data split.

A further 10% increase in training data made the percentage of testing images 90%
of the dataset. Table 3 shows the mean overall performance metrics over 10 runs of each
of the 13 deep learning models. Three of the models (i.e., DenseNet201, DarkNet53, and
ResNet101) achieved an accuracy above 80% with a corresponding F1 score of 74.4% for
DenseNet201. The table shows steady improvement for most models with a larger set of
training data over all metrics, except for the small model SqueezeNet. Generally, deep
learning models, unlike traditional machine learning, benefit from larger datasets [44],
which may be the reason for improved performance. The sample confusion matrix for
DarkNet-53 in Figure 6 shows considerably better performance in terms of entries with
one or fewer false misclassifications. However, the training/validation progress curve in
Figure 7 still shows signs of overfitting.
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Figure 5. Sample training/validation progress curve for DenseNet201 and 80/20 data split.

Although an increased size of the training dataset showed signs of promise, much
is still desired to reach a reliable diagnosis system that surpasses screening requirements.
However, some of the results were affected by the small number of images in each class.
For example, in Figure 6, the class DF had 11 images, VASC had 14 images, and AKIEC
had 32 images. Such numbers are extremely low for an effective deep learning model, and
single errors will have a profound effect on overall performance indices.

Table 3. The mean overall accuracy, F-score, precision, recall, and specificity for each deep learning
model and 90/10 data split.

Model F1 Score Precision Recall Specificity Accuracy

SqueezeNet 52.7% 67.1% 48.0% 92.7% 75.0%
GoogLeNet 54.5% 64.2% 53.1% 94.5% 73.4%
Inceptionv3 67.9% 69.9% 70.1% 95.3% 79.3%

DenseNet201 74.4% 78.5% 73.6% 96.0% 82.9%
MobileNetv2 63.5% 68.8% 63.4% 94.8% 74.9%

Resnet101 71.7% 71.1% 74.5% 96.3% 81.2%
Resnet50 67.8% 72.6% 68.3% 95.5% 77.8%
Resnet18 67.9% 72.3% 68.3% 95.1% 79.0%
Xception 59.5% 65.0% 58.5% 94.4% 72.1%
Inception-
ResNet-v2 64.4% 66.6% 66.8% 94.8% 73.9%

ShuffleNet 65.8% 74.0% 61.8% 94.3% 79.0%
DarkNet-53 66.3% 70.0% 66.1% 95.1% 80.8%

EfficientNetb0 61.3% 73.4% 57.0% 94.7% 76.7%
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Figure 6. Sample confusion matrix for DarkNet-53 model and 90/10 data split.

Figure 7. Sample training/validation progress curve for DarkNet-53 and 90/10 data split.

To assess the computational cost of training the deep learning models, the time re-
quired for each model was reported for each strategy of data split; see Table 4. In general,
the required time increases linearly in less than 10% increments with each increase in the
size of the training dataset. SqueezeNet is the fastest model, but DarkNet-53 is the best
model that combines classification prowess with speed of training, followed by Resnet101.



Sensors 2022, 22, 4963 10 of 16

Table 4. The mean training and validation times for all algorithms and data split strategies. All times
are in seconds.

Data Split
70/30 80/20 90/10

Model

SqueezeNet 377.0 400.4 422.6
GoogLeNet 726.8 795 855.0
Inceptionv3 2182.9 2419.9 2655.2

DenseNet201 7190.8 7884.7 8686.6
MobileNetv2 3266.3 3678.5 4028.5

Resnet101 2196.5 2449.5 2682.7
Resnet50 992.2 1100.0 1192.9
Resnet18 413.6 439.9 470.0
Xception 9076.2 10,111.1 11,094.8

Inception-ResNet-v2 6698.0 7495.4 8254.3
ShuffleNet 2386.9 2641.0 2916.0
DarkNet-53 1761 1974.6 2126.3

EfficientNet-b0 5432.4 6028.4 6737.5

A comparison to the related literature is shown in Table 5. Although the referenced
studies achieve high performance values, they tackle a far easier problem in classifying
fewer number of classes (two or three). Moreover, some of these studies require explicit
feature extraction, which is not needed by deep transfer learning. Others, including
Pezhman Pour and Seker [24] and Lie et al. [1], do not address the classification problem
directly but rather on processing techniques for lesion segmentation (i.e., separation of
lesion from other artifacts in the image) and hair removal from lesion images, respectively.

Table 5. A summary of the latest literature in automatic skin lesion classification.

Study Objective Dataset Approach Performance

Li et al. (2020) [23]
Two-class classification:

melanoma and seborrheic
keratosis

600 images
Mid-level features and

segmentation according
to ROI

Area under the
receiver-operating

characteristic curve,
ResNet (89.00%),

DenseNet (88.85%),
Fusion(90.67%)

Pezhman Pour and Seker [24] Lesion segmentation 3879 images Dermoscopic feature
segmentation using CNN

2% and 7% improvement
in Jaccard index and

sensitivity, respectively

Al-masni et al. [25]
Three-class classification:
melanoma, benign, and

seborrheic keratosis
2950 images Segmentation using FrCN

Segmentation accuracy of
95.62% (clinical benign

cases), 90.78%
(melanoma, and 91.29%

(seborrheic keratosis)

Dash et al.[26]
Three-class classification:

moderate, severe, and
very severe

6267 images
Segmentation using

modified U-Net
architecture

93.03% Dice coefficient,
94.8% accuracy, 89.6%
sensitivity, and 97.60%

specificity

Xie et al. [27]
Segmentation into two
semantic classes: lesion

and background
1479 images

Segmentation of
dermoscopy images

preserving edge details

Jaccard indices of 0.783,
0.858, and 0.857

Serte et al. [28]
Two-class classification:

melanoma and seborrheic
keratosis

2000 images

Gabor wavelet-based
deep learning model for

melanoma and seborrheic
keratosis

Average area under the
receiver-operating

characteristic curve, 91%

Li et al. [1]
Optimal hair removal
(reduce over/under

removal)

1751 dermoscopic images
with hair occlusion

Digital hair removal from
images of skin lesion

using CNN

Accuracy (99.08%),
Specificity (99.85%), F1

score (94.43%), precision
(99.09%), sensitivity

(95.74%)

This work Seven-class classification 10015 dermoscopic
images

Deep transfer learning of
a CNN Accuracy (82.9%)
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Special Cases

Further investigation of the classification performance and training behavior was
conducted in order to shed light on shortcomings, as follows:

• Maximum number of epochs. Increasing the number of epochs will require more
training time and may achieve better performance if the model has more room to learn,
especially in large datasets. However, an exaggerated value for this hyper-parameter
may lead to overfitting. Three models were retrained with a maximum number of
epochs = 50. These were: Resnet101 with a 70/30 data split, DenseNet201 with an
80/20 data split, and DarkNet-53 with a 90/10 data split. In comparison to the values
in Tables 1–3, the F1 score for Resnet101 improved slightly to 67.2% (was 64.3%),
DenseNet201 performed a little worse with an F1-score of 63.7%, down from 66.1% in
Table 2 (i.e., the model started to overfit the training data), and Darknet-53 improved
to an F1-score of 83.1%. The other performance metrics showed similar trends to the
F1 score. Figures 8–10 show the corresponding confusion matrices;

• Classifying a lesser number of skin cancer types. Since the dataset is highly imbalanced
with some classes having a significantly smaller number of images in the dataset (e.g.,
115 DF and 142 VASC), it is worthwhile to explore several subsets of the classification
problem as follows:

– Eliminate the DF and VASC classes and perform 5-class classification. The same
three models and corresponding data split as in the previous case with a maxi-
mum number of epochs = 10 were used. Surprisingly, in comparison to Tables 1–3,
the F1 score displayed very small change (Resnet101: 64.8%, DenseNet201:
65.2%, and DarkNet-53: 67.1%), which was similar to the trend in the other
performance metrics;

– Eliminate the BCC (514 images), AKIEC (327 images), DF, and VASC classes and
perform 3-class classification. The Resnet101 (70/30 data split), DenseNet201
(80/20 data split), and DarkNet-53 (90/10) were used with a maximum number
of epochs =10. An easier classification problem has resulted in an improved F1
score for Resnet101 and DarkNet-53 of 71.1% and 72.8%, respectively. However,
DenseNet201 performed worse at 62.3%, probably due to overfitting;

– Using the same setup as above, perform pair-wise 2-class classification on the
three classes, NV, MEL, and BKL. For the MEL vs. BKL classification, the F1
score of Resnet101 = 80.6%, DenseNet = 73.44%, and DarkNet201 = 83.7%. For
the NV vs. MEL classification, all models performed badly. The F1 score for
Resnet101 = 58.8%, DenseNet201 = 55.13%, and DarkNet-53 = 63.4%. Although
the two classes have a good number of images, it seems like the similarities
between the two types are too difficult to spot. Moreover, the lack of proper
image cropping (i.e., elimination of useless parts of the images and keeping the
lesion) contributed to this factor as it consumes a significant part of the image
representation, especially that these algorithms require a scaled-down copy of
the input, as mentioned in Section 3. The last pair-wise classification problem is
NV vs. BKL, for which Resnet 101 achieved an F1 score = 72.8% (93% accuracy),
DenseNet201 reported a 71.8% F1 score and 91.9% accuracy, and DarkNet-53
managed a 70.0% F1 score and 89.9% accuracy.

Surprisingly, lowering the number of classes did not result in improved performance
in general. Although deep transfer learning has been effective in many medical and image-
based applications, it seems like its application in this scenario requires more investigation
and probably larger datasets.
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Figure 8. Sample confusion matrix for Resnet101 model, 70/30 data split and 50 epochs of training.
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Figure 10. Sample confusion matrix for DarkNet-53 model, 90/10 data split and 50 epochs of training.

5. Conclusions

Skin cancer in both melanoma and non-melanoma types is common and leads to many
yearly deaths worldwide. Early diagnosis has been show to drastically reduce therapy time,
cost, and suffering from the prolonged traditional treatment methods (e.g., chemotherapy).
However, accurate screening/diagnosis requires specialist knowledge of the different types
of cancers and how they appear in the form of skin lesions. Some people may ignore
such lesions due to ignorance, indifference, cost, or doctor appointment scheduling delays.
Recently, the field of deep learning and artificial intelligence has opened the door for the
development of reliable image-based medical systems for screening and diagnosis. In
this paper, we have used a well-known dermoscopy dataset of seven common types of
cancerous skin lesions, utilized recent advances in the design of deep convolutional neural
networks, and applied deep transfer learning to the application of screening/diagnosing
skin lesion images. Such an approach has the capability to achieve high accuracies that
reduce the burden on specialists. Moreover, it can be easily implemented and used in
real-life applications due to the elimination of explicit feature extraction or manual image
processing. Future work will focus on improving the balance of the dataset by collecting
specific dermoscopy images of underrepresented skin lesion types and making those
publicly available in the research domain.
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Abbreviations
The following abbreviations are used in this manuscript:

ABCD Asymmetry, border, color, diameter
AI Artificial intelligence
CNN Convolutional neural networks
DHS Digital hair removal
Intra-SSIM Intra-structural similarity
ROI Regions of interest
CIELAB International Commission on Illumination Lightness A, B
RGB Red, green, blue
FrCN Full-resolution convolutional networks
SVM Support-vector machine
LLP Logistic label propagation
KNN K-nearest neighbors
HAM Human against machine
AKIEC Actinic keratoses and intraepithelial carcinoma
BCC Basal cell carcinoma
BLS Benign keratosis-like lesions
DF Dermatofibroma
Mel Melanoma
NV Melanocytic nevi
VASC Vascular lesions
TP True positive
TN True negative
FN False negative
FP False positive
N Negatives
P Positives
SGDM Stochastic gradient descent with momentum
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