
Citation: Koszałka, P.; Stasiłojć, G.;
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Abstract: Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy
affecting pediatric patients. ALL treatment regimens with cytostatics manifest substantial toxicity
and have reached the maximum of well-tolerated doses. One potential approach for improving
treatment efficiency could be supplementation of the current regimen with naturally occurring
phytochemicals with anti-cancer properties. Nutraceuticals such as quercetin, curcumin, resveratrol,
and genistein have been studied in anti-cancer therapy, but their application is limited by their low
bioavailability. However, their cooperative activity could potentially increase their efficiency at low,
bioavailable doses. We studied their cooperative effect on the viability of a human ALL MOLT-4
cell line in vitro at the concentration considered to be in the bioavailable range in vivo. To analyze
their potential side effect on the viability of non-tumor cells, we evaluated their toxicity on a normal
human foreskin fibroblast cell line (BJ). In both cell lines, we also measured specific indicators of cell
death, changes in cell membrane permeability (CMP), and mitochondrial membrane potential (MMP).
Even at a low bioavailable concentration, genistein and curcumin decreased MOLT-4 viability, and
their combination had a significant interactive effect. While resveratrol and quercetin did not affect
MOLT-4 viability, together they enhanced the effect of the genistein/curcumin mix, significantly
inhibiting MOLT-4 population growth in vitro. Moreover, the analyzed phytochemicals and their
combinations did not affect the BJ cell line. In both cell lines, they induced a decrease in MMP
and correlating CMP changes, but in non-tumor cells, both metabolic activity and cell membrane
continuity were restored in time. (4) Conclusions: The results indicate that the interactive activity of
analyzed phytochemicals can induce an anti-cancer effect on ALL cells without a significant effect on
non-tumor cells. It implies that the application of the combinations of phytochemicals an anti-cancer
treatment supplement could be worth further investigation regardless of their low bioavailability.

Keywords: acute lymphoblastic leukemia; MOLT-4; BJ; curcumin; genistein; resveratrol; quercetin;
cell membrane permeability; mitochondrial membrane potential

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy
in the pediatric patient group. Presently, the cure rate is ~90% due to the use of intensive
chemical treatment based on risk-adapted stratification to the appropriate therapeutic
subgroups based on the evaluation of minimal residual disease (MRD) and cytogenetic
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and molecular genetic studies [1,2]. More advanced and sophisticated treatments are
continuously being developed, such as the use of protein kinase inhibitors (e.g., imatinib,
ruxolitinib), bispecific antibodies (Blinatumomab, Inotuzumab, ozogamicin), and geneti-
cally engineered T-cells (CAR-T), which represent a completely new view on the treatment
of acute lymphoblastic leukemia [3,4]. However, regardless of the choice of therapeutic
method, most patients have numerous early and late complications, especially in inten-
sively treated high-risk groups, such as children with congenital immune deficiencies
(Down syndrome and ALL/AML, Nijmegen syndrome, and non-Hodgkin lymphoma) [5].

It is also generally believed that the maximum well-tolerated doses of cytostatics
arranged in therapeutic regimens have already been achieved in pediatric hematology [6],
which means that increasing the total dose of cytostatics used would be associated with
difficult-to-accept side effects or even death. Furthermore, cancer is one of the diseases that
occur due to the perturbations of multiple signaling pathways [7]. Therefore, a non-toxic,
highly effective, multi-faceted treatment, one that is readily available and cost-effective, is
highly desirable.

One of the potential alternatives could be supplementation of the current therapeutical
conventional “gold standards” with naturally occurring phytochemicals with chemopre-
ventive properties that inhibit, reverse, or suppress tumorigenesis. Such phytochemicals
possess generally lower toxicity versus synthetic therapies and are more acceptable to
patients. Among the small molecules derived from fruits and vegetables studied for cancer
treatment, polyphenols (quercetin, curcumin, resveratrol, genistein) are pointed out to be
effective and safe [8–10].

Curcumin is a polyphenolic compound extracted from the rhizome of Curcuma longa
and related species with wide therapeutic efficacy proven against a broad range of tumors
in clinical studies, including liver, lung, and peritoneum cancers [11,12]. It was determined
to be non-cytotoxic to normal cells taken orally by cancer patients at 450–3600 mg/day for
up to 4 months [11] or even up to 8000 mg/day for 3 months [13]—the dosages required
for therapeutic efficacy. It was also well tolerated by healthy volunteers at doses ranging
from 500 to 12,000 mg/day for 3 months [14]. Genistein is a hydrolysis product of the
7-O-β-d-glucoside form of genistein naturally occurring in plants. It prevents, delays or
blocks multiple steps of carcinogenesis in vitro and in vivo by targeting cellular mecha-
nisms relevant to oxidative stress management, angiogenesis, cell cycle regulation, and
apoptosis [15]. It is a phytoestrogen, but it was shown to be a legitimate concern only
for Western women diagnosed with breast cancer or at high risk for this cancer [16]. Its
high dose (up to 200 µg/mL) induced no damage to normally proliferating lymphocytes
in vitro [17], while its oral application in in vivo studies induced no genotoxic [18] and
minimally toxic effects [19,20]. Quercetin is one of the most abundant flavonoids present
in fruits and vegetables, as well as in wine and tea [21,22]. It was shown in pre- and clini-
cal trials as non-mutagenic and non-toxic to humans when infused intravenously [23,24].
Resveratrol is a non-toxic natural product found mainly in red grapes, grape products,
and red wine [25,26]. All these phytochemicals take part in multiple clinical trials against
a wide range of neoplasms, with curcumin undergoing even 3rd phase clinical trials for
prostate cancer (NCT03769766) [27].

In preclinical in vitro studies, they demonstrated high potential as anti-leukemia
agents. In a wide range of leukemia cell lines, curcumin can induce epigenetic changes,
downregulate DNA methyltransferase I, and inhibit NF-κB activation and downregula-
tion [28–30], as it can impact a diverse range of molecular targets and signaling pathways [8].
In the chronic myeloid leukemia cell line, it is able to induce both autophagy and apoptosis
via downregulation of the Bcl-2 protein [31]. Genistein and resveratrol induce apoptosis
in leukemia cell lines with genistein, which is also able to induce cell cycle arrest and
resveratrol to trigger an autophagic death [17,32–35]. Quercetin inhibits proliferation and
induces cell cycle arrest and apoptosis in leukemia cells [36–38].

However, most of the in vitro data are based on the results obtained when high con-
centrations of analyzed compounds are used, unachievable in vivo by oral application [39].
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Furthermore, many factors make the application of polyphenols in anti-cancer treatment
problematic. The utility of curcumin is hindered not only by its low oral bioavailability but
also by its poor solubility, rapid metabolism and systemic elimination, even if it is partially
ameliorated by its high bioactivity [40–42]. Genistein has low solubility and low oral
bioavailability due to its rapid metabolization and high activity of efflux transporters [43].
Quercetin is rapidly metabolized, especially when administered intravenously [44]. Resver-
atrol is also rapidly absorbed and metabolized, with low oral bioavailability [45]. It can also
induce contradictory effects depending on its serum concentrations, inducing apoptosis or
cell survival [46].

Multiple approaches are being sought to overcome these limitations, with limited
success [40,41]. The most notable is an application of different oral administration forms,
e.g., the changes of polymer-based systems used for the encapsulation of polyphenols to
increase their bioavailability and solubility [47–50]. However, polyphenols were shown to
increase their bioactivity and prolong their effectiveness also through their synergistic or
additive interactions [8,51]. However, in the case of leukemia cells, there is little information
available regarding the anti-tumor effects of their combinations [51].

The main aim of the presented research was to search for the combinations of bio-
logically active substances that can affect the development and progression of ALL at
concentrations that were shown to be bioavailable in vivo. We analyzed curcumin, genis-
tein, quercetin, and resveratrol, four dietary polyphenols with the highest anti-leukemia
potential demonstrated in the literature. We used a human leukemia MOLT-4 cell line
derived from acute lymphoblastic leukemia as an in vitro model for ALL [52] and a normal
human foreskin fibroblast cell line (BJ) for toxicity evaluation.

2. Results
2.1. Genistein and Curcumin Strongly Decrease the Viability of a Human Acute T Lymphoblastic
Leukemia MOLT-4 Cell Line

We used a human MOLT-4 cell line derived from acute lymphoblastic leukemia as an
in vitro model for ALL [52] to analyze an anti-leukemia potential of curcumin, genistein,
quercetin, and resveratrol concentrations that were shown to be bioavailable in vivo. The
changes in cell viability were measured with an MTT metabolic assay 24, 48, and 72 h
after the application of a single dose of a chosen phytochemical. To compare the effect
induced by different phytochemicals on MOLT-4 viability, the concentration range was
chosen according to the specific bioavailability of each dietary polyphenol (Table 1).

Table 1. Concentrations of each nutraceutical used and their correlation with their bioavailability
in vivo.

Bioavailability

0.5× 1× 2×
Curcumin 3.05 µM 6.1 µM (2.25 µg/mL) [53,54] 12.2 µM
Genistein 5.55 µM 11.1 µM (3 µg/mL) [55,56] 22.2 µM
Quercetin 2.48 µM 4.96 µM (1.5 µg/mL) [57,58] 9.92 µM

Resveratrol 1.1 µM 2.2 µM (0.5 µg/mL) [33,59] 4.4 µM

Curcumin can cause G2/M cell cycle arrest at only 5 µM [28–30], but to induce a
biologically significant cytotoxic effect on MOLT-4 cells in 48 hours, a concentration high
above 10 µg/mL (ab. 27 µM) was indicated [60]. Using low bioavailable doses (6.1 µM,
2.25 µg/mL, 1×), we observed a decrease in MOLT-4 viability (by about 16 ± 5%) after
exposure time was prolonged to 72 h (Figure 1). The doubling of its bioavailable dose
(12.2 µM, 2×) had a much faster and stronger effect, as viability decreased by 45% (±13%)
only after 24 h and remained stable up to 72 h.
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Figure 1. Effect of phytochemicals on MOLT-4 viability according to their bioavailability. Cell viability
was determined by MTT metabolic assay at 24, 48, and 72 h after supplementation with 0.5/1/2×
bioavailable concentrations specific for each dietary polyphenol: curcumin 3.05/6.1/12.2 µM, genis-
tein 5.55/11.1/22.2 µM, quercetin 2.48/4.96/9.92 µM, or resveratrol 1.1/2.2/4.4 µM, respectively. A
non-treated control from each data point was assumed to be 100% viable to demonstrate the relative
changes in viability in time at each concentration. The data are presented as the mean ± SD of three
independent tests (* p < 0.05, ** p < 0.01, *** p < 0.001 vs. control; # p < 0.05, ## p < 0.01, ### p < 0.001
between two groups).

In MOLT-4 cell culture, genistein can induce cell cycle arrest in S-phase at 5 µg/mL (ab.
18.5 µM) in only 4 h, but to decrease cell viability by half in 24 h, a concentration of over
13 µg/mL (ab. 48.1 µM) was indicated [17]. We observed a decrease in MOLT-4 viability
for a much lower bioavailable dose (11.1 µM, 3 µg/mL, 1×) (by approx. 23 ± 7%) after
exposure time was prolonged to 48 h (Figure 1). This effect held stable after 72 h, and was
significantly stronger than the effect of curcumin at a comparable dose. The double dose
(2×) had a much faster and stronger effect, as viability decreased by 31% (±5%) in only
24 h and by 79% (±8%) after 72 h.

Quercetin inhibits proliferation of leukemia cells at a concentration of ≥50 µM at
48 h [36], induces cell cycle arrest in the late G1 phase of the cell cycle at 70 µM [37], and
decreases cell viability through apoptosis at 60–100 µM [36,61]. Using significantly lower
bioavailable doses (4.96 µM, 1.5 µg/mL, 1×), we observed no effect on MOLT-4 viability
(Figure 1). Its doubling (2×) did not change that. While there are some data showing that a
comparable concentration can reduce MOLT-4 viability, it was observed in the presence
of 0.2% of DMSO [62,63]. At only 0.1%, DMSO can induce a dose-dependent delay in cell
cycle progression as well as significant changes in gene expression [64,65].

Resveratrol inhibits cell viability in a concentration- and time-dependent manner, with
a concentration above 10 µM needed to affect MOLT-4 cells [33]. At a lower bioavailable
dose (2.2 µM, 0.5 µg/mL, 1×), it did not affect MOLT-4 viability, while a double dose
(2×) induced a temporary increase in viability after 24 h (Figure 1). As the MTT assay is
based on the activity of mitochondrial enzymes, and resveratrol can improve mitochondrial
function [66], this effect was not unexpected.

Therefore, we have demonstrated that genistein and curcumin can decrease MOLT-4
cell line viability at the bioavailable concentration with prolonged exposure, with genistein
having a significantly stronger effect (p < 0.01) (Figure 1). Resveratrol and quercetin had no
significant effect on MOLT-4 viability.



Int. J. Mol. Sci. 2022, 23, 4753 5 of 19

2.2. Genistein and Curcumin Have a Synergistic Effect against a MOLT-4 Tumor Cell Line, Which
Can Be Enhanced by the Addition of Quercetin and Resveratrol

As the next step, we analyzed whether a combination of dietary polyphenols can have
a synergistic effect in decreasing MOLT-4 cell line viability when combined at a comparable
dose according to their bioavailability.

Curcumin was shown to have synergistic interactions with other nutraceuticals, includ-
ing genistein, resveratrol, and quercetin [8]. Combined with genistein, it strongly inhibited
17 beta-estradiol-induced proliferation of the human breast cancer cell line MCF-7, when
applied at around double the bioavailable dose (10 µM of curcumin and 25 µM of genis-
tein), while single compounds had no significant effect [67]. For the MOLT-4 cell line, we
observed that a combination of genistein with curcumin (G/C) at a 1× bioavailable dose
(11.1 µM of genistein combined with 6.1 µM of curcumin) induced a significant decrease
in cell viability compared to the control (decrease by 11 ± 3%) (Figure 2a) after 24 h, ear-
lier than the effect induced by single compounds. For a 2× dose, a combined effect of
curcumin and genistein was comparable to single compounds (Figure 2a). After 48 h, the
combined G/C effect at a 1× dose on MOLT-4 was even stronger (a drop by 19%), with
significant differences compared to curcumin and genistein alone. For a 2× dose, the effect
of curcumin and genistein was synergistic (CI Value 0.77804 as calculated by CompuSyn)
for the same incubation period. After 72 h, the effect of genistein and curcumin mix at 1×
dose was still holding at a similar level (decrease by 35 ± 2%). After this incubation period,
we also observed a decrease in viability induced by 0.5× dose of G/C mix, but at a level
comparable to genistein alone, while for a 2× dose of G/C mix, the effect was still stronger
than single compounds and still increased compared to the effect after 48 h (a drop by an
additional 9%) (Figure 2a).

Quercetin, when mixed with genistein at a 2× dose (9.92 µM of quercetin with 22.2 µM
of genistein), had slightly but significantly increased MOLT-4 cell viability after 72 h,
reducing the effect of genistein alone (p < 0.01) (Figure 2a). When quercetin was combined
with resveratrol, it did not affect MOLT-4 viability (Figure 2a).

However, the addition of resveratrol and quercetin to the genistein/curcumin mix
at 1× bioavailable dose (11.1 µM of genistein, 6.1 µM of curcumin, 4.96 µM of quercetin,
2.2 µM of resveratrol) (G/C/Q/R) decreased MOLT-4 viability by an additional 16%
(p < 0.001) compared to G/C mix (Figure 2b). The difference was still present after 48 and
72 h (18%, p < 0.001; 12%, p < 0.01; respectively). The differences were present also for a
higher 2× dose after 24, 48, and 72 (decrease by 32%, 16%, and 10% compared to G/C mix,
respectively; p < 0.001); however, they also emerged for the lower 0.5× dose after 24 and
48 h (decrease by 9% and 12%, respectively; p < 0.001).

The addition of resveratrol alone to the genistein/curcumin mix had no effect at 1× or
0.5× dose, but for 2× dose, it had increased the viability of MOLT-4 cells after 48 and 72 h
of incubation (by approx. 7%, p < 0.001 and p < 0.01, respectively) (Figure 2b). Therefore,
quercetin and resveratrol, while they did not decrease MOLT-4 viability by themselves,
were able to enhance the effect induced by the genistein/curcumin mix, indicating the
potentiation effect of these two reagents. We did not observe such an effect for curcumin
alone (Supplementary File S1: Figure S1), indicating a significant role of genistein in an
interactive activity of G/C/Q/R mix.

However, MOLT-4 cell density grows by ab. 70% every 24 h. We analyzed the effect
of genistein, genistein/curcumin (G/C), and the mix of all phytochemicals (G/C/Q/R)
on the population growth of MOLT-4 cells in vitro. We observed that while a combination
of all four polyphenols at a 1× bioavailable dose (6.1 µM curcumin, 11.1 µM genistein,
4.96 µM quercetin, and 2.2 µM resveratrol) was unable to induce an exponential decrease
in the cell population over time (it required 2× dose applicable only in vitro) it was able to
suppress its growth, especially during the first 48 h of treatment (Figure 3).
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(R) combined at a comparable dose according to their bioavailability. Bioavailable concentration 
specific for each dietary polyphenol at 0.5/1/2× dose: curcumin 3.05/6.1/12.2 µM, genistein 
5.55/11.1/22.2 µM, quercetin 2.48/4.96/9.92 µM, or resveratrol 1.1/2.2/4.4 µM, respectively. (a) 
Changes in viability induced by curcumin, genistein, and chosen combinations of two polyphenols 
relative to the non-treated control (100% viability). (b) Changes in viability induced by the curcumin 
and genistein mix and its supplementation with other nutraceuticals. Viability percentages were 
scored according to the control (100% viability), but the control was not included in the graph. All 
data points are presented as the mean ± SD of three independent tests (* p < 0.05, ** p < 0.01, *** p < 
0.001 vs. control; # p < 0.05, ## p < 0.01, ### p < 0.001 between two groups). 
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reducing the effect of genistein alone (p < 0.01) (Figure 2a). When quercetin was combined
with resveratrol, it did not affect MOLT-4 viability (Figure 2a). 

However, the addition of resveratrol and quercetin to the genistein/curcumin mix at 
1× bioavailable dose (11.1 µM of genistein, 6.1 µM of curcumin, 4.96 µM of quercetin, 2.2 
µM of resveratrol) (G/C/Q/R) decreased MOLT-4 viability by an additional 16% (p < 0.001) 
compared to G/C mix (Figure 2b). The difference was still present after 48 and 72 h (18%, 

Figure 2. MOLT-4 viability after 24, 48, and 72 h with phytochemical’s combinations according to their
bioavailability. Cell viability was determined by MTT metabolic assay at 24, 48, and 72 h after supple-
mentation with different mixes of curcumin (C), genistein (G), quercetin (Q), and resveratrol (R) com-
bined at a comparable dose according to their bioavailability. Bioavailable concentration specific for
each dietary polyphenol at 0.5/1/2× dose: curcumin 3.05/6.1/12.2 µM, genistein 5.55/11.1/22.2 µM,
quercetin 2.48/4.96/9.92 µM, or resveratrol 1.1/2.2/4.4 µM, respectively. (a) Changes in viability
induced by curcumin, genistein, and chosen combinations of two polyphenols relative to the non-
treated control (100% viability). (b) Changes in viability induced by the curcumin and genistein mix
and its supplementation with other nutraceuticals. Viability percentages were scored according to the
control (100% viability), but the control was not included in the graph. All data points are presented
as the mean ± SD of three independent tests (* p < 0.05, ** p < 0.01, *** p < 0.001 vs. control; # p < 0.05,
## p < 0.01, ### p < 0.001 between two groups).
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2.3. Genistein and Its Mixes Do Not Affect the Viability of a Normal Human Foreskin Fibroblast
Cell Line BJ

One of the main points in the application of polyphenols in anti-cancer therapy is
their well-documented safety. They were demonstrated to be non-toxic to normal cells
and well-tolerated in clinical trials in the case of curcumin [11,13,14], quercetin [23,24], and
resveratrol [25,26] or, when genistein is concerned, have minimal toxicity when applied
at a bioavailable concentration [18–20]. However, we still needed to evaluate whether
genistein mixed with other nutraceuticals can also affect human cells that did not undergo
neoplastic transformation.

To identify chemicals that could cause illness in humans via systemic or local routes
after a single exposure, OECD Guidance Document 129 recommends the use of mouse
BALB/c 3T3 embryonic fibroblasts or normal human epidermal keratinocyte NHK cells [68].
However, as the population doubling capacity of NHK cells is low, the application of a
normal human foreskin fibroblast BJ cell line, with a long lifespan in comparison with
other normal human fibroblast cell lines, was validated for toxicity testing [69] according
to OECD guidelines.

Therefore, we used the BJ cell line to test if genistein, its combination with curcumin
(G/C) or a mix of all phytochemicals (G/C/Q/R) has any effect on the viability of normal
human cells. All the analyzed combinations showed no significant effect on the viability
of BJ cells. They have even shown some tendency to increase their viability after 24 h
when nutraceuticals were applied at a 2× bioavailable concentration (12.2 µM of curcumin,
22.2 µM of genistein, 9.92 µM of quercetin, and 4.4 µM of resveratrol) (Figure 4). Further-
more, no decline in cell density population was observed in time, with cells reaching a
growth plateau after 24 h due to contact inhibition (Figure 5).
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Figure 4. BJ viability after 24 and 72 h with phytochemical combinations according to their bioavail-
ability. Cell viability was determined by MTT metabolic assay at 24 and 72 h after supplementation
with genistein, genistein/curcumin mix (G/C), and a mix of all analyzed polyphenols (G/C/Q/R). A
non-treated control from each data point was assumed to be 100% viability to demonstrate the relative
changes in viability in time at each concentration. Polyphenols were combined at a comparable dose
according to their bioavailable concentration at 0.5/1/2× dose: curcumin 3.05/6.1/12.2 µM, genistein
5.55/11.1/22.2 µM, quercetin 2.48/4.96/9.92 µM, or resveratrol 1.1/2.2/4.4 µM, respectively. The
data are presented as the mean ± SD of three independent tests. Observed differences were not
statistically significant.
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Figure 5. Effect of selected combinations of phytochemicals on BJ viability in accordance with
population growth. Cell viability was determined by MTT metabolic assay at 24 and 72 h after
supplementation with genistein, genistein/curcumin mix (G/C), and a mix of all analyzed polyphe-
nols (G/C/Q/R). The viability of a non-treated control at 24 h was treated as 100% viability, and
the other percentages were scored accordingly. Polyphenols were combined at a comparable dose
according to their bioavailable concentration at 0.5/1/2× dose: curcumin 3.05/6.1/12.2 µM, genistein
5.55/11.1/22.2 µM, quercetin 2.48/4.96/9.92 µM, or resveratrol 1.1/2.2/4.4 µM, respectively. The
data are presented as the mean ± SD of three independent tests. Observed differences were not
statistically significant.

2.4. Mitochondrial Membrane Potential (MMP) and Cell Membrane Permeability (CMP) after the
Curcumin, Genistein, Quercetin, and Resveratrol Mix Treatment

One of the most common ways for nutraceuticals to inhibit the survival of neoplastic
cells is by inducing apoptosis [9]. Therefore, to analyze the efficiency of a combination of
curcumin, genistein, quercetin, and resveratrol in inducing cancer cell death, we analyzed
changes in mitochondrial inner membrane potential, as mitochondrial dysfunction plays
a central part in this process. Furthermore, depending on the intensity of the mitochon-
drial insult, the cell can undergo apoptosis, necrosis, and/or autophagic cell death [70].
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Therefore, we also analyzed changes in cell membrane permeability, a basic parameter of
necrosis, and later changes in apoptotic cell death, secondary necrosis [71].

A combination of all four analyzed nutraceuticals at 1× bioavailable dose (11.1 µM
of genistein, 6.1 µM of curcumin, 4.96 µM of quercetin, 2.2 µM of resveratrol) (G/C/Q/R)
decreased MOLT-4 mitochondrial membrane potential (MMP) by about 35 ± 8% compared
to the control (p < 0.001) after 24 h of incubation (Figure 6a). The decrease has kept stable
for the next 48 h. For this combination, half of a bioavailable dose (0.5×) had also some
effect (decrease by approx. 10% compared to the control; p < 0.001) for the first 48 h after
supplementation with the mix. In addition, 2× dose had an effect comparable to that of
a mitochondrial oxidative phosphorylation uncoupler, CCCP, used as a positive control
(Figure 6a). At 24 h point, the dose-dependent decrease in MMP cells correlated with a
dose-dependent increase in the percentage of MOLT-4 cells with a permeable cell membrane
(increase by 18 ± 10%, 81 ± 14%; 97 ± 2% compared to the control for 0.5×, 1× and 2× dose,
respectively, p < 0.001) (Figure 6c). The decrease in CMP at further time-point correlated
with an observed decrease in cell viability of MOLT-4 cells (Figure 2b) and an inhibition of
the cell population growth (Figure 3) induced by C/G/Q/R mix. Therefore, such reduction
is probably not the sign of recovery, but rather a depletion of the population part sensitive
to the activity of analyzed polyphenols. Such depletion is most probably the result of
mitochondrial injury leading to the disruption of cell membrane continuity, characteristic
of necrosis. The observed effect was cytotoxic and not cytostatic as confirmed by cell cycle
analysis. No statistically significant differences were observed in the cell cycle between
MOLT-4 control cells or cells treated with the analyzed polyphenols (Supplementary File S1:
Figure S3).
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Figure 6. Changes in mitochondrial membrane potential and cell membrane permeability induced
by a combination of phytochemicals. Cells were treated for 24, 48, and 72 h with a combination
of genistein/curcumin/quercetin/resveratrol (G/C/Q/R) combined at a comparable dose accord-
ing to their bioavailable concentration at 0.5/1/2× dose: curcumin 3.05/6.1/12.2 µM, genistein
5.55/11.1/22.2 µM, quercetin 2.48/4.96/9.92 µM, or resveratrol 1.1/2.2/4.4 µM, respectively. (a,b) Mi-
tochondrial membrane potential (MMP) of MOLT-4 (a) and BJ cells (b) was measured with non-treated



Int. J. Mol. Sci. 2022, 23, 4753 10 of 19

cells as a negative control, and CCCP-treated cells as a positive control for low MMP. (c,d) Cell
membrane permeability (CMP) of MOLT-4 (c) and BJ cells (d) was measured with non-treated cells as
a negative control. The data are presented as the mean ± SD of three independent tests (* p < 0.05,
*** p < 0.001 vs. respective control).

When a normal human foreskin fibroblast BJ cell line was analyzed, the changes
induced by C/G/Q/R mix at 1× bioavailable dose were non-linear, with a sharp drop
in MMP after the first 24 h (by 91 ± 0.5% compared to the control; p < 0.001), significant
recovery after 48 h (by 79 ± 10%; 14% difference with the control) and then some drop
to the level observed in MOLT-4 cells after 74 h (by 50 ± 6% compared to the control;
p < 0.001) (Figure 6b). We observed a similar change for 0.5× dose of the mix, while for 2×
dose, MMP decreased to the level of the positive control, CCCP, with the partial recovery
of MMP after 72 h (Figure 6b). The changes in CMP were similar to the ones observed for
MOLT-4 cells, even if slightly less steep (by approx. 5–9% for 1× dose). However, as this
combination of nutraceuticals did not induce any changes in the cell density of the BJ cell
population as indicated by the viability assays (Figures 4 and 5), such changes indicate that
while this mix induced a significant mitochondrial injury, the metabolic activity of cells
was for the most part resumed, and cell membrane continuity restored. Especially when a
bioavailable dose was applied (1×).

When the effect of the G/C/Q/R mix was compared with the mix of curcumin and
genistein only, the effect on MMP for MOLT-4 and BJ cells was increased by the addition
of quercetin and resveratrol. However, when CMP was analyzed, this addition increased
the percentage of MOLT-4 cells with permeable cell membrane but had no effect when
BJ cells were concerned (Supplementary File S2: Figure S2). This confirms a difference
in the changes induced in the CMP of neoplastic and normal cells by the mix of the
analyzed phytochemicals.

3. Discussion

The current paradigm for cancer treatment is one of a multi-faceted approach, as
cancer is a cytogenetic disease with many metabolic pathways taking part in the regulation
of its progression [72]. Nutraceuticals can take part in such multitargeted treatment;
however, their application is hindered mainly by their low oral bioavailability [9,39]. Here,
we demonstrated that biochemical interactions between the nutraceuticals analyzed in
this research allow their anti-cancer activity to be increased against acute lymphoblastic
leukemia (ALL) at concentrations that are bioavailable in vitro [33,53–59]. While genistein
had the strongest effect on the viability of the MOLT-4 cell line, stronger than the more
popular curcumin, at a bioavailable dose, it was not sufficiently effective to induce a
significant inhibitory effect on such a fast-growing cell line. However, by combining
genistein with curcumin, we obtained a significantly stronger effect, decreasing MOLT-4
viability as a lower dose (0.5× bioavailable dose) and at an earlier time-point (24 h for
1× dose).

An interactive effect between genistein and curcumin was not surprising, as cur-
cumin has a high potential for synergistic activity [9]. It can target various pathways
responsible for the proliferation, the activation of protein kinases, cell survival, tumor
suppression, caspase activation, and death receptor activation as well as many others,
including transcription factors and epigenetic regulators [8,73,74]. Furthermore, various
studies demonstrated that curcumin can induce both autophagy and apoptosis via the
regulation of the Akt/mTOR/S6K axis [31,75,76]. Curcumin was shown to inhibit mTORC1
(mammalian target of rapamycin complex 1) signaling even at a low concentration (2.5 µM)
as well as phosphorylation of its direct effector, S6 kinase 1 [77,78]. For genistein, the inhi-
bition of S6 kinase (S6K) phosphorylation was pointed out as a mechanism through which
it can induce long-term changes in protein synthesis [79,80]. Thus, the increased effect of
the curcumin/genistein mix observed here could be due to interactive effects through the
regulation of S6 kinase activation resulting in apoptosis via the Akt/mTOR/S6K axis. Both
genistein and curcumin were demonstrated to induce mitochondrial dysfunction through
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mitochondrial permeability transition (MPT) followed by a decrease in MMP [81–83]. This
well-researched and confirmed mechanism of action for curcumin and genistein can explain
the long-term changes in MOLT-4 viability and MMP observed in our research when both
phytochemicals are known to be rapidly metabolized [41–43].

The effect of curcumin/genistein mix could be further enhanced by its supplemen-
tation with quercetin and resveratrol, resulting in a stronger effect for 1× dose and an
earlier effect for a lower 0.5× dose. The mechanism of action of both these phytochemicals
is also quite well researched. Quercetin was shown to induce mitochondria-mediated
apoptosis in cancer cells through the inactivation of Akt-1 in the Akt/mTOR axis [84–86], a
change that in AML cells correlated with a drop in MMP [86]. Quercetin was also shown
to induce apoptosis through the activation of the extracellular signal-regulated kinase
(ERK) [87,88] in a MAPK (mitogen-activated protein kinase) pathway that intersects with
the Akt/mTOR/S6K axis in the regulation of cell survival, proliferation, and cell death [89].
Resveratrol, similar to curcumin, has a high potential for synergistic activity, as it can
target multiple pathways responsible for proliferation, cell cycle arrest, apoptosis, and cell
growth and survival. It can also induce apoptosis by suppressing ERK signaling and Akt
signaling [46,90,91]. Both compounds demonstrated synergistic activity with each other,
inhibiting cell growth in the SCC-25 oral squamous carcinoma cell line [92] or increasing
MMP in the human pancreatic carcinoma Mia PACA-2 cell line [93]. However, their effect
on the viability of tumor cells in vitro could be obtained only at concentrations higher than
bioavailable [10,33,36,62,63], as we also observed. While some research showed that their
combination has an anti-cancer effect even at low concentrations present in diluted red
wine, the presence of other wine phytochemicals was indicated to be responsible for this
effect [92].

One of the most significant points of our research was that we demonstrated a differ-
ence in the activity of our mix of phytochemicals against normal and neoplastic cells. It
did not affect the viability of normal human foreskin fibroblasts (BJ cells). The BJ cell line
consists of normal, finite lifespan cells without any dysfunction in homeostasis, constricted
in their proliferation by contact inhibition and forming a stable population. While we
observed a significant drop in their MMP after 24 h, with prolonged incubation BJ cells, we
were able to mostly recover high MMP, even at 2× dose, without any drop in their viability.
For the MOLT-4 cell line, while the drop in MMP after the first 24 h was not as steep as the
BJ cells, it correlated with a drop in cell viability and inhibition of cell population growth.
This difference could be explained by the difference in mitochondrial potential between
tumor and normal cells, as it is approximately 60 mV higher in carcinomas as compared
to their normal controls. Therefore, selective killing of carcinoma cells can be obtained
through mitochondrial toxicity [94]. Furthermore, the significant drop in MMP in BJ cells
when the mix of all four nutraceuticals was used can paradoxically block the induction of
apoptosis in BJ cells and allow for recovery. In our previous research, we demonstrated that
a rapid decrease in MMP might suggest that ATP is depleted and the process of apoptosis
might be inhibited, as proper levels of ATP generation are needed for the execution of this
process [95].

Such decreased levels of ATP due to the reduced MMP were shown to affect the
function of Na+/K+ ATPases and finally contribute to cell swelling and cell membrane
permeability (CMP) [96]. Both cell lines demonstrated a similarly sharp increase in CMP
at 24 h; however, BJ cells were able to restore their membrane continuity as indicated by
viability assays. The ability of tumor cells to migrate and invade requires an increase in
cell membrane dynamics. Exposing them to higher physical stress, in association with
their altered membrane stiffness, makes them more sensitive to stretch-induced membrane
pores/ruptures [97,98]. Even resting MOLT-4 cells have abundant microvilli of various
lengths and densities and can undergo polarization [99]. While cell membrane repair is
triggered by calcium influx at the injury site [100], mitochondria have an important role as
a facilitator of this acute and localized repair response [101,102]. Decreased sensitivity to
rupture the cell membrane when pores are formed together with increased ability to restore
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MMP and thus activity of mitochondria in cell membrane repair allows non-neoplastic cells
to be protected against cytotoxic activity of our mix, while the ALL cell line, MOLT-4, still
can be affected.

Many nutraceuticals, especially polyphenols, are investigated in clinical trials, report-
ing their safety and effectiveness of anti-cancer activity as mixtures of polyphenols and in
combination with anti-cancer drugs [103,104]. We have demonstrated here that a novel,
complex combination of polyphenols applied at a bioavailable concentration can induce
interactive effects and significantly inhibit the viability of MOLT-4 cells without influencing
normal human fibroblasts. This indicates that the precise composition of a nutraceutical
cocktail could possess antitumor properties with fewer side effects for healthy cells than
chemotherapy treatment applied for acute T lymphoblastic leukemia patients. However,
further studies conducted on primary cell cultures, animal models, and finally on patients
are needed to confirm the results obtained in the presented in vitro research. Nevertheless,
our data show that the application of phytochemicals, especially their interactive combina-
tions, is the correct approach for investigating alternative treatments to toxic chemotherapy
protocols or for the supplementation of traditional therapy to increase its efficiency and
decrease side effects.

Furthermore, a combination of polyphenols can also lead to an improvement in
their poor bioavailability in vivo [105]. In particular, quercetin was shown to enhance the
bioavailability of other drugs, through pharmacokinetic interaction, as a potent inhibitor
of CYP3A4 and a modulator of P-gp [105–107]. Its addition to the mix can potentially
reduce the activity of curcumin as an inhibitor of the P-gp function [108]. However, the
changes in the uptake of the curcumin, genistein, quercetin, and resveratrol mix in vivo still
need to be checked experimentally. Furthermore, in designing such an in vivo study, the
potential influence of metabolism on the status of phytochemicals in the body after their
administration should be carefully considered. Some phytochemicals present in plasma
after oral uptake can be metabolized faster in contrast to the slower metabolism of parent
compounds after parenteral administration, including genistein and quercetin [43,44].

4. Materials and Methods
4.1. Cell Lines

An acute T lymphoblastic leukemia cell line, MOLT-4, was acquired from the European
Collection of Authenticated Cell Cultures (ECACC, a part of Public Health England, Porton
Down, Salisbury, UK) (Cat No. 85011413). BJ, normal human foreskin fibroblasts were
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) (Cat
No. CRL-2522). MOLT-4 cells were maintained long-term as a suspension cell culture
in RPMI 1640 medium supplemented with 2 mM Glutamine and 10% FBS (Fetal Bovine
Serum). Cells were subcultured by dilution in a fresh medium. BJ cells were maintained
short-term as an adherent cell culture in EMEM medium supplemented with 10% FBS
and subcultured with a trypsin-EDTA solution. Both cell lines were cultivated in a CO2
incubator at 37 ◦C in a humidified atmosphere containing 5% CO2.

4.2. Phytochemicals and Their Combinations

Curcumin from Curcuma longa L. (Turmeric, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-
1,6-diene-3,5-dione) (Cat No. C1386), genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-
4-one) (Cat No. G6649), quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-
one) (Cat No. Q4951), resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol)
(Cat No. R5010) were purchased from Sigma-Aldrich (St Louis, USA) and dissolved in 100%
DMSO (dimethyl sulfoxide) to obtain stock solutions (9, 12, 6 and 2 mg/mL, respectively).

The bioavailable concentrations of phytochemicals chosen for analysis were: 6.1 µM
(2.25 µg/mL) for curcumin [53,54], 11.1 µM (3 µg/mL) for genistein [55,56], 4.96 µM
(1.5 µg/mL) for quercetin [57,59] and 2.2 µM (0.5 µg/mL) for resveratrol [33,58] (denoted
on all graphs as 1×). However, as the range of bioavailability varies in the already published
data for each analyzed compound, we also chose to analyze concentrations amounting to
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half of and double the chosen bioavailable dose (denoted as 0.5× and 2× on all graphs,
respectively) (Table 1).

Mixes of phytochemicals were prepared by combining reagents at the same bioavail-
able concentration in the complete medium supplemented with 10% FBS. At 2× bioavail-
able concentration, dilution with the medium decreased the DMSO level to 0.05%, below
the concentration that can induce biological changes [64,65]. DMSO concentration was
adjusted to 0.05% for all subsequent serial dilutions as well as the control.

4.3. Cell Viability Assay (MTT Assay)

Cell viabilities of MOLT-4 and BJ cells were assessed with an MTT (3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide) assay [109]. MOLT-4 cells were seeded into the wells
of a 96-well plate at a density of 3 × 104 cells per well in 50 µL of the medium, and then
serial dilutions of the analyzed reagents were added in 50 µL of the medium to the end
volume of 100 µL per well. BJ cells were seeded into the wells of a 96-well plate at a
density of 1 × 104 cells per well in 100 µL of the medium, incubated overnight, and then
the medium was exchanged for serial dilutions of the analyzed reagents to the end volume
of 100 µL per well. The complete medium supplemented with 10% FBS was used. The
end concentration of DMSO was kept at the stable level of 0.05%, including the control
wells. After 24, 48, and 72 h of incubation in the CO2 incubator, cell viability was measured
with the MTT assay. Briefly, in this metabolic assay, tetrazolium salt is reduced to purple
formazan crystals through the activity of mitochondrial reductase. After 2–3 h, formazan
is dissolved with 100 µL of acidified isopropanol and the optical density of the wells is
measured at 570 nm. The optical density of the wells containing cells cultured without any
analyzed reagents was assumed to represent 100% viability and used as a control.

4.4. Mitochondrial Membrane Potential Assay (MMP Assay)

The assay was based on the method published in Żołnowska et al. [110]. Briefly,
MOLT-4 cells were seeded into the wells of a 24-well plate at a density of 2 × 105 cells in
350 µL of the medium, and then serial dilutions of the analyzed reagents were added in
350 µL of the medium to the end volume of 700 µL per well. BJ cells were seeded into the
wells of a 24-well plate at a density of 5 × 104 cells in 500 µL of the medium, incubated
overnight, and then the medium was exchanged for serial dilutions of the analyzed reagents
to the end volume of 700 µL per well. The complete medium supplemented with 10%
FBS was used. The end concentration of DMSO was kept at a stable level of 0.05%. The
cells were incubated for 24, 48, and 72 h in the CO2 incubator, and 30 min before the
end of incubation MitoProbe JC-1 was added into each well to the end concentration of
25 µM. After JC-1 staining, the cells were washed with phosphate-buffered saline (PBS),
trypsinized (Corning® 25-053CI), resuspended in PBS, and analyzed by flow cytometry at
λ excitation (ex) = 488 nm and λ emission (em) = 525/570 nm (LSR II BD Biosciences, New
Jersey, NJ, USA). Cells cultured without any analyzed reagents were treated as a control.
For a positive control, the cells were treated for 15 min with 200 nM of CCCP (carbonyl
cyanide m-chlorophenylhydrazone), a mitochondrial oxidative phosphorylation uncoupler,
before JC-1 addition.

4.5. Cell Membrane Permeability Assay (CMP Assay)

MOLT-4 and BJ cells were prepared as described for the MMP assay, except that 30 min
before the end of incubation, Trypan blue was added into each well to the end concentration
of 0.002%, and the cells were analyzed by flow cytometry at excitation λex = 488 nm and
emission λem = 610 nm (LSR II BD Biosciences, USA). Cells cultured without any analyzed
reagents were treated as a control. The assay was based on the method described in
Avelar-Freitas et al. [111].
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4.6. Cell Cycle Analysis

MOLT-4 cells were prepared as described for the MMP assay, except that after cells
were incubated for 24, 48, and 72 h with analyzed reagents, cells were fixed in cold 70%
ethanol for 30 min. Fixed cells were stained for 15 min in buffer containing 500 µg/mL
RNAse A (EURx, Gdansk, Poland) and 2.5 µg/mL of DAPI (Merck, Darmstadt, Ger-
many). The fluorescence of DAPI was measured at excitation λex = 355 nm and emission
λem = 440 nm with a flow cytometer (LSR II, BD Biosciences, Mountain View, CA, USA).
Each experiment was performed in triplicate. Data were analyzed off-line using the Kaluza
Analysis Software 2.1.3 (Beckman Coulter Life Sciences, IN, USA). The assay was based on
the method described in Żołnowska et al. [110].

4.7. Statistical Analysis

Mean values were obtained from at least three separate experiments with three techni-
cal repeats each and reported as the mean (±SD). For the viability assay, Statistica 12 soft-
ware was used, and the Mann–Whitney test for two unpaired groups of a non-Gaussian
population was applied. For the MMP and CMP assays, GraphPad Prism 7.02 software was
used, and the 2-way ANOVA test was applied. p values < 0.05 were considered significant.
The combination index (CI) was analyzed with CompuSyn software.

5. Conclusions

We demonstrated that curcumin and genistein at their bioavailable concentration
have a significant interactive effect on MOLT-4 cell line viability in vitro. Resveratrol and
quercetin did not affect MOLT-4 cell line viability, alone or in a combination, but added
together to the genistein/curcumin mix, were able to enhance its anti-cancer effect. The
combination of these four polyphenols was non-toxic to normal human fibroblasts. While
it induced a decrease in MMP and correlated CMP changes, in non-tumor cells, metabolic
activity and cell membrane continuity were restored with time. We can conclude that
the “cocktail” of four natural compounds (6.1 µM curcumin, 11.1 µM genistein, 2.2 µM
resveratrol, and 4.96 µM quercetin) has a significant interactive anti-cancer effect. Hence, it
may be a promising treatment modality to improve the outcomes of acute lymphoblastic
leukemia treatment, particularly during the less intensive maintenance therapy that lasts
1.5–3 years, depending on the treatment regimen. Alternatively, introducing a viable anti-
cancer “nutraceutical cocktail” upon the conclusion of chemotherapy may also offer an
opportunity to reduce the risk of late relapses, and spare pediatric patients from the heavy
burden of salvage therapies, while avoiding any risk of non-desirable interactions between
these compounds and chemotherapeutic agents. Further research is required to confirm
our hypothesis of whether it is applicable in vivo.
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Abbreviations

Akt Protein kinase B
ALL Acute lymphoblastic leukemia
AML Acute myeloid leukemia
ATCC American Type Culture Collection
ATP Adenosine triphosphate
ATPase Adenosine triphosphatase
C Control
CCCP Carbonyl cyanide m-chlorophenyl hydrazone
CI Combination index
CMP Cell membrane permeability
CYP3A4 Cytochrome P450 3A4
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
DPBS Dulbecco’s phosphate-buffered saline
ECACC European Collection of Authenticated Cell Cultures
EMEM Eagle’s Minimal Essential Medium
ERK extracellular signal-regulated kinase
FBS Fetal bovine serum
G1 phase Gap 1 phase
G2 phase Gap 2 phase
M phase Mitosis phase
MAPK mitogen-activated protein kinase
MMP Mitochondrial membrane potential
MPT Mitochondrial permeability transition
mTORC1 Mammalian target of rapamycin complex 1
MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
NHK Normal human keratinocyte
OECD Organisation for Economic Co-operation and Development
PACA Pancreatic carcinoma
P-gp P-glycoprotein
PKC protein kinase C
RPMI-1640 Roswell Park Memorial Institute-1640 medium
RT Room temperature
S phase Synthesis phase
S6K S6 kinase 1
SCC Squamous carcinoma cell
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