
*For correspondence:

lyan@kitp.ucsb.edu (LY);

richard.neher@unibas.ch (RAN);

shraiman@kitp.ucsb.edu (BIS)

Competing interest: See

page 15

Funding: See page 16

Received: 07 December 2018

Accepted: 14 September 2019

Published: 18 September 2019

Reviewing editor: Katia Koelle,

Emory University, United States

Copyright Yan et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Phylodynamic theory of persistence,
extinction and speciation of rapidly
adapting pathogens
Le Yan1*, Richard A Neher2*, Boris I Shraiman1*

1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa
Barbara, United States; 2Biozentrum, University of Basel, Swiss Institute for
Bioinformatics, Basel, Switzerland

Abstract Rapidly evolving pathogens like influenza viruses can persist by changing their

antigenic properties fast enough to evade the adaptive immunity, yet they rarely split into

diverging lineages. By mapping the multi-strain Susceptible-Infected-Recovered model onto the

traveling wave model of adapting populations, we demonstrate that persistence of a rapidly

evolving, Red-Queen-like state of the pathogen population requires long-ranged cross-immunity

and sufficiently large population sizes. This state is unstable and the population goes extinct or

‘speciates’ into two pathogen strains with antigenic divergence beyond the range of cross-

inhibition. However, in a certain range of evolutionary parameters, a single cross-inhibiting

population can exist for times long compared to the time to the most recent common ancestor

(TMRCA) and gives rise to phylogenetic patterns typical of influenza virus. We demonstrate that the

rate of speciation is related to fluctuations of TMRCA and construct a ‘phase diagram’ identifying

different phylodynamic regimes as a function of evolutionary parameters.

DOI: https://doi.org/10.7554/eLife.44205.001

Introduction
In a host population that develops long-lasting immunity, a pathogen can persist by infecting immu-

nological naive individuals such as children, or through rapid antigenic evolution that enables the

pathogen to evade immunity and re-infect individuals. Childhood diseases like measles or chicken

pox fall into the former category, while influenza virus adapts rapidly and re-infects most humans

multiple times during their lifespan. The continuous adaptation of influenza is facilitated by high

mutation rates resulting in diverse populations of co-circulating viral strains. Nevertheless, almost

always a single variant eventually outcompetes the others such that diversity within one subtype or

lineage remains limited (Petrova and Russell, 2018).

The contrast of rapid evolution while maintaining limited genetic diversity is most pronounced for

the influenza virus subtype A/H3N2. Figure 1 shows a phylogenetic tree of HA sequences of type A/

H3N2 with the characteristic ‘spindly’ shape. The most recent common ancestor of the population is

rarely more than 3–5 years in the past (Rambaut et al., 2008). Other pathogenic RNA viruses that

typically do not reinfect the same individual, (measles, mumps, HCV, or HIV) diversify for decades or

centuries (Grenfell et al., 2004). Interestingly, influenza B has split into two co-circulating lineages in

the 1970s which by now are antigenically distinct (Rota et al., 1990) and maintain intermediate lev-

els of diversity (see Figure 1).

Influenza virus infections elicit lasting immunity rendering most individuals non-susceptible to

viruses that circulated during their lifetime (Fonville et al., 2014). The virus population escapes col-

lective human immunity by accumulating amino acid substitutions in its surface glycoproteins

(Koel et al., 2013; Wilson and Cox, 1990). Extensive genetic characterizations have shown that
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within each subtype many HA sequence variants co-circulate (Rambaut et al., 2008; Fitch et al.,

1997). These variants differ from each other by ~10 substitutions and compete for susceptible hosts

(Strelkowa and Lässig, 2012). The rapid sequence evolution results in a decay of immune cross-

reactivity over ~10 years (Smith et al., 2004; Bedford et al., 2014; Fonville et al., 2014;

Neher et al., 2016).

Epidemiological dynamics of influenza is often modeled using generalizations of the classic Sus-

ceptible-Infected-Recovered (SIR) model to multiple antigenically distinct viral strains (Kermack and

McKendrick, 1927; Gog and Grenfell, 2002). Such models need to capture (i) how the infection

with one strain affects susceptibility to other strains and (ii) how novel strains are generated from

existing strains by mutations. A common approach has been to impose a discrete one-dimensional

strain space in which new strains are generated by mutation of adjacent strains. Infection results in a

reduction of susceptibility in a manner that depends on the distance in this one-dimensional strain

space (Andreasen et al., 1996; Gog and Grenfell, 2002). Such models naturally result in ‘traveling

waves’ in the sense that the pathogen population moves through strain space by recurrent emer-

gence of antigenically advanced variants produced by mutation from neighboring strains (Lin et al.,

2003).

These models of antigenically evolving populations are related to general models of rapid adap-

tation in which populations form a traveling wave moving towards higher fitness (Tsimring et al.,

1996; Rouzine et al., 2003; Desai and Fisher, 2007; Neher et al., 2014), reviewed in

Neher (2013a). Recently, Rouzine and Rozhnova (2018) described an explicit mapping between a

SIR model in a one-dimensional antigenic space and traveling wave models in fitness.
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Figure 1. Spindly phylogenies and speciation in different human seasonal influenza virus lineages. The top left panel shows a phylogeny of the HA

segment of influenza A virus of subtype H3N2 from its emergence in 1968 to 2018. The virus population never accumulates much diversity but is rapidly

evolving. The lower left panel shows a phylogeny of the HA segment of influenza B viruses from 1940 to 2018. In the 70s, the population split into two

lineages known as Victoria (B/Vic) and Yamagata (B/Yam) in the 1970s. The graphs on the right quantify diversity via the time to the most recent

common ancestor TMRCA for different influenza virus lineages. Influenza B viruses harbor more genetic diversity than influenza A viruses. The subtype A/

H3N2 in particular coalesces typically in 3y while deeps splits in excess of 5y are rare.

DOI: https://doi.org/10.7554/eLife.44205.002
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Traveling wave (TW) models in a one-dimensional antigenic space naturally result in spindly phy-

logenies: There is only one possible direction for immune escape and the fastest growing most anti-

genically advanced strain grows drives all other strains extinct. Influenza viruses, however, can

escape immunity by mutations at a large number of positions (Wilson and Cox, 1990), suggesting

antigenic space is high dimensional (Perelson and Oster, 1979). In many dimensions, different viral

strains can escape immunity via different paths and diverge sufficiently from each other until they no

longer compete for hosts and thereafter propagate independently evolve. A satisfactory explanation

of spindly phylogenies therefore has to describe how evolution in a high dimensional space reduces

to an effectively one-dimensional path without persistent branching or rapid extinction. Several

computational studies have addressed this question and identified cross-immunity (Bedford et al.,

2012; Tria et al., 2005; Koelle et al., 2011; Ferguson et al., 2003; Sasaki and Haraguchi, 2000) as

well as deleterious mutations (Koelle and Rasmussen, 2015; Gog and Grenfell, 2002) as critical

parameters. We will discuss this earlier work at greater length below.

Our work aims to examine the conditions under which the evolving pathogen can maintain a spin-

dly phylogeny with an approximately constant level of diversity – sufficient to avoid extinction, yet

constrained from further branching by cross-inhibition between not too distant strains. We show that

long range cross immunity in generic stochastic models of antigenic evolution generates such phy-

logenies. However, in the long term the viral population either ‘speciates’ into weakly interacting

diverging lineages or goes extinct with rates that are controlled by three dimensionless combina-

tions of model parameters. While the relation of these parameters to the known characteristics of

influenza epidemiology and evolution is not direct, the general ‘phase diagram’ captured by the

parameters of the simple model illustrates the key competing factors governing expected long-term

dynamics.

Results

Model
A model of an antigenically evolving pathogen population needs to account for cross-immunity

between strains and the evolution of antigenically novel strains. We use an extension of the standard

multi-strain SIR model (Gog and Grenfell, 2002). The fraction of individuals Ia infected with viral

strain a changes according to

d

dt
Ia ¼ bSaIa �ðnþgÞIa (1)

where b is the transmissibility, Sa is the population averaged susceptible to strain a, n is the recovery

rate, and g is the population turnover rate. The fraction Ra of the population recovered from infec-

tion with strain a changes according to

d

dt
Ra ¼ nIa �gRa (2)

Our focus here is on antigenically evolving pathogens that reinfect an individual multiple times

during its life-time, we shall ignore population turnover and set g¼ 0 right away to simplify

presentation.

The dynamics of Ia depends on the average susceptibility of the host population Sa ¼ hSaðiÞii,
while the susceptibility SaðiÞ of host i depends on the host’s history of previous infections. A plausible

representation of the history dependence of susceptibility at the level of individuals has a product

form (Wikramaratna et al., 2015)

SðsÞa ¼ h
Y

b

ð1�KabsbðiÞÞii (3)

where sbðiÞ is one or zero depending on whether host i has or has not been previously infected with

strain b. Matrix Kab � 1 quantifies the cross-immunity to strain a due to prior infection with strain b.

Thus, Equation 3 expresses the susceptibility Sa in terms of a product of attenuation factors each

arising from a prior infection by a different strain b. A simple, but adequate approximation for the
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population averaged susceptibility is provided by replacing sbðiÞ in the product in Equation 3 by the

fraction of the population Rb that recovered from infection with strain b:

Sa »
Y

b

ð1�KabRbÞ»e�
P

b
KabRb (4)

This corresponds to the ‘order one independence closure’ by Kryazhimskiy et al. (2007) and is

known as Mean-Field approximation in physics (Weiss, 1907; Landau and Lifshitz, 2013). The

Mean-Field approximation here corresponds to ignoring correlations between subsequent infection

in the individual histories. Approximating the product by the exponential is justified because the

total fraction of the host population infected by any single strain in the endemic regime is typically

small (Yang et al., 2015). A detailed derivation of Equation 4 and more detailed discussion of

approximations is given in Appendix 1. While the original formulation of immunity in Equation 3 is

based on the infection history of individuals (Andreasen et al., 1997), the population average over

the factorized distribution of histories relates the model to status based formulations (Gog and

Grenfell, 2002). While some differences between status and history-based models have been

reported (Ballesteros et al., 2009), others have shown that different model types have similar prop-

erties (Ferguson and Andreasen, 2002). The differences between these models and approximations

are small compared to the crudeness with which these simple mathematical models capture the

complex immunity profile of the human population. A model similar to ours has been successfully

applied to influenza virus evolution (Luksza and Lässig, 2014).

We note that differentiating Equation 4 with respect to time defines the equation governing the

dynamics of population average susceptibility

d

dt
Sa ¼�nSa

X

b

KabIb (5)

which is exactly the same as the dynamics of susceptibility in Gog and Grenfell (2002) and

Luksza and Lässig (2014) in the limit of negligible population turnover g=n� 1.

New strains are constantly produced by mutation with rate m. The novel strain will differ from its

parent at one position in its genome. Following Luksza and Lässig (2014), we assume that cross-

immunity decays exponentially with the number

of mutations that separate two strains:

Kab ¼ ae�
ja�bj
d (6)

where ja� bj denotes the mutational distance

between the two strains, d denotes the radius of

cross-immunity measured in units of mutations.

Antigenic space is thereby assumed to be high

dimensional and antigenic distance is propor-

tional to genetic distance in the phylogenetic

tree (Neher et al., 2016). The parameter a� 1

quantifies the reduction of susceptibility to rein-

fection by the same strain and hence the overall

strength of protective immunity. We shall set

a¼ 1 corresponding to perfect protection here

for simplicity of presentation. Our analysis below

applies equally well to the more realistic case of

a<1, since in our approximation this parameter

can be eliminated by rescaling Ra and Ia and ulti-

mately merely renormalizes the host population

size, which serves as one of the ‘control parame-

ters’ in our analysis.

Cross-immunity and the mutation/diversifica-

tion process are illustrated in Figure 2. An infec-

tion with a particular strain (center of the graph)
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Figure 2. Viral populations escape adaptive immunity

by accumulating antigenic mutations. Via cross-

reactivity, the immunity foot-print of ancestral variants

(center of the graph) mediates competition between

related emerging viral strains and can drive all but one

of the competing lineages extinct. At high mutation

rates and relatively short range of antigenic cross-

reactivity, different viral lineages can escape inhibition

and continue to evolve independently.

DOI: https://doi.org/10.7554/eLife.44205.003
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generates a cross-immunity footprint (shaded circles). Mutation away from the focal strain reduces

the effect of existing immunity in the host population, but complete escape requires many muta-

tions. Hence closely related viruses compete against each other for susceptible individuals.

The above model was formulated in terms of the deterministic Equations 1-4. The actual dynam-

ics, however, is stochastic in two respects: (i) antigenic mutations are generated at random with rate

m and (ii) stochasticity of infection and transmission. The latter can be captured by interpreting the

terms in Equation 1 as rates of discrete transitions in a total population of Nh hosts. This stochasticity

is particularly important for novel mutant strains that are rare. Most rare strains are quickly lost by

chance even if they have a growth advantage due to antigenic novelty. To account for stochasticity

in a computationally efficient way, we employ a clone-based hybrid scheme where mutation and the

dynamics of rare mutants are modeled stochastically, while common strains follow deterministic

dynamics, see Materials and methods (Clone-based simulations).

We will use the recovery rate n to set the unit of time, fixing n ¼ 1 in rescaled units. The remaining

parameters of the model are (1) the transmission rate b - in our units the number of transmission

events per infection and hence equal to the basic reproduction number R0, (2) the mutation rate m,

(3) the range of cross-immunity d measured as the typical number of mutations needed for an e-fold

drop of cross-inhibition, and (4) the host population size Nh.

Phenomenology
Before proceeding with a quantitative analysis we discuss different behaviors qualitatively.

Figure 3A shows several trajectories of prevalence Itot ¼
P

a Ia (i.e. total actively infected fraction) for

several different parameters. Depending on the range of cross-immunity, the pathogen either goes

extinct after a single pandemic (red line) or settles into a persistently evolving state, the Red Queen

State (RQS) traveling wave (Van Valen, 1973 In large populations the RQS exhibits oscillations in

prevalence. As we will discuss further below, the RQS state is transient and either goes extinct after

some time or splits into multiple antigenically diverging lineages that propagate independently. To

quantitatively understand the dependence on parameters, we will further simplify the model and

establish a connection to models of rapid adaptation in population genetics. Figure 3BC shows

parameter regimes corresponding to distinct qualitative behaviors. The relevant parameters are

three combinations of the population size Nh, the selection coefficient of novel mutations s, the

mutation rate m, and the radius of cross-immunity d. A long-lived but transient RQS regime is flanked

be the regime of deterministic extinction (red) and the regime of continuous branching and diversifi-

cation – the ‘speciation’ regime (blue). The RQS regime itself undergoes a transition from a steady

traveling wave (yellow) to a limit cycle oscillation (green) with increasing population size. The location

of the boundaries depend on the time scale of observation as the cumulative probability of extinc-

tion and speciation increases with time.

Large effect antigenic mutations allow transition from pandemic to
seasonal dynamics
A novel virus in a completely susceptible population will initially spread with rate b� 1 and the pan-

demic peaks when susceptible fraction falls to b�1. The trajectory of such a pandemic strain in the

time-susceptibility plane is indicated in red in Figure 3D. Further infections in the contracting epi-

demic will then push susceptibility below b�1 – the propagation threshold for the virus – and without

rapid antigenic evolution the pathogen will go extinct after a time t ~b�1 logNh. Such boom-bust epi-

demics are reminiscent of the recent Zika virus outbreak in French Polynesia and the Americas where

in a short time a large fraction of the population was infected and developed protective immunity

(O’Reilly et al., 2018).

Persistence and transition to an endemic state is only possible if the pathogen can evade the

rapid build-up of immunity via a small number of large effect antigenic mutations. This process is

indicated in Figure 3D by horizontal arrows leading to antigenically evolved strains of higher suscep-

tibility and bears similarity to the concept of ‘evolutionary rescue’ in population genetics (Gomulkie-

wicz, 1995). The parameter range of the idealized SIR model that avoid extinction after a pandemic

resulting in persistent endemic disease is relatively small. Yet, various factors like geographic struc-

ture, heterogeneity of host adaptation and population turn-over slow down the pandemic and

extinction, thereby increasing the chances of sufficient antigenic evolution to enter the endemic,
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RQS-type, regime. The 2009 pandemic influenza A/H1N1 has undergone such a transition from a

pandemic to a seasonal/endemic state. We shall not investigate the transition process in detail here,

but will assume that endemic regime has been reached.

Long-range cross-immunity results in evolving but low diversity
pathogen populations
Once the pathogen population has established an endemic circulation through continuous antigenic

evolution (green and yellow regimes in Figure 3BC), the average rate of new infections b
P

a IaSa=Itot

fluctuates around the rate of recovery n ¼ 1 (in our time units). This balance is maintained by the

steady decrease in susceptibility due to rising immunity against resident strains and the emergence

of antigenically novel strains, see Figure 3D. If the typical mutational distance between strains is

small compared to the cross-immunity range d, the rate at which susceptibility decreases is similar

for all strains. To see this we expand Kab in Equation 5

S�1

a

d

dt
SaðtÞ ¼�

X

b

e�
ja�bj
d Ib » � Itot þ

X

b

ja� bj
d

Ib (7)
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Figure 3. Extinction, speciation, and oscillations in multi-strain SIR models. (A) Typical trajectories of infection prevalence in the parameter regimes

corresponding to extinction (red), traveling wave RQS (yellow) and oscillatory RQS (green). Panels B and C schematically show parameter regimes

corresponding to these qualitatively different behaviors. As explained in the text the boundaries qex; qsp of the RQS regime depend explicitly on the

time scale considered (see also Figure 7). Simulation results supporting this diagram are shown in Figure 3—figure supplements 1 and 2. Panel (D) is

a schematic illustrating how a novel pandemic strain (red) can settle into an endemic RQS state. As the cumulative number of infected individuals

increases, the susceptible fraction decreases, and survival of the strain depends on the emergence of antigenic escape mutations (gray). The top part of

the panel illustrates the population composition at a particular time point. Rare pioneering variants are q mutations ahead of the dominant variant and

grow with rate xn. (Note, that boundaries of the ‘extinction’ regime in (B,C) correspond to q value close to one.) Different lineages are related via their

phylogenetic tree embedded in the fitness distribution in the population.

DOI: https://doi.org/10.7554/eLife.44205.004

The following figure supplements are available for figure 3:

Figure supplement 1. ‘Phase diagram’ in the clone-based simulation.

DOI: https://doi.org/10.7554/eLife.44205.005

Figure supplement 2. Value of q across the ‘Phase diagram’.

DOI: https://doi.org/10.7554/eLife.44205.006
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where we have used that ja� bj � d for all pairs of strains with substantial prevalence. In fact it will

suffice to keep only the first, leading, term on the right hand side. Close to a steady state, prevalent

strains obey bSa »1. We can hence define the instantaneous growth rate of strain xa ¼ ðbSa � 1Þ� 1

as its effective fitness. In this limit, the model can be simplified to

d

dt
Ia ¼ xaIa

d

dt
xa » � Itot

(8)

The second equation means that effective fitness of all strains a decreases approximately at the

same rate since the pathogen population is dominated by antigenically similar strains.

If a new strain c emerged from strain a by a single antigenic mutation, its mutational distance

from a strain b is jc� bj ¼ ja� bj þ 1 and Kcb ¼ Kabe
�d�1

»Kabð1� d�1Þ. The population susceptibility

of strain c is therefore increased to

Sc »e
�ð1�d�1Þ

P

b
KabRb

»Sa 1� logSa

d

� �

(9)

Since the typical susceptibility is of order b�1, the growth rate of the mutant strain c is

s¼ d�1 logb higher than that of its parent. The growth rate increment, s, plays the role of a selection

coefficient in typical population genetic models and corresponds to the step size of the fitness distri-

bution in Figure 3D. In such models, individuals within a fitness class (bin of the histogram) are

equivalent and different classes can be modeled as homogeneous populations which greatly acceler-

ates numerical analysis of the model, see Materials and methods.

Rouzine and Rozhnova (2018) have recently formulated a similar model of antigenic evolution of

rapidly adapting pathogens. Analogously to our model, Rouzine and Rozhnova couple strain dynam-

ics to antigenic adaptation through mutations, albeit assuming a one-dimensional antigenic space. In

agreement with Rouzine and Rozhnova, we find that selection coefficients of novel mutations are

inversely proportional to the cross-immunity rate d and increase with infectivity b, see Equation 9.

Rouzine and Rozhnova, however, do not consider oscillations, extinction, and speciation (see below).

The simplified model in Equation 8, along with the model developed by Rouzine and Rozhnova

(2018), is analogous to the traveling wave (TW) models of rapidly adapting asexual populations that

have been studied extensively over the past two decades (Tsimring et al., 1996; Desai and Fisher,

2007; Rouzine et al., 2003; Hallatschek, 2011), see Neher (2013a) for a review. These models

describe large populations that generate beneficial mutations rapidly enough that many strains co-

circulate and compete against each other. The fittest (most antigenically advanced) strains are often

multiple mutational steps, q, ahead of the most common strains, see Figure 3D. This ‘nose’ of the

fitness distributions contains the strains that dominate in the future and the only adaptive mutations

that fixate in the population arise in pioneer strains in the nose. Consequently, the rate with which

antigenic mutations establish in the population is controlled by the rate at which they arise in the

nose (Desai and Fisher, 2007). If the growth rate at the nose of the distribution, xn, is much higher

than antigenic mutation rate, xn � m, it takes typically

ta ¼
logðxn=mÞ

xn
(10)

generations before a novel antigenic mutation arises in a newly arisen pioneer strain that grows

exponentially with rate xn. The advancement of the nose is balanced rapidly by the increasing popu-

lation mean fitness.

If beneficial mutations have comparable effects on fitness and population sizes are sufficiently

large (Nm � 1), the fitness distribution has an approximately Gaussian shape with a variance

s2
» 2s2logðNsÞ= log2ðxn=mÞ. The wave is s=s mutations wide, while the most advanced strains are

approximately q ¼ 2 logðNsÞ= logðxn=mÞ ahead of the mean (Desai and Fisher, 2007). Two contempo-

raneous lineages coalesce on a time scale tsw ¼ sq=s2 ¼ s�1 logðxn=mÞ and the branching patterns of

the tree resemble a Bolthausen-Sznitman coalescent rather than a Kingman coalescent (Desai et al.,

2013; Neher and Hallatschek, 2013b).
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In circulating influenza viruses, typically around 3–10 adaptive mutations separate pioneer strains

from the most common variants (Strelkowa and Lässig, 2012; Neher and Bedford, 2015). While

this clearly corresponds to a regime where multiple stains compete, it does not necessarily mean

that asymptotic formulae assuming q � 1 are accurate. Nevertheless, many qualitative features of

TW models have been shown to qualitatively extend into regimes where q takes intermediate values

(Neher and Hallatschek, 2013b).

While parameter N in the TW models summarized above is a fixed population size, the corre-

sponding entity in our SIR model is the fluctuating pathogen population size Np which is related to

the (fixed) host population size Nh by Np ¼ NhItot. The average Itot depends on other parameters of

the model, scaling in particular with �I ~ s2. Hence, it will be convenient for us to use Nhs
2 as one of

the relevant ‘control parameters’, replacing N of the standard TW model.

Stability and fluctuations of the RQS
In contrast to most population genetic models of rapid adaptation, our epidemiological model does

not control the total population size directly. Instead, the pathogen population size (or prevalence)

depends on the host susceptibility, which in itself is determined by recent antigenic evolution of the

pathogen. The coupling of these two different effects results in a rich and complicated dynamics

(see Figure 4A for an example trajectory): The first effect is ecological: a bloom of the pathogen

depletes susceptible hosts leading to a crash in pathogen population and a tendency of the popula-

tion size to oscillate London and Yorke, 1973 (blue line in Figure 4A). The second effect is evolu-

tionary: higher nose fitness xn begets faster antigenic evolution and vice versa, resulting in an

apparent instability in the advancement of the antigenic pioneer strains (Fisher, 2013) (yellow line

and inset in Figure 4A). In our epidemiological model, as we shall show below, fluctuations in the

rate of antigenic advance of the pioneer strains couple with a delay of tsw to the ecological

oscillation.

To recognize the ecological aspect of the oscillatory tendency, consider the total prevalence Itot

and the mean fitness of the pathogen X ¼Pa xaIa=Itot

d

dt
Itot ¼ XItot;

d

dt
X ¼ s2 � Itot (11)

which follows directly from Equation (8). Selection on fitness variance s2 increases X, while preva-

lence Itot reduces susceptibility and hence X. At fixed variance s¼ �s this system is equivalent to a

non-linear oscillator describing a family of limit cycles oscillating about Itot ¼ �s2 and X ¼ 0 as shown in

Figure 4B.

While Equation (11) describes the behavior of common strains, the mutation driven dynamics of

the antigenic pioneer strains is governed by the equation for xn that in a continuum limit (suitable for

the limit of high mutation rate) reads:

d

dt
xn ¼ t

�1

sw xn � Itot þ s�ðtÞ (12)

The first term on the right hand side represents the rate at which antigenic pioneer strains enter

the population, t�1

a , advancing the nose fitness by an increment s (with t

�1

a s¼ t

�1

sw xn ). The second

term on the right hand side of Equation (12) represents gradual reduction of susceptibility of the

host population, and �ðtÞ is a random noise variable representing the stochasticity of the establish-

ment of new strains. The Gaussian white noise �ðtÞ is defined statistically by its correlation function

h�ðtÞ�ð0Þi ¼ t

�1

a dðtÞ, see Materials and methods (Stochastic differential-delay simulation).

The first term of Equation (12) captures the apparent instability of the nose: an advance of the

nose to higher xn accelerates its rate of advancement. The stabilizing factor is the subsequent

increase in Itot, but to see how that comes about we must connect Equation (12) to Equation (11).

The connection is provided by s2 since it is controlled by the emergence of novel strains, that is the

dynamics of the ‘nose’ xn, which impacts the bulk of the distribution after a delay tsw. Based on the

analysis detailed in the Appendix 2, we approximate

s2ðtÞ»t�1

sw xnðt� tswÞ (13)

relating population dynamics, Equation (11), to antigenic evolution of pioneer strains described by
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Equation (12). Taken together Equations (11-

13) define a Differential Delay (DD) system of

equations. Sample simulations of this stochastic

DD system are shown in Figure 4 BC. The delay

approximation Equation (13) is supported by the

cross-correlation of xnðtÞ and s2ðt0Þ measured

using fitness-class simulations (see Figure 4A

Inset).

The deterministic limit of the DD system

(obtained by omitting the noise term in Equa-

tion (12)) has a fixed point at

t

�1

sw�xn ¼ �s2 ¼ 2t
�2

sw logðNh
�IÞ. Small deviations decay

in underdamped oscillations with frequency

! ¼ �s ¼ tsw
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logðNh
�IÞ

p

if !tsw<2p. For

!tsw>2p, the system fails to recover from a devia-

tion of the nose in a single period and the steady

state becomes unstable to a limit cycle oscilla-

tion. The nonlinearity of Equation (11) implies a

longer period with increasing amplitude and the

system is stabilized at a limit cycle with the

period long enough compared to the feedback

delay tsw. In Appendix 3, we derive the threshold

of oscillatory instability to lie at logðNh
�IoscsÞ» 8:3

(leading to limit cycle period T » 1:5tsw, see Fig-

ure 4—figure supplement 1). We also find that

the amplitude of the oscillation logðImax=�IÞ scales

as logðNh
�IÞ for large values of the later. This tran-

sition defines quantitatively the boundary

between the TW RQS and the Oscillatory RQS

regimes that appear on the phase diagrams in

Figure 3 (BC). The validity of the predictions of

standard TW theory for our adapting SIR system

are explored in Figure 4—figure supplement 2.

The distinction between the TW and Oscil-

latory RQS is obscured by the stochasticity of

antigenic advance, Equation (12), which continu-

ously feeds the underdamped relaxation mode,

generating a noisy oscillation with the frequency

! defined above. The difference between the two

regimes is illustrated by Figure 4C: in the TW

RQS noisy oscillation is about the fixed point,

whereas in the Oscillatory RQS it is about deter-

ministic limit cycle.

Interestingly, the dynamics of the Oscillatory

RQS, as shown in Figure 4A, can be understood

in terms of a non-linear relaxation oscillator. At

relatively low infection prevalence nose fitness xn

increases until rising Itot catches up with it (when

Itot ¼ t

�1

sw xn) driving it down rapidly. Once this

‘mini-pandemic’ burns out, the population returns

to the low prevalence part of the cycle Itot<t
�1

sw xn,

when xn begins to increase again.
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Figure 4. Oscillations in antigenically evolving

populations. (A) An example of the stochastic limit

cycle trajectory from the fitness-class simulation. Note

the rapid rise and fall of infection prevalence (blue),

which causes a drop in nose fitness (yellow) which

subsequently recovers (approximately linearly) during

the remainder of the cycle. Fluctuations in ItotðtÞ and
xnðtÞ from cycle to cycle are caused by the stochasticity

of xn, that is antigenic evolution in pioneer strains. A

particularly large fluctuation about tsw prior to the end,

caused a large spike in prevalence, followed by the

collapse of xn below zero and complete extinction.

Inset (red) shows the cross-correlation between xn and

s2 which peaks with the delay t ¼ tsw (additional peaks

reflect the oscillatory nature of the state and are

displaced by integer multiples of mean period). (B) A

family of limit cycles in the infection prevalence/mean

fitness plane as described by Equation (11) with fixed

variance. The variation of s governed by the

Equations 11 and 12 (in the deterministic limit)

reduces the family to a single limit cycle (red); (C)

Trajectories in the infection prevalence/nose fitness

generated by the stochastic DD system in the regime

above (right panel) and below (left panel) the

oscillatory instability of the deterministic DD system.

DOI: https://doi.org/10.7554/eLife.44205.007

The following figure supplements are available for

figure 4:

Figure supplement 1. Amplitude and time scale of

oscillations.

DOI: https://doi.org/10.7554/eLife.44205.008

Figure supplement 2. Speed of the traveling wave.

DOI: https://doi.org/10.7554/eLife.44205.009
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The rate of extinction
While in the deterministic limit the differential-delay system predicts a stable steady TW for

q>qex; �I<�Iosc and a limit cycle above �Iosc, fluctuations in the establishment of the antigenic pioneer

strains (Equation (12)) can lead to stochastic extinction. In fact, both the TW and Oscillatory RQS

(see Figure 3BC) are transient, subject to extinction due to a sufficiently large stochastic fluctuation.

(Note however the contrast with the ‘extinction’ state in Figure 3BC, where extinction is determin-

istic and rapid.) The rate of extinction depends on q and logðNh
�IÞ as shown in Figure 5A. The time to

extinction increases dramatically in the range of q~ 1� 2 and more slowly thereafter. Although

extinction is fluctuation driven, the mechanism of extinction in the oscillatory state is related closely

to the deterministic dynamics, according to which large amplitude excursion in infection prevalence

can lead to extinction. A large xn advance leads, after a time tsw to a rise in prevalence Itot, followed

by the rapid fall in the number of susceptible hosts and hence loss of viral fitness. This turns out to

be the main mode of fluctuation driven extinction as illustrated by Figure 4C. One expects extinc-

tion to take place when a fluctuation induced deviation dx of the fitness of pioneer strains becomes

of the order of the mean �xn. New mutations at the nose accumulate with rate 1=ta such that at short

times t we expect dx» s
ffiffiffiffiffiffiffiffi

t=ta
p

. Hence dx becomes of the order of the mean �xn at times text ~ qtsw.

However the probability of extinction will also depend on the shape of the oscillatory limit cycle (as

it depends on the minimum of infection prevalence during the cycle), which in turn depends on

logðNh
�IÞ. Numerical simulations, Figure 5B, confirm the dependence of text on q and logðNh

�IÞ. We

note that the rate increase in text with increasing q slows down in the oscillatory regime and appears

10
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(A) (B)

Figure 5. Extinction and speciation dynamics. (A) Simulation results for the average extinction time text (open symbols) and the average speciation time

tsp (filled symbols) as a function of pathogen diversity q. The life time of the endemic RQS state is limited by the smaller of text and tsp. If tsp<text, the

population tends to speciate and persist, while the population is more likely to go extinct if tsp>text. The graph shows tsp and text rescaled with the

sweep time tsw as a function of genetic diversity measured by the number of mutations q. The speciation time tsp increases with the range of cross-

inhibition (d) and decreases with q. Note the agreement between the results of the fitness class-based simulation (black line in (A)) and the clone-based

simulation (colored squares in (A)). (B) Extinction time over a broad range of parameters, obtained via fitness class-based simulation of population

dynamics, confirms its primary dependence on q for large population sizes.

DOI: https://doi.org/10.7554/eLife.44205.010

Yan et al. eLife 2019;8:e44205. DOI: https://doi.org/10.7554/eLife.44205 10 of 29

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.44205.010
https://doi.org/10.7554/eLife.44205


to approach a power law dependence text=tsw ~ q2:5 (albeit over a limited accessible range): presently

we do not have an analytic understanding of this specific functional form.

The rate of speciation
The correspondence of the multi-strain SIR and the TW models discussed above assumes that cross-

immunity decays slowly compared to the coalescent time of the population, that is d=q � 1. In this

case, all members of the population compete against each other for the same susceptible hosts.

Conversely, if the viral population were to split into two sub-populations separated by antigenic dis-

tance greater than the range of cross-inhibition d, these sub-population would no-longer compete

for the hosts, becoming effectively distinct viral ‘species’ that propagate (or fail) independently of

each other. Such a split has for example occurred among influenza B viruses, see Figure 1.

A ‘speciation’ event corresponds to a deep split in the viral phylogeny, with the TMRCA growing

without bounds, see Figure 1 and Figure 6A. This situation contrasts the phylogeny of the single

competing population, where TMRCA fluctuates with a characteristic ramp-like structure generated by

stochastic extinction of one of the two oldest clades. In each such extinction event the MRCA jumps

forward by dT. Hence the probability of speciation depends on the probability of the two oldest

clades to persist without extinction for a time long enough to accumulate antigenic divergence in

excess of d. The combined carrying capacity of the resulting independent lineages is then twice their

original carrying capacity as observed in simulations, see Figure 6B.

To gain better intuition into this process let’s follow two most antigenically advanced ‘pioneer

strains’. In the TW approximation one of these will with high probability belong to the backbone giv-

ing the rise to the persisting clade, while the other clade will become extinct, unless it persist long

enough to diverge antigenically beyond d, becoming a speciation event. As their antigenic distance

gradually increases, the two clades are evolving to evade immunity built up against the common

ancestor. The less advanced of the two clades is growing less rapidly and takes longer to generate

antigenic advance mutations, resulting in still slower growth and slower antigenic advance. Deep

splits are hence unstable and it is rare for a split to persist long enough for speciation. In Appendix

5, we reformulate this intuition mathematically as a ‘first passage’-type problem which shows that

TMRCA distribution has an exponential tail which governs the probability of speciation events.
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Figure 6. Speciation into antigenically distinct lineages. (A) To speciate, two lineage have to diverge enough to substantially reduce cross-reactivity,

that is T needs to be comparable to d. Inset: Illustration of the definition of time to most recent common ancestor T and the time interval dT by which

T advances. (B) If such speciation happens, the host capacity - the average number of infected individuals increases two-fold. (C) The probability of such

deep divergences decreases exponentially with the ratio d=q�, where effective antigenic diversity is q� ¼ 2 logðNhs
2Þ= logðs=mÞ. In the presence of

deleterious mutations, the relevant q is not necessarily the total advance of the pioneer strains, but only the antigenic contribution. This antigenic

advance q� can be computed as q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logðNhs2Þs2
ag

q

with antigenic variance s2

ag ¼ s2 � s2

b, where s2

b is fitness variance due to deleterious mutations.

With this correction, speciation times agree with the predicted dependence (colored lines).

DOI: https://doi.org/10.7554/eLife.44205.011
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Figure 6C shows that the time to speciation increases approximately exponentially with the ratio

d=q. More precisely we found that average simulated speciation time behaves as t

�
swe

f ðCI=q�Þ with

‘effective’ t�sw ¼ tsw=ð1þ log q= logðs=mÞÞ and q� ¼ qð1þ log q= logðs=mÞÞ picking up an additional loga-

rithmic dependence on parameters, the exact origin of which is beyond our current approximations.

This correction plausibly suggests rapid speciation, t�sw ! 0, when mutation rate become comparable

to the selection strength m=s ! 1.

Red Queen State is transient
We emphasize that the RQS regime in Figure 3BC is only transient. For any given q and d, the RQS

is likely to persist for a time given by the smaller of text and tsp, before undergoing either extinction

or speciation. These two processes limit the range of q corresponding to the RQS from both sides in

a time-dependent manner. Figure 7 shows the likely state of an RQS system after time t as a func-

tion of genetic diversity q for the case of d ¼ 50 and logðNh
�IÞ ¼ 6:5.

The regime of a single persistent lineage shrinks with increasing t, for example after t ¼ 10tsw the

RQS state likely prevails between q ¼ 1:5 and » 4, while (for d ¼ 50 and logðNh
�IÞ ¼ 6:5) it is unlikely to

persist beyond t » 100tsw for any q. Both the maximal RQS lifetime and corresponding critical qc,

increase with increasing d.

Discussion
The epidemiological and evolutionary dynamics of human RNA viruses show a number of qualita-

tively distinct patterns (Grenfell et al., 2004; Koelle et al., 2011). Agents of classical childhood dis-

eases like measles or mumps virus show little antigenic evolution, other viruses like dengue- or

norovirus exist in distinct serotypes, while seasonal influenza viruses undergo continuous antigenic

evolution enabling viruses of the same lineage to reinfect the same individual.

Here, we have integrated classical multi-strain SIR models with stochastic models of adaptation to

understand the interplay between the epidemiological dynamics and the accumulation of antigenic

novelty. The former is dominated by the most prevalent strains, while the latter depends critically on

rare pioneer strains that become dominant at later times. Our model differs from that of

Rouzine and Rozhnova (2018) in two aspects that are crucial to questions addressed here: To

meaningfully study speciation and diversification, the model needs to allow for an high dimensional

antigenic space. Similarly, fluctuations in pathogen population size determine the dynamics of

extinction and this aspect can not be studied in models with constant population size. Including

these aspects of the epi-evolutionary dynamics allowed to define a ‘phase’ diagram that summarizes

qualitatively different behavior as a function of the relevant parameter combinations, see

Figure 3B and C.

The phase diagram shows which combinations of key parameters lead to three distinct outcomes:

(1) extinction (red), (2) an evolving but low diversity pathogen population (yellow and green), (3) a

deeply branching and continuously diversifying pathogen population (blue). The key parameters are

the size of the population logðNhs
2Þ, the ratio of mutational effects to mutation rate logðs=mÞ, and the

cross-immunity range d. In particular, large d prevents speciation, while rapid mutation and large

population sizes facilitate speciation.

In regime (2) of a low diversity but rapidly evolving pathogen population, incidence is determined

by the range of cross-immunity d and by the speed of antigenic evolution which itself depends on

the pathogen population size, mutation rates, and the fitness effect of novel mutations. A consistent

solution of these dependencies shows that average incidence Itot decreases as d�2, while weakly

depending on population size and mutation rates (see Equation A2.11), consistent with results by

Rouzine and Rozhnova (2018). Typical values of the coalescent time of influenza A (2-4y), an infec-

tious period of 5d, and a human population size ~ 10
10 result in an average annual incidence of 3–

10%. This number is consistent with previous estimates of the annual attack rate of influenza

(Yang et al., 2015) (which typically do not differentiate the different influenza lineages).

Of the different regimes, only extinction (1) and speciation (3) are truly asymptotic. The intermedi-

ate regimes of continuously evolving low diversity pathogen population - the Red Queen State

(RQS) - are strictly speaking metastable states which eventually either go extinct or undergo branch-

ing, but in a certain regime of parameters are very long lived. In our simple model, stability against
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speciation on the time scale >10tsw required

d ~ 10q (while stability against extinction requires

q>2). These results are consistent with earlier

studies that have shown that competition

between lineages mediated by long-range cross-

immunity can prevent diversification, effectively

canalizing the population into a single lineage

(Tria et al., 2005; Ferguson et al., 2003).

In practice, the range of cross-immunity

required to prevent speciation might be smaller

than the idealized model. Our model assumes

that the pathogen population can escape immu-

nity via many equivalent mutational path. But in

reality, the number of path to escape will be lim-

ited and some path more accessible than others,

which will reduce the tendency to speciate and

the necessity for large d. Similarly, other factors

such as population turn over and geographic het-

erogeneity can delay extinction.

Previous studies have shown that the rate of

branching in the speciation regime increases with

population size and mutation rate consistent with

the phase diagram (Sasaki and Haraguchi, 2000;

Koelle et al., 2011). Bedford et al. (2012) have

used large-scale individual-based simulations to

explore structure of influenza viruses phyloge-

nies. Consistent with our results, they found that

the speciation rate increases with the mutation rate (lowering log s=m and thereby facilitating specia-

tion) and increasing standard deviation of mutational effects. The latter increases the typical anti-

genic effect of successful mutations, which decreases the radius of cross-immunity when measured in

units of mutations making the population more prone to speciate.

Koelle and Rasmussen (2015) have implicated deleterious mutation load as a cause of spindly

phylogenies. Deleterious mutations increase fitness variation, which results in more rapid coales-

cence and less antigenic diversity, which in turn reduces speciation rates. Our model can readily

incorporate deleterious effects of antigenic mutations on transmission b. Such deleterious mutations

reduce the selection coefficient of antigenic mutations, which in turn reduces the fitness variance s2,

see Appendix 6. After subtracting the contribution of deleterious mutations from the the fitness vari-

ance, the times to speciation follow the predicted dependence on q and d, see Figure 6C.

Outbreaks of emerging viruses that quickly infect a large fraction of the population, as for exam-

ple the recent Zika virus outbreak in the Americas, fall into regime (1): In 2–3 years, large fractions of

the population were infected and have developed long-lasting immunity. As far as we know, the viral

population did not evolve antigenically to escape this build up of herd immunity and the virus popu-

lation is not expected to continue to circulate in the Americas (O’Reilly et al., 2018).

Different influenza virus lineages, in contrast, persist in the human population, suggesting that

they correspond to parameters that fall into the RQS region of the phase diagram. Furthermore, the

different subtypes display quantitatively different circulation and diversity patterns that allow for a

direct, albeit limited, comparison to theoretical models: subtype A/H1N1 circulated with interruption

from 1918 to 2009, A(H2N2) circulated for about 10 years until 1968, A/H3N2 emerged in 1968 and

is still circulating today, and the triple reassortant 2009 H1N1 lineage, called A(H1N1pdm), settled

into a seasonal pattern following the pandemic in 2009. Influenza B viruses have split into two sepa-

rate lineages (B/Victoria and B/Yamagata) in the 1970s (Rota et al., 1990). Phylogenetic trees of A/

H3N2 and the influenza B lineages are shown in Figure 1.

The influenza B lineages tend to be more genetically diverse than the influenza A lineages with a

typical time to the most recent common ancestor of around 6 compared to 3 years, see Figure 1.

Influenza A/H3N2 tends to have the lowest diversity and most rapid population turnover. This differ-

ence in diversity is consistent with influenza B lineages being more prone to speciation.
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Figure 7. Lifetime of the RQS state. This schematic

diagram based on Figure 5A defines the ‘boundaries’

of the transient RQS qextðtÞ (red line) and qspðtÞ (blue
line). qextðtÞ gives the value of q for which the average

time to extinction is equal to t is defined similarly but

for the speciation process. Average times to speciation

and extinction become equal at the critical value qc at

which RQS persists the longest. For d ¼ 50, qc » 2:4 and

this value, along with the RQS lifetime, increases with d.
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Yan et al. eLife 2019;8:e44205. DOI: https://doi.org/10.7554/eLife.44205 13 of 29

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.44205.012
https://doi.org/10.7554/eLife.44205


The typical diversity of these viruses needs to be compared to their rate of antigenic evolution.

Hemagglutination inhibition titers drop by about 0.7–1 log2 per year in A/H3N2 compared to 0.1–

0.4 log2 per year for influenza B lineages (Smith et al., 2004; Bedford et al., 2014; Neher et al.,

2016). Hence the ratio of the time required to lose immunity and TMRCA is similar for the different lin-

eages, suggesting that the distinct rates of genetic and antigenic evolution can not be used as a

straight forward rationalization of the speciation event of Influenza B and the lack of speciation of

influenza A lineages. Nor should such an explanation be expected as there is only a single observa-

tion of speciation. We note that currently circulating A/H3N2 viruses are exceptionally diverse with a

common ancestor that existed about 8 years in the past. Furthermore, the cocirculating 3c.3a and

3c.2a are antigenically distinct and it is conceivable that further antigenic evolution will result in spe-

ciation of A/H3N2 viruses.

While we have shown that the natural tendency of SIR models to oscillate couples to the instabil-

ity of the nose of the pathogen fitness distribution, making a quantitative link to the observed epide-

miological dynamics of the flu is difficult on account of seasonal oscillation in transmissivity. The

latter confounding factor is widely believed to be the cause behind observed seasonality of the flu.

Including explicit temporal variation (in b) in our model would lock the frequency of the prevalence

oscillation to the seasonal cycle, possibly resulting in subharmonic modulation, yet distinguishing

such a modulation on top of an already stochastic process is hard. Much remains to be done: finite

birth rates, distinct age distributions (as for example is the case for the two influenza B lineages),

realistic distribution of antigenic effect sizes, or very long range T-cell-mediated immunity would all

be interesting avenues for future work.

Materials and methods

Clone-based simulations
We simulate the original model on a genealogical tree by combining the deterministic

update of SIR-type equations and the stochastic step introducing mutated strains. In each time step

Dt<1, we apply the mid-point method to advance SIR equations Equations (1,2,4). We then gener-

ate a random number uniformly sampled between zero and one for each surviving strain with

NhIa � 1. If the random number is smaller than mNhIaDt for strain a, we append a new strain b as a

descendent to a. The susceptibility to strain b is related to susceptibility to strain a via Sb ¼ ðSaÞe
�1=d

.

In most of the simulations, the transmissibility of different strains is held constant b. Otherwise we

allow for a strain specific transmissibility that is to its parent: bb ¼ ba � db with db>0 for the deleteri-

ous effect of antigenic mutations and bb ¼ bmax if the mutation is compensatory. The new strain

grows deterministically only if bbSb>1.

This simplified model contains six relevant parameters: transmissibility b, recovery rate n, muta-

tion rate of the virus m, birth/death rate of the hosts g, the effective cross-immunity range d, and the

effective size of the hosts Nh, whose empirical ranges are summarized in the Table 1. For flu and

other asexual systems in RQS, b >
~

n � m; g, d � 1, and Nh � 1.

Simulation code and output are available on github in repository FluSpeciation of the neherlab

organization (Neher and Yan, 2019; copy archived at https://github.com/elifesciences-publications/

FluSpeciation).

Fitness-class-based simulations
The stability of the RQS and the extinction dynamics is fully captured by the traveling wave Equa-

tion (8). We simulate the traveling wave by discretizing the fitness space x into bins of step size s

around zero. The number of individuals infected by different strains correspond to integers in each

bin xi. At each time step, the population in each bin Ii updates to a number sampled from the Pois-

son distribution with parameter li ¼ NhIið1þ ðxi � �xÞDtÞ determined by mean fitness xi and a dynamic

mean fitness �x, which increases by DtItot, where Itot is the total infected fraction summed over all bins.

When �x becomes larger than one bin size s, we shift the all populations to left by one bin and reset �x

to , a trick to keep only a finite number of bins in the simulation. At the same time, antigenic muta-

tion is represented by moving the mutated fraction in each bin to the adjacent bin on the right. The

fraction is determined by a random number drawn from the Poisson distribution with the mean

Yan et al. eLife 2019;8:e44205. DOI: https://doi.org/10.7554/eLife.44205 14 of 29

Research article Physics of Living Systems

https://github.com/elifesciences-publications/FluSpeciation
https://github.com/elifesciences-publications/FluSpeciation
https://doi.org/10.7554/eLife.44205


mIiDt. The typical ranges of the three parameters s, m, and Nh follow the parameters in the genealog-

ical simulation, as documented also in Table 1.

Stochastic differential-delay simulation
To simulate the differential delay equations Equations (11-13), we discretize time in increments of

Dt ¼ tsw=k and update the dynamical variables �i ¼ xnðtiÞ and hi ¼ ItotðtiÞ via the simple Euler scheme:

�iþ1 ¼ �i þDtð�i�hiÞþ
�i

qs

ffiffiffiffiffi

Dt
p

�i; (14)

hiþ1
¼�I exp tsw�i�k �

t

2

sw

k

X

k

j¼0

jhi�j

 !

; (15)

where �i is a Gaussian random variable with zero mean and unit variance. Mean prevalence, �I, enters

as the control parameter (which defines the time average of hi).

Influenza phylogenies
Influenza virus HA sequences for the subtypes A/H3N2, A/H1N1, A/H1N1pdm, as well as influenza B

lineages Victoria and Yamagata were downloaded from fludb.org.

We aligned HA sequences using mafft (Katoh et al., 2002) and reconstructed phylogenies with

IQ-Tree (Nguyen et al., 2015). Phylogenies were further processed and time-scaled with the augur

(Hadfield et al., 2018) and TreeTime (Sagulenko et al., 2018). The analysis pipeline and scripts are

available on github in repository 2019_Yan_flu_analysis of the neherlab organization.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.44205.015

Approximation of susceptibility
A microscopic model that tracks the infection history of every individual in population is

computationally costly and impossible to analyze analytically. To gain insight, we and other

authors before us have used approximations that reduce the exploding combinatorial

complexity of the state space (Kryazhimskiy et al., 2007). Here, we explore and justify the

two separate approximations we have made to arrive at Equation 2: We ignore correlations

between subsequent infections of the same individual and approximate the multiplicative

effect of all subsequent infections by an exponential term.

To derive Equation 4 we start with Equation 3 and expand it in powers of K

Sa ¼ h
Y

b

ð1�KabsbðiÞÞii

¼ 1�
X

b

KabhsbðiÞiþ
1

2

X

c;b

KabKachsbðiÞscðiÞiþ :::
(A1.1)

where angular brackets denote the average over all individuals i in the population and sbðiÞ 2
½0; 1� denotes whether individuals i was infected with strain b in the past. This expansion

assumes jKabj � 1 which would hold uniformly for weak inhibition a � 1 but also holds for

perfect inhibition for sufficiently distant strains a; b. For a » 1 the greatest cause of concern is

the contribution of the most proximal strain, to which we shall return later. To evaluate the

terms on the right-hand-side we note that hsbðiÞi ¼ Rb, that is the fraction of the population

recovered from b, and hsbðiÞscðiÞi ¼ RbRc þ �bc where �bc, by definition, is the correlation

between infection with b and c at the level of individuals. Our approximation – following the

well established logic of ‘Mean Field’ theories – neglects �bc compared to RbRc (Landau and

Lifshitz, 2013; Weiss, 1907). In this case, correct to order jKj2, we can re-exponentiate the

right-hand-side obtaining Equation 4. This simple derivation effectively captures the content

of the ‘order-1 independence closure’ in Kryazhimskiy et al. (2007).

Several facts about influenza in human populations suggest that the weak-correlation

approximation is a reasonable starting point for modeling population scale behavior. (i)

Seasonal flu epidemics involve a large number of strains, a particular strain infects only a small

fraction of the population. Hence the Ra are small and correlation effects are of minor

importance. (ii) Challenge studies have shown that protection through vaccination or infection

with antigenically similar strains is moderate and a large fraction of challenged individuals still

shed virus (Clements et al., 1991). This possibility of homotypic re-infection shows that all Kab

are substantially smaller than 1, supporting our approximation of population wide

susceptibility, as discussed above. (iii) Antibody responses are polyclonal and differ between

individuals such that the cross-immunity matrix is stochastic at the level of individuals. This

variation in the cross-immunity matrix further reduces correlations in infection history at the

population level and justifies the mean field approach taken here (Lee et al., 2019). (iv)

Correlation in infection history induced by immunity are further reduced by the variation in

exposure history through geography and variation in contact networks.

To quantify the error made by these approximations in the worst case scenario, we explore

the case of a one-dimensional strain space with strictly periodic re-infection as soon as the

virus population as evolved by �d – the case of maximal correlation. The susceptibility of an

individual last infected with a strain x<�d mutations away from the current strain has

susceptibility
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SðxÞ ¼
Y

¥

m¼0

ð1�Kðxþm�dÞÞ

¼ ð1�KðxÞÞe
P

¥

m¼1
log1�Kðxþm�dÞ

» ð1�KðxÞÞe�ae�x=d
P

¥

m¼1
e�m�

¼ ð1�KðxÞÞe�ae
� x
dðe��1Þ

(A1.2)

where we separated the most recent infection from previous infections to explicitly compare

our approximations to that of Rouzine and Rozhnova (2018). The only approximation so far

happened between step 2 and 3. In the following, we will include the most recent infection in

sum in the exponential to obtain the weak-inhibition approximation log SWI ¼ �ae
� x

dð1�e��Þ.

Rouzine and Rozhnova (2018) follow Lin et al. (2003) in approximating an individual’s

susceptibility by ignoring all but the most recent infection S» 1� KðxÞ, thus keeping only the

smallest term of the product representation of SaðiÞ in Equation 3. This approximation is

referred to as ‘minimum’ cross-immunity in Wikramaratna et al. (2015). Appendix 1—figure

1 compares the full expression and different approximations of SðxÞ for different values of a
and � ¼ 1. For a ¼ 1, the ‘most recent’ approximation is better than the ‘weak inhibition’

approximation for x<d=2 but worse otherwise. For a<1, the weak inhibition approximation

improves further.

Figure 1. Approximations to the susceptibility. Panel A shows the effect of approximating the

multiplicative effect of all past infection by log S» � ae
� x

dð1�e��Þ (weak inhibition) and by ignoring

all by the most recent infection. Panel B shows the population average susceptibility assuming

every individual gets reinfected once the virus has evolved by d� for the multiplicative model,

the mean field approximation, and the most recent infection approximation for different

values of a as a function of the interval between infections �.

DOI: https://doi.org/10.7554/eLife.44205.016

To investigate the effect of ignoring correlations, we now compare the most correlated

case of strictly periodic re-infection as soon as the pathogen has evolved by �d. For simplicity,

we assume a time invariant density of recovered 1=d� (as in the analysis by Rouzine and

Rozhnova, 2018). To calculate the population susceptibility, we integrate the expression for

SðxÞ for the full model and the ‘most recent’ approximation over the interval ½0; d�� and
compare it to the mean field approximation in Equation 4 with constant Rb ¼ 1=d�.

Appendix 1—figure 1B shows that the ‘mean-field’ approximation is closer to the full model

across the entire range of relevant �<1. Note that � has to be determined self-consistently and

will typically be of the order of the susceptibility.
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Real-world influenza population are much less correlated then the extreme ‘periodic

infection’ assumption used here for reasons listed above. The linearized mean-field

approximation in Equation 4 is therefore justified and can be expected to give a qualitatively

correct approximation to a full model that tracks all infection histories.
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Differential-delay approximation of RQS dynamics
Here we derive the differential delay system of equations that relate the behavior of the

pioneer strains to the bulk of the population. Let us consider the generating function

associated with the virus fitness distribution at time t:

Gðl; tÞ ¼
X

i

IiðtÞelxiðtÞ (A2.1)

where xiðtÞ ¼ xnðtiÞ �
R t

ti
dt0Itotðt0Þ is the current fitness of the pioneer strain that first appeared at

time ti and IiðtÞ is the fraction of the hosts infected by it:

IiðtÞ ¼N�1

h e

R t

ti
dt0xtðt0Þ ¼N�1

h e
xnðtiÞðt�tiÞ�

R t�ti

0
dt0 t0Itotðt�t0Þ

(A2.2)

We next take a coarse grained view of pioneer strain establishment replacing the sum in

Equation (13) by an integral over initial times ti ! t � t

Gðl; tÞ ¼ 1

Nh

Z

¥

0

dt

taðt� tÞe
ðtþlÞxnðt�tÞ�

R

t

0
dt0ðt0þlÞItotðt�t0Þ

; (A2.3)

where 1=taðt � tÞ is the rate at which new clones are seeded at time t � t. Let us evaluate the

integral in the saddle approximation which is dominated by t ¼ t

� corresponding to the

maximum in the exponential

t

�þl¼ xnðt� t

�Þ
x0nðt� t

�Þþ Itotðt� t

�Þ »tsw (A2.4)

where we have used the deterministic limit of Equation 12. To simplify presentation we shall

ignore the time dependence of tsw ¼ s�1 logðxn=mÞ replacing xnðt � t

�Þ in the logarithm by the

time average �xn.

Within the saddle approximation we then have

logNhGðl; tÞ»xnðt� tsw þlÞtsw�
Z

tsw�l

0

dt0ðt0 þlÞItotðt� t0Þ ; (A2.5)

where we have omitted the logarithmic corrections for simplicity. Note that by definition

Gð0; tÞ ¼ ItotðtÞ.
We can now estimate fitness mean

�xðtÞ ¼ d

dl
logGðl; tÞjl¼0

¼ tsw½x0nðt� tswÞþ Itotðt� tswÞ��
Z

tsw

0

dt0Itotðt� t0Þ

¼ xnðt� tswÞ�
Z

tsw

0

dt0Itðt� t0Þ

(A2.6)

and variance

s2ðtÞ ¼ d2

dl2
logGðl; tÞjl¼0

¼ tsw½x00nðt� tswÞþ I 0totðt� tswÞ�þ Itotðt� tswÞ
(A2.7)

Equation (A2.7) involves the second derivative x00n and we therefore expect fluctuations in

the establishment of new lineages (which contribute to x0n) to be quite important. Yet we can

get useful insight by using the deterministic approximation to xn dynamics in Equation 12, in

which case we arrive at simple delay relation between the variance and xn
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s2ðtÞ ¼ t

�1

sw xnðt� tswÞ (A2.8)

which is consistent with the variance calculated for the case of the steady TW and also satisfies

the generalized Fisher theorem

d

dt
�x ¼ x0nðt� tswÞþ Itðt� tswÞ� ItðtÞ

¼ s2ðtÞ� ItðtÞ
(A2.9)

Combining Equations 11, 12 and A2.8 we arrive at the deterministic dynamical system

approximating coupled ‘ecological’ SIR dynamics with the evolutionary dynamics of antigenic

innovation due to the pioneer strains.

d2

dt2
log IðtÞ ¼ t

�1

sw xnðt� tswÞ� ItotðtÞ
d

dt
xnðtÞ ¼ t

�1

sw xnðtÞ� ItotðtÞ
(A2.10)

This system admits a family of fixed points of the form tswItot ¼ xn ¼ �xn, but as we show in C,

the corresponding steady TW states are not always stable giving rise to limit cycle oscillations

or leading to rapid extinction. The self-consistency condition relating xn and Itot for the steady

traveling wave is readily generalized to limit cycle states. Integrating the differential-delay

system over one cycle yields hxni ¼ tswhIi. An additional relation is provided by integrating

logNhGð0; tÞ over the cycle:

hlogNhItoti ¼
t

2

sw

2
hItoti (A2.11)

A great deal of insight into the behavior of the (deterministic) differential delay system

defined above is provided by its deterministic limit (see Appendix 3) which defines the stability

‘phase diagram’ shown in Figure 3 (BC) that correctly captures key aspects of the behavior

observed in fully stochastic simulations.
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Appendix 3
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Stability analysis of the differential-delay approximation
In the traveling wave case, it is natural to measure time in the units of the delay time scale tsw.

The therefore define a time variable z via t ¼ tswz, the fitness variable � via xn ¼ t

�1

sw� and the

rescaled log-prevalence u via u ¼ log t2swI to obtain

d2

dz2
uðzÞ ¼ �ðz� 1Þ� euðzÞ

d

dz
�ðzÞ ¼ �ðzÞ� euðzÞ

(A3.1)

As before, this system has a one parameter family of fixed points � ¼ ��; u ¼ log ��. Note

that from the traveling wave model (Desai and Fisher, 2007), we have

�� ¼ �xntsw ¼ q logðxn=mÞ ¼ 2 logðNhs
2Þ. To analyze fixed point stability we linearize and Laplace

transform, yielding

z2dûðzÞ ¼ e�zd�̂ðzÞ� ��dûðzÞþ zduð0Þþ du0ð0Þ
zd�̂ðzÞ ¼ d�̂ðzaÞ� ��dûðzÞþ zd�ð0Þ

(A3.2)

Stability is governed by the poles of the Laplace transformed response to the initial

perturbation duð0Þ; du0ð0Þ; d�ð0Þ and these poles are at the complex z that solve:

z¼ 1þ ��ð1� z� e�zÞ=z2 (A3.3)

Fixed point - and hence steady RQS - stability requires <ðzÞ<0 which is found for 2<��<��c.

For ��>2:845 one finds =ðzÞ 6¼ 0 corresponding to the onset of oscillatory relaxation which turns

into a limit cycle for ��>��c » 16:6. The period of the limit cycle is well approximated by =ðzÞ, as
the dashed line shown in the bottom panel of Figure 4—figure supplement 1.

The above stability analysis is done for the continuum limit q � 1. However the finiteness of

q does matter, especially close to extinction where only a small number of mutations separate

most advanced strains from the bulk of the distribution. We shall now include the corrections

to the first order in 1=q. One such correction arises from the difference between the

continuum �ðtiÞ and discrete approximation of �i, the position of the nose fitness bin relative

to mean fitness at the time of its establishment. The other correction term comes via the

establishment time ta. Including both corrections the Langevin equation becomes:

d

dz
�ðzÞ ¼ 1

1� 1

q

�ðzÞ� 1

1� 1

2q

d2

dz2
uðzÞþ 1

l
�ðzÞ: (A3.4)

To first order of 1=q, the poles of the Laplace transform are determined by

z2 þ �� 1þ 1

z� 1
e�zþ 1

q

z2

ðz� 1Þ2
e�z

" #

¼ 0: (A3.5)

Solving for the onset of stability <ðzÞ ¼ 0, we find the extinction boundary qexðlogNhs
2Þ from

the relation

��¼ 2

1� 2

qex

¼ 2 logðNhs
2Þ (A3.6)

We observe that qex ! 2 asymptotically for large logNhs
2.
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Stochastic form of the differential-delay approximation
A sensible stochastic generalization is obtained by the stochastic approximation for the ‘nose’

dynamics in Equation (12)

d

dt
xn ¼ t

�1

sw xn � ItðtÞþ s�ðtÞ; (A4.1)

combined with Equation (A2.5) at l ¼ 0

log IðtÞ ¼ tswxnðt� tswÞ�
Z

tsw

0

dt0t0Itðt� t0Þ: (A4.2)

Note that in this derivation we have avoided the need for explicitly approximating s2! (We

have also neglected the effect of fluctuations arising from the logarithmic correction term

effectively replacing it by its average value.) This stochastic differential delay (DD) system was

used in simulations presented in Figure 4C.
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Speciation rate as a stochastic ‘First Passage’ problem
Speciation occurs when two most distant clades persist until they are antigenically

independent. This persistence problem can be formulated as a first passage problem by

including the second ‘nose’ in the TW approximation.

We consider the birth of two pioneer strains at time t ¼ 0, as illustrated in Appendix 5—

figure 1. The descendants of the two strains forming two branches 1 and 2 diverge in the

antigenic space as they persist in time. Suppose that at time t, the nose of branch 1 is at

fitness x1, and the nose of branch 2 is at x2. Before the sweep time t<tsw, the cross-immunity

grows mainly from the prevalent strains in the common ancestors of the two branches,

d

dt
xi ¼ t

�1

sw xi� Itotþ s�i: i¼ 1;2 (A5.1)

1

2
t=0 x2

x1

d2
d1

t

s

x1-x2

xn

1 2

0

Figure 1. Process of speciation. Left: Sketch of a branching event at t ¼ 0 with two branches 1

and 2. The fitnesses of the most fittest strains (noses) in branch 1 and 2 are x1 and x2. Branch 1

is the fitter one x1>x2. The antigenic distances from the cross-immune bulk to the noses of the

two branches are d1 and d2. The Gaussian profile in fitness is illustrated in blue. Right: The

fitness difference between the two branches x1 � x2 is doing a biased random walk in time t of

step size s with a reflecting boundary at x ¼ 0 and an absorbing boundary at x ¼ xn.

DOI: https://doi.org/10.7554/eLife.44205.021

Later when t>tsw, the pathogen population splits and the different lineages evolve away

from each other on two branches in the phylogeny. As the antigenic distances of each nose

from the dominant strains on the own and the other branch differ, fitness of the two sets of

pioneer strains changes at different rates:

d

dt
x1 ¼ t

�1

sw x1� I1e
�d11=d � I2e

�d21=d þ S�1;

d

dt
x2 ¼ t

�1

sw x2� I1e
�d12=d � I2e

�d22=d þ S�2;

(A5.2)

where d11 and d22 scale roughly as q, the typical antigenic distance to the nose. In the limit

d21 » d12 >
~

d, Equation (A5.2) reduce to two independent replicas of Equation (12) and the

two branches are thus antigenically independent. What is the probability of reaching this limit?

The approach to this question rather relies on the persistence probability of two branches in

the other limit when d21 » d12 <
~

d, where I1 þ I2 » Itot cross-immunity growth rate is

approximately the same at both noses.
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In this limit, the survival probability of the less fit nose maps to a first passage problem in

the random walk of relative fitness z � ðx1 � x2Þ=xn. As illustrated in Appendix 5—figure 1, an

establishment of nose one is a positive step of dz ¼ s=xn, while an establishment of nose two

results in a backward step of the same size. As the mutations arrive in characteristic times t1
and t2 depending on the nose fitnesses, in the continuum limit, we have

d

dt
z¼ t

�1

sw zþ
s

xn
�; (A5.3)

where � is a random noise. There are two relevant boundaries: a reflecting boundary at z ¼ 0

where two branches switch roles in leading the fitness, and an absorbing boundary at z ¼ 1

where the fitness of less fit nose drops below the mean fitness and becomes destined for

extinction.

The Langevin Equation in Equation A5.3 corresponds to a diffusion equation for the

probability density distribution �ðz; tÞ

qt�ðz; tÞ ¼�qz½vðzÞ�ðz; tÞ�þ q
2

z ½DðzÞ�ðz; tÞ�; (A5.4)

where the drift v and diffusivity D depend on z,

vðzÞ ¼ 1

tsw

z; DðzÞ» 1

qtsw
: (A5.5)

Solving with boundary and initial conditions,

qz�ðz; tÞjz¼0
¼ 0; �ðz¼ 1; tÞ ¼ 0;

�ðz; t¼ 0Þ ¼ dðzÞ; (A5.6)

we have

�ðz; tÞ ¼
X

¥

n¼1

e�ln t=tswcn 1F1

1�ln

2
;
1

2
;
q

2
z2

� �

; (A5.7)

where 1F1 is the generalized hypergeometric function, ln is the nth smallest values solving

1F1ð1�l
2
; 1
2
; q
2
Þ ¼ 0, and coefficient cn is determined by the initial condition. In long time t, the

slowest mode dominates the dynamics. In the large q limit, we have l1 ¼ 1. Since 1F1 » const

for z 2 ð0; 1Þ, the persistence probability is

PðT>tÞ»ce�t=tsw : (A5.8)

The typical time interval between the establishment of successive pioneer strains at the

nose scales as ta ¼ tsw=q. We recall that speciation, or escape from cross-immunity, occurs

when antigenic distance between the two branches in Appendix 5—figure 1 d1 þ d2 is larger

than d. For that it suffices that the shorter branch d2>d=2 which occurs with probability

Pðd2>d=2Þ»e�dta=2tsw ¼ e�d=2q: (A5.9)

we find the probability of a successful branching p1 to be proportional to e�d=2q.

In the phylogenetic tree, t=ta trial branchings from the backbone arrive in time t. The

probability that none of them successfully speciate is thus

PnspðtÞ ¼ ð1� p1Þt=ta ¼ e�t=tsp ; (A5.10)

where the waiting time for speciation event is

tsp /
tsw

q
ed=2q; (A5.11)

as numerically verified in Figure 6.
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Effect of mutations on infectivity
Suppose an antigenic mutation has a deleterious effect on infectivity reducing the latter by dbd

on average. This would effectively reduce the fitness gain of antigenic innovation from s to

sdðbÞ ¼ sðbÞ � Dd, with Dd ¼ b�1dbd. In addition let us assume that there also are

compensatory mutations which restore maximal infectivity bmax. These compensatory mutation

thus have a beneficial effect on fitness DbðbÞ ¼ b�1bmax � 1. We assume that these mutations

occur with rate mbb. In a dynamic balance state the rate of fixation of compensatory mutations

would exactly balance the deleterious mutation effect on b so that t�1

b Dd ¼ t

�1

a Dd with the

fixation rate controlled by the fitness of the leading strain via t

�1

b ¼ xn= logð xn
mbb

Þ. This dynamic

balance is achieved at a certain value of b�<bmax, specifically bmax � b� ¼ dbdtbt
�1

a or b� ¼
bmax � dbdr where r ¼ logðxn

m
Þ= logð xn

mbb
Þ.

The fitness of the nose of the distribution obeys

dxn

dt
¼ sdðbÞt�1

a þDbt
�1

b � Itot (A6.1)

where the 1 st term on the RHS is rate of nose advancement due to antigenetic mutations

t

�1

a ¼ xn= logðxnmÞ as before, but with reduced fitness gain sdðbÞ. The 2nd term describes the

contribution of compensatory mutations. However in the dynamic equilibrium (at b�)

compensatory mutations exactly cancel the contribution the deleterious mutation contribution

to s so that for the steady state we recover

Itot ¼ sðb�Þt�1

ag ¼ sðb�Þxn
log xn

m

(A6.2)

as we had for the TW driven by antigenic advancement only. The only effect is the reduction

of s from sðbmaxÞ to sðb�Þ ¼ d�1 logb�.

The sweep time, tsw, upon which the fitness of the former pioneer strain comes down to the

mean fitness and the nose fitness, xn, retain the TW form

tsw ¼ xn

Itot
¼ sðb�Þ
logðxn

m
Þ (A6.3)

Following TW approximation to estimate infection prevalence
ffiffiffiffiffiffi

Itot
p

~N�1

h expðxntsw=2Þ as
before one finds

xn ¼ 2t
�1

sw logCNh ¼ 2sðb�Þ
log½Nhs

2= logðxn
m
Þ�

logðxn
m
Þ (A6.4)

The total fitness variance of the population contains a contribution, from antigenic

mutations and the mutations in infectivity:

s2 ¼ tswðs2dt�1

a þD

2

bt
�1

b Þ ¼ xn½s� 2Dd þ
D

2

d

s
þDdDb

s
� (A6.5)

but under conditions of Dd; Db � sðb�Þ total variance would also be decreasing.

Most relevant for our analysis however is not the typical, but the maximal antigenic distance

within the viral population:

qag ¼ tswt
�1

ag ¼ xn

sðb�Þ
¼ 2

logNhs
2ðb�Þc

log xn
m

(A6.6)
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which is basically unchanged in the presence of infectivity mutations except for the expected

reduction in the magnitude of s2 factor inside the logarithm. Therefore, speciation rate would

be reduced, but rather weakly, via a contribution subleading in oðlogNhÞ
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