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ABSTRACT

Objective: We learn contextual embeddings for emergency department (ED) chief complaints using Bidirec-

tional Encoder Representations from Transformers (BERT), a state-of-the-art language model, to derive a com-

pact and computationally useful representation for free-text chief complaints.

Materials and methods: Retrospective data on 2.1 million adult and pediatric ED visits was obtained from a

large healthcare system covering the period of March 2013 to July 2019. A total of 355 497 (16.4%) visits from

65 737 (8.9%) patients were removed for absence of either a structured or unstructured chief complaint. To en-

sure adequate training set size, chief complaint labels that comprised less than 0.01%, or 1 in 10 000, of all visits

were excluded. The cutoff threshold was incremented on a log scale to create seven datasets of decreasing

sparsity. The classification task was to predict the provider-assigned label from the free-text chief complaint us-

ing BERT, with Long Short-Term Memory (LSTM) and Embeddings from Language Models (ELMo) as baselines.

Performance was measured as the Top-k accuracy from k¼1:5 on a hold-out test set comprising 5% of the sam-

ples. The embedding for each free-text chief complaint was extracted as the final 768-dimensional layer of the

BERT model and visualized using t-distributed stochastic neighbor embedding (t-SNE).

Results: The models achieved increasing performance with datasets of decreasing sparsity, with BERT outper-

forming both LSTM and ELMo. The BERT model yielded Top-1 accuracies of 0.65 and 0.69, Top-3 accuracies of

0.87 and 0.90, and Top-5 accuracies of 0.92 and 0.94 on datasets comprised of 434 and 188 labels, respectively.

Visualization using t-SNE mapped the learned embeddings in a clinically meaningful way, with related concepts

embedded close to each other and broader types of chief complaints clustered together.

Discussion: Despite the inherent noise in the chief complaint label space, the model was able to learn a rich rep-

resentation of chief complaints and generate reasonable predictions of their labels. The learned embeddings ac-

curately predict provider-assigned chief complaint labels and map semantically similar chief complaints to

nearby points in vector space.

Conclusion: Such a model may be used to automatically map free-text chief complaints to structured fields and

to assist the development of a standardized, data-driven ontology of chief complaints for healthcare institu-

tions.
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LAY SUMMARY

Patient care in the emergency department (ED) is guided by the

patient’s chief complaint, a concise statement regarding the patient’s

medical history, current symptoms, and reason for visit. Because

chief complaints are often stored as free-text descriptions of varying

length and quality, secondary use of chief complaint data in opera-

tional decisions and research has been impractical. Moreover, even

when chief complaints are stored in a structured format in electronic

health records, there exists no standard nomenclature on how they

are categorized. To remedy this problem, we use Bidirectional En-

coder Representations from Transformers, a state-of-the-art lan-

guage model, on a dataset of 1.8 million free-text ED chief

complaints to derive a numerical representation for chief com-

plaints, called “contextual embeddings.” We show that contextual

embeddings accurately predict provider-assigned chief complaint

labels and map chief complaints with similar meaning (eg

“wheezing” and “breathing problem”) to nearby points in vector

space. The model with its associated embeddings may be used to au-

tomatically map free-text chief complaints to structured labels and

to help derive a standardized dictionary of chief complaints for

healthcare institutions.

BACKGROUND AND SIGNIFICANCE

Patient care in the emergency department (ED) is guided by the

patient’s chief complaint.1–3 Collected during the first moments of

the patient encounter, a chief complaint is a concise statement re-

garding the patient’s medical history, current symptoms, and reason

for visit. While a chief complaint can be represented in a structured

format with predefined categories, it is often captured in unstruc-

tured, free-text descriptions of varying length and quality.4 More-

over, even when chief complaints are stored in a structured format,

there exists no standard nomenclature or guidance on how they

should be categorized.5,6 As a consequence, administrators and

researchers frequently find chief complaint data difficult to use for

downstream tasks such as quality improvement initiatives and pre-

dictive analytics.7 Thus, the secondary use of chief complaint data in

daily operational decisions and research has been hampered by its

form and representation.

Advances in natural language processing (NLP) provide an oppor-

tunity to address many of the challenges of chief complaint data. Con-

textual language models such as Embeddings from Language Models

(ELMo) and Bidirectional Encoder Representations from Transform-

ers (BERT) are able to generate dense vector representations, or

embeddings, of free-text data such that semantically similar words or

documents are mapped to nearby points in vector space.8–11 Such

methods have been successfully applied in the medical domain.12–19

Recent work has used contextual language models to generate embed-

dings for chief complaints in the primary care setting, using a small

dataset of patient-generated text.20

Contextual embeddings for ED chief complaints have many de-

sirable properties. They distill the complex information stored in

free-text into a compact, numeric format while avoiding the data

sparsity that results from converting categorical variables into

dummy variables or from using traditional NLP models such as

Term Frequency-Inverse Document Frequency (td-idf) and Bag of

Words (BoW).21–23 Moreover, a contextual embedding model

trained specifically on ED triage notes stores appropriate informa-

tion about chief complaints within the context of ED patient care, as

opposed to word similarities within a large undifferentiated

corpus.12,17

ED chief complaints have been an important part of many clini-

cal decision support tools, including those for early sepsis detection,

in-hospital mortality, patient disposition, and early ED return.22–26

Contextual embeddings for ED chief complaints may facilitate in-

corporating free-text information into prediction models, as has

been shown in models for in-patient readmission.27,28 Contextual

embeddings also enable us to calculate a numeric distance between

any two chief complaints to determine their relatedness, or similar-

ity, an elusive concept that has hampered outcomes research focus-

ing on subgroups of chief complaints as well as quality improvement

projects on short-term ED return.29 Lastly, contextual embeddings

may be used to derive a standardized, data-driven ontology of ED

chief complaints that could be shared among healthcare institutions

and research entities to minimize the variability in how chief com-

plaint labels are assigned from ED to ED,7,30,31 as has been sug-

gested by recent work on the Hierarchical Presenting Problem

Ontology (HaPPy).5,21,32

OBJECTIVES

In this study, we expand on prior work by applying BERT, a state-

of-the-art language model, on a dataset of 1.8 million provider-

generated free-text ED chief complaints from a healthcare system

covering seven independent EDs.9,19 We use Long Short-Term

Memory (LSTM) and ELMo for baseline comparison. We show that

the contextual embeddings generated by BERT accurately predict

provider-assigned chief complaint labels and map semantically simi-

lar chief complaints to nearby points in vector space.

MATERIALS AND METHODS

Retrospective data on all adult and pediatric ED visits were obtained

from a large healthcare system covering the period of March 2013

to July 2019, with a combined annual census of approximately

500 000 visits across seven independent EDs, three of which are

community hospital-based. The centralized data warehouse for the

electronic health record (EHR) system (Epic, Verona, WI) was que-

ried for chief complaint data. This study was approved, and the in-

formed consent process waived, by the Human Investigation

Committee at the authors’ institution (HIC 2000025236).

Chief complaint data in the Epic EHR are represented in two

forms, a “presenting problem” that is a structured list of 1145 labels

and a free-text chief complaint comment section in the form of an

unstructured text box. The structured label system does not corre-

spond to external nomenclatures such as SNOMED Clinical Terms.

The free-text chief complaint is entered by the triage nurse at the

moment of patient encounter, along with one or more presenting

problems, which the nurse selects from a structured list after search-

ing for a free-text term. We removed visits that did not contain both

forms of chief complaint data, but examined the distribution of

structured chief complaint labels without a comment section

through categorical data analysis and Chi-Square distance metrics to

determine that the reduced dataset was representative of the full

dataset.33 Visits that had been assigned more than one chief com-

plaint label were treated as separate training instances.

Given the skewed distribution of chief complaint labels, where

the 25 most common labels out of a total of 1145 account for

roughly half of the dataset, chief complaint labels that comprised
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less than 0.01%, or 1 in 10 000, of all visits were excluded to ensure

adequate training samples per label. The cutoff threshold was then

incremented on a log scale to create seven datasets of decreasing

sparsity (Supplementary Table S1). A full list of the chief complaint

labels, along with their frequencies, are available in Supplementary

Table S2.

Model training
For each of the seven datasets, all samples were randomly split into

training (90%), validation (5%), and test (5%) sets. The classifica-

tion task was to predict the provider-assigned label from the free-

text chief complaint. Given the clinical nature of the dataset, we

used a version of clinical BERT pretrained on the MIMIC corpus.19

LSTM and ELMo were trained as baseline models on the largest

dataset consisting of 434 labels.

Using the open source library PyTorch, we fine-tuned each clini-

cal BERT model for three epochs on three GTX 1080 Ti GPUs.

Each epoch on the full dataset took about an hour using per_gpu_-

train_batch_size of 144. Hyperparameter tuning beyond the default

values for BERT fine-tuning did not yield noticeable gains in perfor-

mance, with the test accuracies converging to the same range of val-

ues for any reasonable configuration. A learning rate of 1e�4 and

max_seq_length of 64 were used. Sequences longer than max_seq_-

length were truncated. The implementation code is available at

https://github.com/dchang56/chief_complaints. Notably, the reposi-

tory also includes an easy-to-use script with instructions to generate

predictions for custom chief complaint datasets.

For baseline comparison, we trained a bidirectional LSTM and

ELMo using the AllenNLP framework. In both cases, the hidden di-

mension size was 512. The LSTM model was a one-layer bidirec-

tional LSTM with GloVe embeddings, and the ELMo model was a

two-layer biLSTM initialized with pretrained ELMo weights.

Performance
Performance was measured as the Top-k accuracy from k¼1:5 on a

hold-out test set comprising 5% of the samples. Top-k accuracy is

defined such that the model is considered to be correct if its top-k

probability outputs contains the correct class label.

Error analysis
Having hundreds of potential labels with considerable semantic

overlap (eg FACIAL LACERATION, LACERATION, HEAD LAC-

ERATION, FALL, FALL>65) justifies taking into account the top

few predictions rather than just the top 1. We hypothesized that the

redundancy and noise in the label space would be responsible for the

majority of the model’s errors and a priori determined to examine

through two-physician review a random sample of errors, as well as

look at the most frequent kinds of mislabeling for common chief

complaint labels.

Embedding visualization
The embedding for each free-text chief complaint was extracted as

the final 768-dimensional layer of the BERT classifier. We took the

mean of the embeddings across each chief complaint label and visu-

alized the averaged, label-specific embeddings in a two-dimensional

Figure 1. Model performance for Top-1 to Top-5 accuracy. Label-frequency cutoff thresholds are represented by colors. The accuracy increases drastically when

taking into account the first few predictions. Dotted line shows 90% accuracy.
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space using t-SNE.34 More specifically, the mean of the 768-dimen-

sional embeddings across each chief complaint label was reduced to

two dimensions using the Rtsne package (v. 0.15) in R with the fol-

lowing default hyperparameters: initial_dims ¼ 50, perplexity ¼ 30,

theta ¼ 0.5. To enhance readability of the figure, we limited the

number of visualized labels to 188 by using a cutoff threshold of

0.08%. The ggrepel and ggplot2 packages in R were used for plot

generation. Clusters were determined via Gaussian mixture model-

ing with the optimal number selected by silhouette analysis.35

RESULTS

In the defined query time period, there were an initial 2 154 862 vis-

its among 736 570 patients. 355 497 (16.4%) visits from 65 737

(8.9%) patients were removed for absence of either a structured or

unstructured chief complaint. Among chief complaint labels, 43 of

the 1145 labels were removed because of the absence of any visit

with unstructured text. In comparison to the initial dataset, the chi-

square distance metric for the histogram of the remaining chief com-

plaint categories (n¼1102) was 0.005. For model training, an addi-

tional 668 labels comprising 25 143 (1.3%) visits were removed

after filtering out labels that comprised less than 0.01%, or 1 in 10

000, of all visits, resulting in a total of 434 labels and 1 859 599

training instances.

The BERT models achieved increasing performance with higher

label-frequency cutoff thresholds (Figure 1). BERT outperformed

both LSTM and ELMo (Table 1). The BERT model yielded Top-1

accuracies of 0.65 and 0.69, Top-3 accuracies of 0.87 and 0.90, and
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Figure 2. Common types of mislabeling for select chief complaint labels. Top row shows three of the most common chief complaint labels, with their accuracies

shown within parentheses. Bottom row shows three chief complaint labels with lowest accuracies. X-axis shows the top five most common misclassifications in

decreasing order. Y-axis shows frequency of error. Note that even for low performing chief complaint labels, a high percentage of errors are due to semantic

overlap.

Table 1. Predictive performance by algorithm

Algorithm LSTM ELMo BERT

Full dataset (434 labels) Top-1 0.63 0.63 0.65

Top-2 0.77 0.78 0.80

Top-3 0.84 0.85 0.87

Top-4 0.88 0.88 0.90

Top-5 0.90 0.90 0.92

Reduced dataset (188 labels) Top-1 0.66 0.66 0.69

Top-2 0.81 0.81 0.84

Top-3 0.88 0.88 0.90

Top-4 0.90 0.91 0.93

Top-5 0.93 0.93 0.94
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Top-5 accuracies of 0.92 and 0.94 on datasets comprised of 434 and

188 labels, respectively. Common types of mislabeling for the fre-

quent chief complaint labels, as well as labels with the lowest accu-

racies, are shown in Figure 2. The interquartile range for Top-5

accuracies amongst the chief complaint labels was 74.0–92.3%.

Manual error analysis showed that many errors were due to the

problem of redundancy and noise in the label space. In some cases,

the predictions of the model were more suitable than the provider-

assigned labels, as independently validated by physicians. We show

10 representative examples in Table 2 and provide a hundred ran-

dom selection of errors in Supplementary Table S3.

The predictions are sorted in decreasing order of likelihood. The

provider-assigned ground truth label is italicized. The examples

highlight the problem of semantic overlap in the label space.

Figure 3 shows the t-SNE visualization of averaged embeddings

for common chief complaint labels, clustered via Gaussian mixture

modeling. Using the silhouette analysis, 15 was chosen to be the op-

timal number of clusters. A cutoff-threshold of 0.08% (ie 188 chief

complaint labels) was used for readability in a two-dimensional

space. t-SNE visualization for embeddings generated using LSTM

and ELMo are shown in Supplementary Figures S4 and S5.

DISCUSSION

By applying BERT on a dataset of 1.8 million ED chief complaints

from a healthcare system covering seven independent EDs, we derive

contextual embeddings for chief complaints that accurately predict

provider-assigned labels as well as map semantically similar chief

complaints to nearby points in vector space.

Prior studies have derived embeddings for medical concepts,

patient-to-provider messages, and primary care chief com-

plaints.12,18,20 We expand on prior work by using a large dataset of

healthcare professional generated text, as opposed to patient-

generated text, and by generating contextual embeddings for chief

complaints within the emergency care setting. These embeddings

may be instrumental in multiple downstream tasks, such as aug-

menting predictive performance of clinical decision support tools,

calculating similarity measures between chief complaints to deter-

mine whether ED bounce-backs are due to a related cause,29 or cre-

ating a standardized, data-driven ontology of chief complaints.

Recently, much important work has been done to create a standard-

ized ontology, namely, the Hierarchical Presenting Problem Ontol-

ogy (HaPPy), which increased the likelihood of label assignment

from a free-text chief complaint from 26.2% to 97.2% in one

study.5,21,32 Using such an ontology for training and testing pur-

poses may present an opportunity for gold standard labels to be

used to derive contextual embeddings.

Our study has several limitations. Our data come from a single

healthcare system that uses an internal classification system for ED

chief complaints, and our results may not be generalizable across

EDs operating under different EHR systems. Moreover, certain con-

ditions may be more likely to have structured chief complaint labels

and by only training on that subset of patients, the model may have

restricted applicability. Also, free-text chief complaints often list sev-

eral comorbid signs and symptoms, making it difficult to choose a

single ground truth label. This raises concerns about whether the

prediction task should be set up as a multi-label classification task.

Another limitation is the noise inherent in the default set of chief

complaint labels provided by our EHR. Of the 1145 default catego-

ries, 153 have one or no instance out of 1.87 million visits, while

472 account for 99% of the visits. Labels such as “Other” and

“Medical” provide little to no information in an emergency care set-

ting and restrict the applicability of the model. Some labels are syno-

nyms (eg “Dyspnea” and “Shortness of breath”; “Otalgia” and

“Ear pain”), while many more are hypo/hypernyms of one another

(eg “Fall” and “Fall>65”; “Migraine” and “Known dx migraine”).

Such issues highlight the need to develop a principled and data-

driven ontology for ED chief complaints. Despite the noise in the

data, the model was able to learn a rich representation of chief com-

plaints and generate reasonable predictions of their labels. In fact,

many of the predictions that resulted in errors were more suitable

Table 2. Examples of chief complaints and their corresponding top-5 predictions

Chief complaint Top-5 predictions

Correctly classified

at second prediction

“right third finger injured in door” FINGER INJURY, HAND PAIN, HAND INJURY,

FINGER PAIN, EXTREMITY LACERATION

“pt comes to er with cc piece of plastic

stuck to back of left ear from earing”

FOREIGN BODY IN EAR, EAR PROBLEM, EAR PAIN,

OTALGIA, FOREIGN BODY

“vomiting for days, increasing yesterday.

pos home preg test on Saturday”

EMESIS, EMESIS DURING PREGNANCY, NAUSEA,

ABDOMINAL PAIN PREGNANT, GI PROBLEM

“both eyes swollen & itchy & tearing after his nap” EYE SWELLING, EYE PROBLEM, EYE REDNESS,

EYE PAIN, CONJUNCTIVITIS

“fall at 0300 today, rt side weakness” FALL, FALL>65, ALTERED MENTAL STATUS,

NEUROLOGIC PROBLEM, WEAKNESS

Correctly classified

at fifth prediction

“Felt like heart was pounding history of CABG.

missed metoprolol for about 3 days.”

PALPITATIONS, RAPID HEART RATE, TACHYCARDIA,

IRREGULAR HEART BEAT, CHEST PAIN

“2 weeks of sore throat, aches, dry cough.

Denies intervention.”

SORE THROAT, COLD LIKE SYMPTOMS, URI,

COUGH, FLU-LIKE SYMPTOMS

“fall down 5 stairs lace to right eyebrow” FALL, FACIAL LACERATION, LACERATION,

FALL>65, HEAD LACERATION

“fever to 101, diarrhea, vomiting” FEVER-9 WEEKS TO 74 YEARS, FEVER, EMESIS,

ABDOMINAL PAIN, FEVER-8 WEEKS OR LESS

“blister on back of foot.” BLISTER, FOOT PAIN, FOOT INJURY, FOOT

SWELLING, SKIN PROBLEM
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than the ground truth labels, suggesting that the model did not over-

fit to the training data.

Finally, our model was trained only on free-text data, without

any other patient information. Including non-textual patient data

such as demographics, vital signs, and hospital usage statistics may

improve performance, as shown in many prediction tasks.25,26 Fur-

ther studies are needed to assess the validity of these approaches.

CONCLUSION

The BERT language model was able to learn a rich representation of

chief complaints and generate reasonable predictions of their labels

despite the inherent noise in the label space. The learned embeddings

accurately predicted provider-assigned chief complaint labels and

mapped semantically similar chief complaints to nearby points in

vector space. Such a model may be used to automatically map free-

text chief complaints to structured fields and to derive a standard-

ized, data-driven ontology of chief complaints for healthcare institu-

tions.
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