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Abstract 

Background:  High yield and quality are essential goals of wheat (Triticum aestivum L.) breeding. Kernel length (KL), as 
a main component of kernel size, can indirectly change kernel weight and then affects yield. Identification and utiliza-
tion of excellent loci in wheat genetic resources is of great significance for cultivating high yield and quality wheat. 
Genetic identification of loci for KL has been performed mainly through genome-wide association study in natural 
populations or QTL mapping based on genetic linkage map in high generation populations.

Results:  In this study, an F3 biparental population derived from the cross between an EMS mutant BLS1 selected 
from an EMS-induced wheat genotype LJ2135 (derived from the hybrid progeny of a spelt wheat (T. spelta L.) and a 
common wheat) mutant bank and a local breeding line 99E18 was used to rapidly identify loci controlling KL based 
on Bulked Segregant Analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array. The highest 
ratio of polymorphic SNPs was located on chromosome 4A. Linkage map analysis showed that 33 Kompetitive Allele 
Specific PCR markers were linked to the QTL for KL (Qkl.sicau-BLE18-4A) identified in three environments as well as 
the best linear unbiased prediction (BLUP) dataset. This QTL explained 10.87—19.30% of the phenotypic variation. 
Its effect was successfully confirmed in another F3 population with the two flanking markers KASP-AX-111536305 and 
KASP-AX-110174441. Compared with previous studies and given that the of BLS1 has the genetic background of spelt 
wheat, the major QTL was likely a new one. A few of predicted genes related to regulation of kernel development 
were identified in the interval of the detected QTL.

Conclusion:  A major, novel and stable QTL (Qkl.sicau-BLE18-4A) for KL was identified and verified in two F3 biparental 
populations across three environments. Significant relationships among KL, kernel width (KW) and thousand kernel 
weight (TKW) were identified. Four predicted genes related to kernel growth regulation were detected in the interval 
of Qkl.sicau-BLE18-4A. Furthermore, this study laid foundation on subsequent fine mapping work and provided a pos-
sibility for breeding of elite wheat varieties.
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Background
The annual increase rate of wheat (Triticum aestivum L) 
yield will be deficient to meet the future needs of the rap-
idly growing population. The decrease of genetic diver-
sity among wheat varieties under the modern breeding 
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mode is one of the reasons for the above phenomena [1]. 
Spelt wheat (T. spelta L.), one of the hexaploid wheats, is 
an archaic cereal with the primitive genomes related to 
bread wheat. Spelt wheat has high nutritional composi-
tions, and its microelement content is higher and more 
abundant than common wheat [2, 3]. Spelt and bread 
wheat have the same genome (AABBDD), and their 
genetic distance is comparatively small, which is helpful 
for the production of stable cross breeds [4]. Compared 
with ancestral wheat species, the phenotypic variation 
of kernel traits in the modern germplasm pool is sig-
nificantly reduced [5]. Therefore, it is of important sig-
nificance to excavate new loci controlling kernel traits 
in wheat breeding. Kernel length (KL), as one of the 
main components that constitute kernel size, is a com-
plex quantitative trait controlled by multiple genes. It 
can indirectly change kernel weight and ultimately affect 
yield [6]. Furthermore, genetic and phenotypic structures 
support variations in kernel size and shape. Kernel size 
increases gradually through changes in KW and KL, and 
in the later stage, changes in kernel shape are mainly real-
ized through changes in KL [5]. For example, TaGL3-5A 
was co-located with a significant QTL for KL. Correla-
tion analysis revealed that the TaGL3-5A-G allele was 
significantly correlated with longer KL and higher thou-
sand kernel weight (TKW) [7]. TaGS-D1 is associated 
with kernel weight and KL in common wheat [8]. Thus, 
it is extremely important to identify and utilize loci asso-
ciated with KL in wheat gene resources for cultivating 
wheat with high yield and quality.

As typical quantitative traits, kernel traits are sensitive 
to environmental effects. The application of quantitative 
trait loci (QTL) provides an efficient method for studying 
complex quantitative traits [9]. Numerous studies related 
to QTL for kernel traits have been reported in wheat. For 
example, QTL for KL were detected on chromosomes 
1B, 2B, 2D, 3B and 7B [10]. Thirteen QTL affecting KL 
were identified on chromosomes 2A, 2B, 2D, 3A, 6B, 7A, 
and 7B [11]. TAGS-D1, a homologous gene of OsGS3 
in rice, was located on 7DS and increased KL and ker-
nel weight [8]. Three QTL (QGw.nau-2D, QGw.nau-4B, 
and QGw.nau-5A) had effects on KL, kernel width (KW) 
and kernel thickness (KT) of wheat [12]. A single nucleo-
tide polymorphism (SNP) locus was found to be closely 
linked to a QTL associated with KL on 7AL [13]. A major 
QTL on 5A increased KL by increasing the length of 
kernel epidermis cells to achieve the purpose of enhanc-
ing kernel weight [14]. Three major QTL QKL.sicau-2D, 
QKW.sicau-2D and QTKW.sicau-2D for KL, KW and 
TKW were identified in the same interval on 2DS [15]. 
QKL.sicau-2SY-1B, QKW.sicau-2SY-6D, QKT.sicau-2SY-
2D, and QTKW.sicau-2SY-2D, QLWR.sicau-2SY-6D, QKS.
sicau-2SY-1B/2D/6D, and QFFD.sicau-2SY-2D for KL, 

KW, KT, TKW, kernel length–width ratio (LWR), kernel 
size (KS), and factor form density (FFD) were located on 
1B, 2D, and 6D and formed 3 QTL clusters [16]. Eleven 
QTL affecting KL and KW including two major QTL 
QKL.sicau-AM-3B and QKW.sicau-AM-4B were identi-
fied on 3BL and 4BL [17].

According to the extreme differences of individual phe-
notypes in the offspring population produced by a pair 
of parents with related traits, two gene banks were con-
structed by screening and collecting DNA samples for of 
Bulked Segregant Analysis (BSA). This method usually 
provided a convenient and quick method for identify-
ing markers for genomic regions associated with target 
traits [18, 19]. In previous studies, PCR-based molecular 
markers, such as amplified fragment length polymor-
phism (AFLP) and simple sequence repeats (SSR), had 
been generally used for gene mapping, but these mark-
ers usually take a long time to construct the map, and the 
density of map cannot meet the demand of fine mapping 
[20]. SNPs are important resource of polymorphic mark-
ers and can be used for gene mapping in the genome of 
any living organism. In the process of genotyping and 
marker-assisted selection, the wheat 660 K SNP array is 
an accurate, economical and dependable option [21].

To our knowledge, many reports have shown that using 
early generations of wheat to rapidly conduct major and 
stable QTL analysis combined with BSA and the wheat 
660 K SNP array. For example, on the basis of BSA and 
the wheat 660 K SNP array in F1, F2, and F2:3 populations, 
YrZl31 conferring stripe rust resistance was mapped on 
chromosome 2BL [20]. Qyryac.nwafu-2BS, a novel QTL 
for adult plant resistance to stripe rust was identified on 
2B using BSA and 660 K SNP array in an F2:3 population 
[22]. The above method has been widely used to identify 
wheat resistance genes, but rarely applied in quantitative 
traits. QTL related to KL in wheat have been detected on 
almost each of the chromosomes, but they were usually 
shown as micro-effect and unstable. Most of them were 
detected in a single population and not verified in diverse 
backgrounds. Therefore, it is necessary for wheat breed-
ing to excavate and identify major and stable QTL for KL.

In this study, we employed early generations of wheat 
population in combination with BSA-660  K SNP array 
to detect genetic differences between two pools with 
extreme phenotypes of KL. And we further identify and 
validate major and stable QTL for KL across different 
environments base on a linkage map.

Materials and methods
Plant materials
Two F3 biparental populations derived from the crosses 
between three wheat genotypes: BLS1 and 99E18 (BLE18, 
the mapping population) and between BLS1 and Sumai3 
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(BLSM3, the validation population), comprising 237 and 
178 lines, respectively, were used in this study. BLS1 is a 
genetically stable mutant (M5 generation) selected from 
an EMS-induced wheat genotype LJ2135 mutant bank. 
LJ2135 was a genetically stable line and is derived from 
the hybrid progeny of a spelt wheat (T. spelta L., LS5893) 
and a common wheat (JM6893), Given its relatively bet-
ter agronomic traits including appropriate plant height 
and large spike, LJ2135 was selected to be a breeding par-
ent. The KL of BLS1 can reach 8 mm under conventional 
cultivation conditions. The lines 99E18 and Sumai3 show 

shorter KL than BLS1 (Fig. 1a and Figure S1), and both 
have excellent disease resistance [23], especially Sumai3, 
which is a classic wheat variety with famous fusarium 
head blight resistant gene, Fhb1 [24].

Phenotypic evaluation
In October of 2020, the BLE18 and BLSM3 populations 
were grown in three different environments including 
Wenjiang (103°51ʹE, 30°43ʹN), Chongzhou (103°38ʹE, 
30°32 ʹN), and Ya’an (103°0ʹE, 29°58ʹN) of Sichuan Prov-
ince in China. Each line was planted in a single 1.5 m row 

Fig. 1  The phenotypes of kernels and pericarp cells. a Kernel phenotypes of the parents and partial lines in BLE18 population. Scale bar = 1 cm; 
b Scanning electron microscope observation of pericarp cells in mature kernels. Scale bar = 50 μm; c, d. Statistical analysis of cell length and width 
of kernel pericarp cells
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with 0.3 m between rows, and 15 kernels were sown in a 
row with 0.1 m between kernels within a row. The field 
management followed the local practices of wheat pro-
duction. After the harvested kernels were dried at 37 °C 
in an oven until a constant dry weight was obtained [25], 
36 full and uniform kernels mainly from the spikelets 
located in the middle of the spike of different plants in 
each line were selected and scanned by the Epson Expres-
sion 10,000 XL flatbed color image scanner (Seiko Epson 
Corporation, Japan) and further analyzed by WinSEE-
DLE (Regent Instruments Canada Inc) for measurements 
of KL and KW. Cell length and width of kernel pericarp 
from three parents were observed and measured using 
the Quanta 450FEG scanning electron microscope. Dif-
ferent lines were characterized phenotypically in different 
environments. Totally, 239, 218 and 137 lines of BLE18 
were measured in Wenjiang, Chongzhou, and Ya’an, 
respectively. Notably, some lines with poor-quality ker-
nels especially in Ya’an were not used for further analy-
sis, and the statistics of lines used for kernel investigation 
in Ya’an were listed in Table S1. Hundred kernel weight 
(HKW) was obtained by randomly weighting 100 kernels 
per line through an electronic balance with the precision 
of 0.01 g, and TKW calculated as 10-folds of the average 
HKW with three replicates.

BSA, Wheat 660 K SNP array analysis, and KASP markers 
development
The combination of BSA and the wheat 660 K SNP array 
was performed to identify SNPs between two parents 
and two phenotypically contrasting pools. The 30 lines in 
each of two relative extreme mixing pools were selected 
through the following steps: (1) The phenotypic data of 
KL of BLE18 in three environments were arranged in a 
descending order. The number of 40 lines with the maxi-
mum and minimum values in the three environments 
were respectively taken and recorded. (2) Average values 
of each line from three-environments phenotypic data of 
KL were calculated and recorded. (3) The intersection of 
the numbers obtained in (1) and (2) was screened, and 
30 lines with the maximum and minimum values were 
finally selected. The equal amounts of genomic DNA 
from 30 lines with the shortest KL (10 kernels per line), 
30 lines with the longest KL (10 kernels per line) and two 
parents were extracted using the CTAB method [26]. The 
DNA were further used for the wheat 660  K SNP array 
analysis in Beijing CapitalBio Technology Co, Ltd. Two 
parent pools were used to exclude interference of false 
positive markers. For example, one marker showing poly-
morphic between two phenotypically contrasting pools, 
but not between parents will be excluded.

The polymorphic SNPs between two extreme mixing 
pools associated with the target QTL were converted 

into Kompetitive Allele Specific PCR (KASP) mark-
ers to construct linkage map. The sequences of primers 
were designed as per the KASP primer design manual 
[27], and the primer sequences are listed in Table S2. 
The allele-specific forward primers were designed carry-
ing FAM (5′-GAA​GGT​GAC​CAA​GTT​CAT​GCT-3′) and 
HEX (5′-GAA​GGT​CGG​AGT​CAA​CGG​ATT-3′) at the 5′ 
end. In this study, the KASP amplification reaction was 
conducted in volume of 10  μl including 5  μl of 1 × Sso-
Fast EvaGreen mix (Bio-Rad, Hercules, CA, USA), 1.4 μl 
of mixture forward and reverse primers, 3.1 μl of deion-
ized water and 0.5 μl of 50–80 ng/ μl DNA. PCR cycling 
was performed using the following procedure: hot start-
ing at 94  °C for 15 min, 10 touchdown cycles (94  °C for 
20  s; touchdown 60  °C, drop 0.6  °C per cycle, for 60  s), 
and then by 25 cycles of amplification at 95  °C for 20 s, 
and 55 °C for 60 s.

Genotyping and genetic map construction
A total of 33 KASP markers were developed to detect 
SNP polymorphism between two parents, and the effec-
tive polymorphic markers were further used to genotype 
BLE18 population. The results of markers’ classifica-
tion were applied to construct the genetic linkage map 
with the Kosambi function format in JoinMap 4.0. The 
sequences of two flanking makers were used to blast 
(E-value of 1e-5) against the genome assembly of IWGSC 
RefSeq v2.1 (http://​202.​194.​139.​32/​blast/​blast.​html) to 
obtain the physical locations [28]. The linkage map was 
drawn by MapChart 2.2.

Data analysis and QTL mapping
Phenotypic variation, frequency distributions, and Pear-
son’s correlation coefficient were implemented using 
SPSS 22 (IBM SPSS, Armonk, NY, USA). The best linear 
unbiased prediction (BLUP) dataset of KL under three 
environments were calculated using SAS V8.0 (SAS 
Institute, Cary, NC, USA; https://​www.​sas.​com). The 
BLUP were calculated based on the following model: 
Yi = Xif + ai + ei, where f is a fixed-effects vector, Xi is an 
incidence vector, ai is the value of phenotype and ei is the 
environmental deviation [29]. Based on the genetic link-
age  map and kernel phenotypic data in three environ-
ments as well as the BLUP, we identified the QTL for 
KL using IciMapping 4.1 with the Inclusive Compos-
ite Interval Mapping (ICIM) setting the LOD thresh-
old ≥ 2.5 [30]. In addition, IciMapping 4.1 was used to 
analyze QTL × environment (QE) interaction, and the 
pre-adjusted parameters were as follows: step = 1  cM, 
PIN = 0.001 and LOD = 2.5. When the Percentage Vari-
ation Explained (PVE) of a given QTL was greater than 
10% and can be detected repeatedly in multiple envi-
ronments, it was considered as a major and stably 

http://202.194.139.32/blast/blast.html
https://www.sas.com
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expressed QTL. QTL was named in accordance with the 
International Rules of Genetic Nomenclature [16]. For 
example, the investigated QTL  was designated as Qkl.
sicau-BLE18-4A. In detail, ‘sicau’ means ‘Sichuan Agri-
cultural University’; the uppercase ‘Q’ indicates ‘QTL’; ‘kl’ 
represents kernel length, the abbreviation of the trait in 
this study; ‘BLE18’ indicates the mapping population; ‘4A’, 
represents the chromosome of this QTL.

Validation of the major QTL
After obtaining the initial result of QTL mapping, the 
flanking markers were used to verify the effect of this 
QTL in another genetic background to further deter-
mine its stability, authenticity, and reliability. Based on 
the marker profiles, the population was divided into two 
categories: lines with homozygous alleles from either 
parent BLS1 or Sumai3 (excluding heterozygous lines). 
Then student’s t-test (P < 0.05) was utilized to detect sig-
nificant difference between phenotypic data of two dif-
ferent types of lines.

Comparison of QTL for KL on chromosome 4A
To confirm whether the major QTL detected in this study 
is a novel locus, the sequences of flanking KASP mark-
ers (KASP-AX-111536305 and KASP-AX-110174441) for 
Qkl.sicau-BLE18-4A and those for previously identified 
QTL were utilized to perform blast searches against the 
reference genome sequence of T. aestivum cv. Chinese 
Spring (IWGSC RefSeq v2.1). Then, we compared the 
physical intervals to determine whether they overlap.

Orthologous alignment
The flanking markers of the major QTL in this study 
were further aligned with the physical map of Chinese 
Spring (IWGSC RefSeq v2.1) and wild emmer (T. tur-
gidum ssp dicoccoides, WEWSeq v2.0) to get ortholo-
gous genes. These genes were further analyzed for gene 
annotation and function on UniProt (http://​www.​unipr​
ot.​org/) [28, 31].

Furthermore, to identify the possible candidate genes 
of KL, the relative expression levels of the genes identi-
fied in the interval of Qkl.sicau-BLE18-4A were ana-
lyzed on the Triticeae Multiomics Center website (http://​
202.​194.​139.​32/​expre​ssion/​wheat.​html) and obtained 
through the wheat expression database of Chinese Spring 
cv-1 Development (single) [32].

Results
Phenotypic assessment and correlation analysis
Descriptive statistics for KL, KW and TKW of parents 
and two populations are presented in Table  1. Com-
pared with BLS1, the KL values of 99E18 were signifi-
cantly lower, but the KW values were significantly higher 

(Table  1and Fig.  1a). The KL and TKW values of BLS1 
were significantly higher than Sumai3, except for individ-
ual environment (Table 1). The frequency distributions of 
KL showed approximate normal distributions in BLE18 
across different environments (Fig. 2). The ranges of KL, 
KW and TKW were 6.53—8.98  mm, 3.17—4.29  mm, 
and 29.70 – 75.60  g, respectively, in BLE18 population. 
In all environments of BLSM3, KL ranged from 6.65 to 
9.51 mm, KW from 2.68 to 4.24 mm and TKW from 34.57 
to 67.40 g (Table 1). Both cell length and width of the ker-
nel pericarp were significantly greater in BLS1 than in 
99E18 and Sumai3, in agreement with the relationship 
of KL among three parents (Fig.  1b, c, d). The  positive 
correlations for KL were detected among three envi-
ronments with coefficient ranging from  0.52  to  0.55 in 
BLE18, and 0.43 to 0.56 among three environments in 
BLSM3 (P < 0.01, Table S3). The correlations among the 
three kernel traits were all significant for each other in 
BLE18 across multiple environments, with coefficient 
ranging from 0.17 to 0.79 (P < 0.05, Table  2). Significant 
and positive correlations were observed among KL, KW 
and TKW in BLSM3 across three environments, with 
correlation ranging from 0.03 to 0.76. Especially, there 
were extremely significant correlations (P < 0.01) between 
TKW and KL or KW in three environments, and the cor-
relation coefficients ranged from 0.38 to 0.76 (Table 2).

BSA and Wheat 660 K analysis
After genotyping with the wheat 660 K SNP array, the 
number of homozygous polymorphic SNPs between 
the extreme pools and two parent pools were con-
firmed, resulting in a total of 764 SNPs, and 446 of 
them (58.4%) were observed on chromosome 4A 
(Fig.  3a). Most of the SNPs on 4A were within an 
interval of 90—160 Mb (Fig. 3b). The number of other 
SNPs unequally distributed across other chromosomes 
were ranging from 2 to 77. These results preliminarily 
determined that a locus controlling KL was most likely 
located on chromosome 4A.

Genetic map construction and QTL mapping
A total of 33 KASP markers were developed based on 
polymorphic SNPs between two parents and two pheno-
typically contrasting pools on chromosome 4A, and were 
further used to genotype the population BLE18. Com-
bined with the genotyping results of different markers, 
the genetic linkage map was constructed with a length of 
28.9 cM (Fig. 3c).

A stable QTL (Qkl.sicau-BLE18-4A) for KL was 
detected in three environments as well as BLUP dataset. 
It was mapped between KASP-AX-111536305 and KASP-
AX-110174441, with an interval of 2  cM (Table  3 and 
Fig.  3c). It explained 10.87—19.30% of the phenotypic 

http://www.uniprot.org/
http://www.uniprot.org/
http://202.194.139.32/expression/wheat.html
http://202.194.139.32/expression/wheat.html
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variation, with LOD values ranging from 3.01 to 6.41. 
The positive allele of Qkl.sicau-BLE18-4A was contrib-
uted by the parent BLS1, and the KL values of the lines 
carrying BLS1 alleles were significantly higher than those 
carrying 99E18 ones (Fig. 3h). No QTL for KW or TKW 
was identified on this chromosome. Further analysis also 
showed that this major QTL had no direct effect on KW 
and TKW (Figure S2).

After QTL × environment (QE) interaction analysis 
(Table S4), two QTL were detected, of which only one 
was the same as Qkl.sicau-BLE18-4A, and had higher 
LOD (19.16) and PVE values (12.19%), further indicating 
that Qkl.sicau-BLE18-4A was a major and stable QTL.

Validation of the major QTL for KL
The flanking markers tightly linked to Qkl.sicau-BLE18-
4A were used to verify the effects of Qkl.sicau-BLE18-
4A in BLSM3 across different environments. The 
polymorphism between BLS1 and Sumai3 was detected 

using KASP-AX-111536305 and KASP-AX-110174441. 
According to the genotyping results, the population 
were divided into two categories. The KL of the lines 
carrying positive alleles from BLS1 was significantly 
higher than that of the lines without positive alleles 
(P < 0.05, Fig.  4), and the differences between the two 
categories ranged from 3.28% to 4.70% in the validation 
population across three environments.

The homozygous lines of parental alleles ‘BLS1’ 
and ʻSuami3’ at Qkl.sicau-BLE18-4A were selected 
in accordance with the genotyping data of KASP-
AX-111536305 and KASP-AX-110174441 for BLSM3 
population. T-test showed that the KW and TKW of 
the lines carrying the ‘BLS1’ alleles were not signifi-
cantly different from those of the lines without positive 
alleles in BLSM3 population across different environ-
ments, which further confirmed that Qkl.sicau-BLE18-
4A had no genetic effect on KW and TKW (Figure S3).

Table 1  Phenotype of the parents and two populations in different environments

Environment was defined with year and location. WJ, Wenjiang; CZ, Chongzhou; YA, Ya’an; BLUP, the best linear unbiased prediction; SD, standard deviation; CV, 
variation coefficient; /, data missing; **Significant at P < 0.01 between the two parents

Trait Environment Parents F3 population

P1 P2 Range Mean SD CV (%)

BLE18 – BLS1 (P1) × 99E18 (P2)

 Kernel length (mm) 2020-WJ 8.63** 6.93 6.68–8.98 7.68 0.36 4.7

2020-CZ 8.63** 6.91 6.59–8.83 7.63 0.41 5.33

2020-YA 8.25** 6.53 6.53–8.52 7.49 0.39 5.16

BLUP 8.50 6.98 6.98–8.50 7.60 0.23 3.05

 Kernel width (mm) 2020-WJ 3.93** 4.07 3.54–4.29 3.96 0.13 3.16

2020-CZ 3.64** 3.76 3.29–4.26 3.87 0.17 4.39

2020-YA 3.47** 3.76 3.17–4.17 3.75 0.17 4.62

BLUP 3.79 3.86 3.76–3.93 3.85 0.04 0.91

 Thousand -kernel weight (g) 2020-WJ 62.05 57.57 42.47–74.33 59.99 5.04 0.08

2020-CZ 60.67** 44.67 29.70–75.60 57.25 6.69 0.12

2020-YA / 43.00 32.00–74.00 50.12 7.11 0.14

BLUP 57.10 51.77 49.04–63.72 56.08 2.42 0.04

BLSM3 – BLS1 (P1) × Sumai 3 (P2)

 Kernel length (mm) 2020-WJ 8.99** 6.44 6.65–9.51 8.03 0.48 5.98

2020-CZ 9.09** 6.92 7.26–9.25 8.16 0.51 6.25

2020-YA 8.28** 7.05 6.83–8.63 7.88 0.39 4.95

BLUP 8.82 7.07 7.29–8.98 8.19 0.31 3.79

 Kernel width (mm) 2020-WJ 3.66 3.75 2.68–4.24 3.76 0.26 6.91

2020-CZ 4.05 4.11 3.31–4.21 3.9 0.18 4.62

2020-YA 3.77** 3.80 3.03–4.12 3.63 0.21 5.79

BLUP 3.83 3.84 3.60–3.89 3.82 0.07 1.83

 Thousand -kernel weight (g) 2020-WJ 56.23** 44.83 39.77–67.40 54.55 5.75 0.11

2020-CZ 61.20** 44.90 40.17–65.97 54.15 5.71 0.11

2020-YA 50.30 46.00 34.57–60.37 46.04 5.86 0.13

BLUP 53.81 48.19 46.53–56.13 51.48 1.81 0.04
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Discussion
Qkl.sicau‑BLE18‑4A is a novel and stable QTL
Here, a major and stably expressed QTL, Qkl.sicau-
BLE18-4A related to KL was detected in wheat between 
KASP-AX-111536305 and KASP-AX-110174441 on 

chromosome arm 4AS. In addition, its genetic effect 
was further validated in another verification population 
(Fig. 4), which suggested its reliability and stability.

Qkl.sicau-BLE18-4A was physically located between 
101.74 Mbp and 109.25 Mbp on 4AS of Chinese Spring. 
To the best of our knowledge, only a few reports have 
documented QTL related to KL on 4A, and most of them 
were located on the long arm of 4A (4AL), such as QKl-
4A.1, qKL-4A, QKl.sdau-4A, QKL.sicau-4A, QGl.ccsu-
4A.1 and QKl.sau-4A.1 [11, 15, 33–38] (Table S5). In 
addition to the QTL mentioned above, we found some 
QTL on 4AS in previous reports. For example, Q37, a 
minor QTL, was located in the physical position of 47 
Mbp, and the flanking marker Xgwm397 of Q37 was 
located at 47.3 Mbp [39]. QGl-4A was in the physical 
interval from 120.0 to 140.4 Mbp on 4AS and mapped 
into a 0.37  cM genetic interval [40]. QKl.sau-4A.2 was 
co-located between 41.7 and 60.3 Mbp on chromosome 
4AS of CS reference genome [38]. None of the above 
three genes overlapped with the interval of Qkl.sicau-
BLE18-4A. In addition, as BLS1 is a mutant from an 
EMS-induced wheat genotype that was derived from the 
hybrid progeny of a spelt wheat and a common wheat. 
We think Qkl.sicau-BLE18-4A from this mutant may be 
different from previously reported ones, and should be 

Fig. 2  Frequency distributions for kernel length (KL) in BLE18 across different environments. Environment was defined with year and location. WJ, 
Wenjiang; CZ, Chongzhou; YA, Ya’an

Table 2  Correlation of different kernel traits in BLE18 and BLSM3 
populations across different environments

KL kernel length (mm), KW kernel width (mm), TKW, thousand kernel weight (g), 
Environment was defined with year and location. WJ, Wenjiang; CZ, Chongzhou; 
YA, Ya’an; **Significant at P < 0.01, *Significant at P < 0.05

Populations Environments Traits KL KW

BLE18 2020-WJ KW 0.18** 1

TKW 0.55** 0.56**

2020-CZ KW 0.17* 1

TKW 0.49** 0.67**

2020-YA KW 0.25** 1

TKW 0.46** 0.79**

BLSM3 2020-WJ KW 0.10 1

TKW 0.54** 0.54**

2020-CZ KW 0.03 1

TKW 0.47** 0.44**

2020-YA KW 0.14 1

TKW 0.38** 0.76**
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most likely a novel locus. Further, spelt wheat has high 
nutritional value and contains all the basic components 
which are necessary for human beings including protein 
content and composition, lipids, crude fiber and vitamins 
[3]. Hybrids of common wheat and spelt wheat provide a 
positive selection by eliminating undesirable quality and 
improving nutritional value of bread wheat [41]. Thus, 
the lines carrying positive allele at Qkl.sicau-BLE18-4A 
should have breeding value given its spelt wheat genetic 
background.

Analysis of the predicated genes in the interval of Qkl.
sicau‑BLE18‑4A
We attempted to predict candidate genes for the iden-
tified QTL for KL on 4AS chromosome on the basis of 
the homology comparison results for Chinese Spring 
(IWGSC RefSeq v2.1) with wild emmer (WEWSeq v2.0) 
reference genomes. The physical location of Qkl.sicau-
BLE18-4A is between 101.74 to 109.25 Mbp on Chinese 
Spring and 102.82 to 110.38 Mbp on wild emmer (Fig. 3 
d, g). Searching analysis indicated that there were 36 
genes in the physical map of Chinese Spring and 38 genes 
in the physical map of wild emmer wheat, with 33 in 
common (Table S6 and Fig. 3e, f ).

For 33 orthologs, three previously reported genes 
might be related to kernel traits, and their relative expres-
sion levels (http://​202.​194.​139.​32/​expre​ssion/​wheat.​
html) were relatively high in kernels (Figure S4). For 
example, TraesCS4A02G094300 encodes phosphatase 
2C, a negative regulator of abscisic acid signaling [42]. 
TraesCS4A02G094500 encodes tropinone reductases 
which function at the branch point of tropane alkaloid 
metabolism [43]. TraesCS4A02G095500 encodes an ade-
nyl-nucleotide exchange factor activity that was related 
to signal transmission [44].

Interestingly, the relative expression levels of TraesC-
S4A03G0195700 and TraesCS4A03G0196500 were 
the highest in the kernel compared with other tissues 
(leaves, spike and root). The expression levels of TraesC-
S4A03G0193400 and TraesCS4A03G0193900 in kernel 
were not the highest, but their expression levels in ker-
nels were almost the same as other tissues (Figure S4). In 
summary, the above four genes are the emphasis in our 
subsequent research of fine mapping and gene cloning.

Correlation between kernel traits
In this study, KL, KW and TKW were positively corre-
lated in BLE18 across three environments. Notably, the 
correlation between KL and TKW, as well as between 
KW and TKW were positively significant (Table 2), which 
was consistent with previous studies [15, 34, 45–47].

Previous studies reported numerous co-located QTL 
for KL, KW and TKW. For example, QKL.sicau-2D for 
KL, QKW.sicau-2D for KW and QTKW.sicau-2D for 
TKW were co-located in the same interval. QKL.sicau-
1A for KL and QTKW.sicau-1A for TKW were co-located, 
QKL.sicau-2B for KL and QTKW.sicau-2B for TKW were 
also co-located [15]. TaTKW-7AL for both TKW and KL 
were co-located on chromosome 7AL [13]. Interestingly, 
Qkl.sicau-BLE18-4A had no genetic effect on KW and 
TKW (Figure S2 and Figure S3), and the QTL for KW and 
TKW were not identified in the same interval, which indi-
cated that the QTL for KL may have different regulation 
mechanism in this study. Recently, Qu et  al. (2021) also 
identified major QTL QKL.sicau-2SY-1B for KL, QKW.
sicau-2SY-6D for KW, and QTKW.sicau-2SY-2D for TKW 
located on different chromosomes [16].

Additionally, we should notice that when analyzing 
effects of a QTL for a given trait on other traits, loci of 
these corresponding traits in lines harboring the given 
QTL should be excluded. Otherwise, real effect of a given 
QTL may be covered and cannot be detected. In our 
present study, only one major QTL for KL (Qkl.sicau-
BLE18-4A) was detected. We also did not detect any QTL 
for KW and TKW in this interval, suggesting that loci 
for these two traits may be located in other intervals or 
chromosomes. Therefore, in our analysis of effects of Qkl.
sicau-BLE18-4A on KW and TKW, the loci for KW and 
TKW mapped on other intervals may interfere the detec-
tion ability, resulting in no significant difference in KW 
or TKW between lines with the allele from BLS1 and that 
from 99E18 for Qkl.sicau-BLE18-4A. We thus suggest 
that genome-wide analysis of loci for KL, KW and TKW 
could factually reveal their genetic correlations. Anyway, 
the major and novel QTL for KL identified in this study 
could be useful for dissecting mechanism of KL in the 
future and could have potential in breeding. Aggregat-
ing Qkl.sicau-BLE18-4A with other loci/genes controlling 
KW may have significant effects on TKW.

Fig. 3  The results of genetic map and the effect of the major QTL for KL in BLE18 population. a The distribution of differential SNPs on chromosome 
in the mixing pool, transverse axis for different chromosomes, longitudinal axis for the number of SNP; b Distribution of different SNPs on 
chromosome 4A in different segments, transverse axis for chromosome position, longitudinal axis for the number of SNP; c The position of the 
markers on the genetic map; d The physical location of the flanking markers of Qkl.sicau-BLE18—4A in Chinese Spring; e Genes in the target 
region of the Chinese Spring physical map; f Genes homologous to Chinese Spring in the target region of the physical map of wild emmer 
wheat; g Physical location of flanking markers in wild emmer wheat; h The effect of the major QTL for KL in BLE18 population; WJ, Wenjiang; CZ, 
Chongzhou; YA, Ya’an; **Significance at the 0.01 probability level

(See figure on next page.)

http://202.194.139.32/expression/wheat.html
http://202.194.139.32/expression/wheat.html
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Fig. 3  (See legend on previous page.)
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The kernels are developed from the carpel during 
wheat flowering, and then the endosperm cells begin 
to divide and expand, following by the accumulation of 
starch and protein. KL and KW determined the kernel 
morphology. Larger kernel size was related to higher ker-
nel weight [48].Thus, among many factors that constitute 
kernel weight, KL and KW play a vital role that cannot be 
ignored.

The feasibility of QTL mapping of quantitative 
traits using BSA and wheat 660 K SNP arrays in low 
generation populations
BSA has been widely used in wheat genetic mapping, 
and it is one of the effective methods to rapidly obtain 
target genes [18, 49, 50]. For species with large and 
complex genomes like wheat, it is a huge and labori-
ous project to complete genome sequencing. There-
fore, more convenient, faster and accurate methods 
are needed to improve the credibility of the results in 
mapping of wheat traits. So far, many studies have been 
using BSA combined with various sequencing methods 
to achieve gene localization [51, 52]. For example, the 
combination of BSA and the wheat 660  K SNP array 
has been widely used for localization of interest genes 

especially for disease resistant loci. A major QTL (Qyr-
nap.nwafu-2BS) for stripe rust resistance was identi-
fied on chromosome arm 2BS following BSA and the 
wheat 660  K SNP array analysis in an F2:3 population 
[19]. The early leaf senescence gene Els2 was mapped 
in an F2  population using BSA and the wheat 660  K 
SNP arrays [53]. However, a few studies had shown 
that BSA—660  K SNP arrays can be used to identify 
QTL for agronomic traits in low generations of wheat. 
Recently, a total of 48 QTL controlling spike-related 
traits located on 18 chromosomes were identified using 
BSA and the wheat 660  K SNP array in genetic analy-
sis of F2 and F2:3 populations [40]. Another example is 
that a novel reduced height gene was localized on chro-
mosome arm 2DL using BSA—660  K SNP arrays in 
four F2 segregating populations [54]. In this study, two 
low-generation (F3) populations were used to rapidly 
identify and validate QTL related to KL. This method 
greatly improved the efficiency and shortened the time. 
Collectively, our results combined with previous stud-
ies suggested that QTL mapping of agronomic traits 
using BSA and the wheat 660 K SNP array in combina-
tion with linkage map analysis in low generation popu-
lations is a rapid and effective method.

Table 3  QTL (Qkl.sicau-BLE18-4A) for KL identified from different environments in BLE18 population

LOD logarithm of odds, PVE Percentage Variation Explained, Add additive effect of a QTL, BLUP best linear unbiased prediction, Environment was defined with year and 
location. WJ, Wenjiang; CZ, Chongzhou; YA, Ya’an; CI: confidence interval

Environments Chromosome Left markers Right markers LOD PVE Add Left CI Right CI

2020-WJ 4A KASP-AX-111536305 KASP-AX-110174441 6.41 14.19% 0.14 27.50 28.00

2020-CZ 4A KASP-AX-111536305 KASP-AX-110174441 5.03 10.87% 0.15 26.50 28.00

2020-YA 4A KASP-AX-111536305 KASP-AX-110174441 3.01 13.74% 0.12 27.50 28.00

BLUP 4A KASP-AX-111536305 KASP-AX-110174441 5.79 19.30% 0.11 27.50 28.00

Fig. 4  Effects of major QTL for KL in BLSM3 population across different environments. WJ, Wenjiang; CZ, Chongzhou; YA, Ya’an; **Significance at the 
0.01 probability level; *significance at the 0.05 probability level 
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Conclusion
A major, novel and stable QTL for KL, Qkl.sicau-BLE18-
4A, was identified in an F3 biparental population derived 
from the cross between BLS1 and 99E18, and further suc-
cessfully validated using two flanking makers in another 
F3 biparental population across different environments. 
Four predicted genes related to kernel growth regulation 
were detected in the interval of Qkl.sicau-BLE18-4A. Fur-
thermore, this study laid subsequent construction for fine 
mapping, mining candidate genes and researching on the 
molecular mechanism of KL regulation in the future.
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