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Abstract
ML algorithms are used to develop prognostic and diagnostic models and so to support clinical decision-making. This study 
uses eight supervised ML algorithms to predict the need for intensive care, intubation, and mortality risk for COVID-19 
patients. The study uses two datasets: (1) patient demographics and clinical data (n = 11,712), and (2) patient demographics, 
clinical data, and blood test results (n = 602) for developing the prediction models, understanding the most significant features, 
and comparing the performances of eight different ML algorithms. Experimental findings showed that all prognostic predic-
tion models reported an AUROC value of over 0.92, in which extra tree and CatBoost classifiers were often outperformed 
(AUROC over 0.94). The findings revealed that the features of C-reactive protein, the ratio of lymphocytes, lactic acid, and 
serum calcium have a substantial impact on COVID-19 prognostic predictions. This study provides evidence of the value of 
tree-based supervised ML algorithms for predicting prognosis in health care.
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Introduction

The COVID-19 pandemic resulted in intense pressure on 
healthcare providers worldwide, especially in low- and mid-
dle-income countries (LMICs), where resources are limited 
[1–4]. At the time of writing this article, the virus had spread 
worldwide with over 596 million cases leading to over 6.4 
million deaths in 190 countries [5].

It has been established that patients with COVID-19 may 
experience worsening conditions a few days after contract-
ing the infection [6, 7]. The time estimated from the disease 
onset to Intensive Care Unit (ICU) admission is between 

9 and 12 days [8, 9]. Similarly, the approximate length of 
a patient’s stay in the ICU is 9 days [10, 11]. Considering 
the fact that approximately 26–32 percent of hospitalized 
COVID-19 patients are admitted to the ICU, increased 
hospital resources are required during the pandemic (e.g., 
healthcare staff, hospital beds, and mechanical ventilators) 
[12, 13]. Although the global vaccination program eased the 
pressure on healthcare providers, not all countries had equal 
access to vaccine products [14]. In this respect, develop-
ing diagnostic and prognostic models becomes a valuable 
contribution [12].

Machine Learning (ML) algorithms have supported clini-
cal decision-making [15–18]. ML algorithms are built on 
statistics and used in healthcare to diagnose diseases and 
develop prognostic models. For example, Glotsos et al. [19] 
used Support Vector Machines (SVM) to assist in diagnos-
ing brain tumor astrocytoma. Scioscia et al. [20] used SVM 
to predict continuous positive airway pressure. Garcia Car-
retero et al. [21] used multiple ML algorithms to predict 
vitamin D deficiency in a hypertensive population.

So far, ML has been used to develop COVID-19 diagnos-
tic and prognostic predictive models using computed tomog-
raphy (CT) images, laboratory blood test results, and patient 
comorbidities [22–24]. For example, Ismael and Sengur 
[22] used 95 chest X-ray images to detect COVID-19. They 

 * Gulsum Kubra Kaya 
 kubra.kaya@cranfield.ac.uk

1 Department of Computer Engineering, Istanbul Medeniyet 
University, Istanbul, Turkey

2 Department of Microbiology Laboratory, Goztepe 
Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey

3 Department of Industrial Engineering, Istanbul Medeniyet 
University, Istanbul, Turkey

4 School of Aerospace, Transport and Manufacturing, 
Cranfield University, Bedford MK430AL, UK

5 Human Factors Everywhere, Woking, UK

http://orcid.org/0000-0003-0541-0765
http://orcid.org/0000-0002-8156-6633
http://orcid.org/0000-0003-0663-3995
http://crossmark.crossref.org/dialog/?doi=10.1007/s11739-022-03101-x&domain=pdf


 Internal and Emergency Medicine

1 3

reached an accuracy rate of 0.947 using the ResNet50 model 
and support vector machine (with the linear kernel) classi-
fier. Despite the high accuracy rate obtained from computed 
tomography (CT) images, several researchers suggested 
using laboratory blood tests and clinical measurements as 
they are more accessible and less expensive [3, 25]. Blood 
tests and clinical measurements are routinely collected in 
high and middle-income countries [25].

Alakus and Turkoglu [26] developed a model to predict 
COVID-19 diagnosis using laboratory blood test features 
from 600 patients. They reached an accuracy rate of 0.866 
using a deep learning algorithm of long–short-term mem-
ory. Yan et al. [13] predicted mortality risk levels using 
485 COVID-19 patients’ data. The study used the extreme 
gradient-boosting (XGBoost) algorithm and performed with 
over 0.90 accuracy. What is more, some studies primarily 
used clinical data. Despite the availability of ML studies, 
those studies often developed a single prediction model such 
as diagnosis, mortality risk, and need for intubation using 
a small dataset.

This study uses eight supervised ML algorithms to pre-
dict COVID-19 prognostics using 11,712 observations from 
hospitalized COVID-19 patients in Turkey. The study has 
three aims: (1) to develop prediction models for the need 
for intensive care, the need for intubation, and the risk of 
mortality, (2) to identify the importance of clinical and 
blood test features in each prognostic prediction model, and 
(3) to compare the performances of eight supervised ML 
algorithms that were developed using different approaches, 
namely regression-based (i.e., logistic regression), margin-
based (i.e., support vector machine), artificial neural net-
work-based (i.e., MLP), ensemble-based (i.e., random for-
est, XGBoost, CatBoost, and extra trees), and instance-based 
(i.e., k-NN).

Materials and methods

This study is designed by following five steps: data collec-
tion, data pre-processing, data analysis, model building, and 
performance evaluation. Each step is explained in the fol-
lowing sections.

Data collection

This study collected patient demographics, clinical data 
(e.g., vitals and chronic diseases), and laboratory blood tests.

Patient demographics included two features: age and 
gender. Seventeen features were collected as part of clini-
cal data, namely: temperature, heart rate, oxygen saturation, 
blood pressure, pupils, consciousness, general condition, 
diuresis, cardiovascular diseases, hypertension, diabetes 
mellitus, neurological diseases, respiratory diseases, benign 

prostate hyperplasia, chronic renal failure, hepatitis C, and 
cancer. Eighteen features were collected for laboratory blood 
test data: alanine aminotransferase, aspartate aminotrans-
ferase, white blood cell, platelet, mean platelet, eosinophil 
neutrophil, lymphocyte, basophil, lactate dehydrogenase, 
glucose, urea, albumin, sodium, potassium, magnesium, 
C-reactive protein, and creatinine.

This study collected the raw data from hospitalized 
COVID-19 patients admitted to a public teaching hospi-
tal in Istanbul, Turkey, between April 2020 and February 
2021. The study only collected patient data for subjects over 
18 years old due to the limited data available for patients 
below 18 years old. All data were extracted from the elec-
tronic medical record system. The authors obtained ethi-
cal approval (ID 2021/0071) from the hospital to collect 
the data. Patients’ confidentiality was protected under the 
hospitals’ policies. Data were analyzed after removing all 
personal identifiers.

Data pre‑processing

The raw data were pre-processed before training the models 
(Fig. 1). The data pre-processing step involves data cleaning 
and imputation of the missing values.

This study only included COVID-19 positive cases as the 
study develops COVID-19 prognostic predictions. The study 
used two raw datasets for developing the prediction models. 
Figure 1 shows the number of observations at each dataset 
collected, after data exclusion, and for each model. The first 
raw dataset contains inpatients’ demographics and clinical 
data from 13,351 positive COVID-19 records. The second 
raw dataset contains inpatients’ demographics and clinical 
and blood test data from 1241 COVID-19 positive records.

In this study, both datasets contained missing values at 
specific features. In this matter, the authors made assump-
tions about the missing values after consulting a healthcare 
professional. Some records did not include details of chronic 
diseases, diuresis, or pupils-related features in the first 
raw dataset. This was due to the healthcare professionals’ 
record-keeping habits. Not all clinical data were recorded 
the same way; some healthcare professionals recorded only 
deteriorating conditions or negative situations. In such 
cases, the authors consulted a healthcare professional and 
made assumptions accordingly. The authors assumed that 
the feature was considered normal if the patient’s clinical 
data did not mention any of these features. After imputing 
assumed values, all records with at least one missing value 
were dropped and not used for further analysis. As a result, 
Models 1, 2, and 3 were built using 11,712 COVID-19 posi-
tive records from 1256 patients.

The authors combined the first dataset with patients’ labo-
ratory blood test data in the second dataset. The authors 
reviewed the blood test data of 1241 COVID-19 positive 
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records to manage the missing values. Missing values in 
more than or equal to ten percent of the instances were 
dropped and not used for further analysis. Missing values 
were imputed using the same patients’ other blood test 
results. Each patient’s missing value was supplied by tak-
ing the average value of the same patient’s other blood test 
results. Similar studies often assumed taking the average 
feature value among all patients’ data [3, 27], potentially 
leading to more noise and overfitting. The approach taken 
in this study is clinically more reasonable since a patient’s 
blood test findings do not change much within a week. 
However, such an approach would require more time and 
effort because a healthcare professional’s input is needed for 
reviewing and confirming each imputed value. After man-
aging the missing values and combining them with the first 
dataset, Models 4, 5, and 6 were built using 602 positive 
COVID-19 records from 91 patients.

Data analysis

Before moving to model training, this step analyzed features 
in each dataset. This study collected data from a cohort of 
5112 women and 6600 men aged between 18 and 97. Sup-
plementary Table S1 provides the descriptive statistics of 
features from the first dataset, and Supplementary Table S2 
provides the descriptive statistics from the second dataset.

Pearson correlation coefficients (r) were calculated for 
each dataset to remove the features having a high correla-
tion (r above 0.9) before developing the prediction models 
[17, 28]. This procedure was also applied in other studies to 
minimize overfitting. Complex models, having many vari-
ables, often experience overfitting [17].

Supplementary Table  S3 demonstrates a correla-
tion matrix for demographic and clinical data features. 

Results showed almost no significant correlation between 
the features, except consciousness and general condition 
(r = – 0.77). There was also a moderate to weak correlation 
between the general condition and diastolic blood pressure 
(r = 0.46), consciousness and diastolic blood pressure (r 
= 0.39), and diabetes and hypertension (r = 0.36). Conse-
quently, all nineteen features were used to build Models 1, 
2, and 3.

Supplementary Table S4 shows the correlation matrix 
for the features of demographic, clinical data, and blood 
test results. Stronger correlations were observed between 
the features in the second dataset. The findings revealed a 
significant correlation between neutrophil count and white 
blood cell count (r = 0.99). As a result, the feature neutro-
phil count was removed when building Models 4, 5, and 6.

Model building

Using each dataset, this study developed three prediction 
models for hospitalized COVID-19 patients: the need for 
intensive care, intubation, and mortality risk. In total, six 
models were developed, each using eight ML algorithms 
(see Fig. 1).

Each patient received a value between 0 and 1 for each 
prognostic prediction model. As multiple prediction mod-
els were developed for each patient, this study proposes a 
different application to address multi-label classification 
problems. Support vector machines (with the linear kernel), 
logistic regression, random forest, XGBoost, multilayer per-
ceptron, extra trees, CatBoost, and k-nearest neighbors clas-
sifiers were used to develop the prediction models.

This study calculated XGBoost feature importance values 
to determine the individual contribution of each feature to 
the prognostic predictions. XGBoost is a learning framework 

Fig. 1  Datasets used to develop 
the prediction models



 Internal and Emergency Medicine

1 3

that is based on boosting tree models. It is generalizable and 
achieves better performance in practical applications [29].

Machine learning algorithms

ML algorithms can reveal the complex non-linear rela-
tionships between the input and output data. The authors 
selected algorithms based on their fundamental ML task 
types and their strengths and weaknesses. For instance, SVM 
supports linear and non-linear solutions, whereas logistic 
regression can only work with linear ones. The MLP algo-
rithm has a complex architecture to define relationships 
between data; however, it is difficult to explain the learning 
phase. In contrast, a decision tree makes a complex predic-
tive model much easier to interpret by representing the find-
ings visually. Ensemble-based algorithms combine forecasts 
from multiple models. That can reduce variance and mini-
mize bias. The k-NN algorithm has non-parametric architec-
ture, simple and powerful. All these algorithms performed 
well in other studies.

Support vector machines (SVM) find a line representing 
the best fit between two output classes [30]. The mathemati-
cal expression of the SVM-linear kernel is shown in Eq. (1), 
where ci is obtained by solving the optimization problem, 
which can be solved by quadratic programming, yi is the 
class (0 or 1) of the value xi , and �(xi) is the transformed 
data point [31].

Logistic regression (LR) uses Eq. (2), where b0 and b1 
are learned by training the data [32]. The algorithm aims to 
minimize the error between the predicted and actual out-
comes. LR is prone to overfitting, which could be overcome 
by removing the highly correlated features [17].

Random forest (RF) is developed to overcome the risk 
of overfitting in decision trees, and RF is an example of 
bagging, an ensemble technique [33]. It works well when 
limited data are available. RF handles the missing values 
[17]. The output function is obtained as in Eq. (3), where 
pt(y∕x) is the probability distribution of each tree (t), and x 
is the set of test samples [34].

Extreme gradient boosting (XGBoost) is similar to the 
random forest but is an example of boosting. At each tree, 
previously incorrectly classified data are trained. Gradient 
boosting is made from weak predictors [35]. The output 

(1)f (x) =

n
∑

i=1

ciyi�(xi)

(2)P(x) = eb0+b1x∕(1 + eb0+b1x)

(3)Z = argmax
1

T

T
∑

t=1

pt(y∕x)

function, F
(

xi
)

 , is obtained by Eq.  (4), where xi is the 
explanatory variable, and Ft(xi) is the output function of 
each tree [29].

Multilayer perceptron (MLP) is an artificial neural net-
work, which is composed of an input, a hidden, and an out-
put layer(s) [36]. The numbers of hidden layers are calcu-
lated by trial and error. The basic mathematical illustration 
for the output is shown in Eq. (5), where j represents the 
neuron, fi is any non-linear function, xi is the input signal, 
and wji is the weights [37].

Extra trees (ET) are an ensemble machine learning algo-
rithm that combines the predictions of many decision trees. 
ET was developed on random forest trees and is less prone 
to the risk of overfitting [38, 39]. The main difference lies in 
the selection of cut points to split nodes. The random forest 
chooses the optimum split, whereas ET chooses it randomly.

CatBoost is a recently developed gradient-boosting algo-
rithm [40]. Binary decision trees are used for the base pre-
dictor. Equation (6) shows the estimated output description, 
where H

(

xi
)

 is the decision tree function, xi is the explana-
tory variable and Rj is the disjoint region. CatBoost differs 
from other gradient-boosting algorithms in three points; it 
uses ordered boosting, it can be used with small data size, 
and it can handle categorical features [34].

K-nearest neighbors classifiers (k-NN) is a non-paramet-
ric technique that labels an unknown object in the same class 
as the majority of the k-nearest neighbors [41]. In so doing, 
the Euclidean distance between the unknown object and its 
neighbor is calculated as in Eq. (7). It might not be ideal to 
use k-NN with high dimensional data as it requires extensive 
computing efforts [17].

Performance evaluation

The performance of each prediction model was assessed in 
terms of positive predictive value, negative predictive value, 
positive likelihood ratio, negative likelihood ratio, accuracy, 

(4)F(xi) =

T
∑
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Ft(xi)
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(
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)
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√

√
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sensitivity, specificity, F1 score, and the area under the ROC 
curve (AUROC). Model calibration was made using Platt 
scaling method with sigmoid regression. We measured cali-
bration with a scaled Brier score, which goes beyond tradi-
tional calibration and discrimination measures by evaluating 
the clinical usability of models [42].

Experimental results

This study developed six models for the three prognostic 
predictions (i.e., the need for intensive care, the need for 
intubation, and the risk of mortality) using two datasets: (1) 
patient demographics and clinical data (n = 11,712) and (2) 
demographics, clinical data, and blood test results (n = 602). 
The datasets were randomly split; 70 percent of the data was 
used for training, and 30 percent was for testing. The ten-
fold cross-validation procedure was used for estimating the 
performance of ML algorithms. The hyperparameters have 
been optimized by defining a grid of hyperparameter ranges 
using the Scikit-Learn Randomized Search CV method. It 
randomly samples from the grid and performs cross-valida-
tion with each tested value combination [43]. Supplementary 
Table S5 shows the hyperparameters used in this study.

This study used Python 3.6 to develop all models, evalu-
ate model performances and undertake statistical analysis. 
The study used the codes provided by Fernandes, F.T. et al. 
[3] to create the prediction models. All tests were executed 
on an Intel Core I5 computer based on Windows 10 OS.

Model performance

The best algorithm for each model was selected based 
on AUROC values due to its strong ability to distinguish 
between positive and negative classes (Table 1). Model cali-
bration of the best algorithm was measured using a scaled 
Brier score, where the perfect model achieves a score of 1 
(Table 2).

The findings showed that all seven algorithms outper-
formed SVM in Models 1 and 3. Additionally, all seven 
algorithms outperformed the k-NN algorithm in Models 2, 
5, and 6, and the LR algorithm in Model 5.

Table 2 shows performance evaluation findings from the 
highest performed algorithm. All models reported a high 
predictive performance on the test data with an AUROC 
value of over 92 percent, which shows the discriminative 
ability of models.

Table 1  Comparison of 
algorithm performances

The bold numbers are the AUROC values that received the highest score in each model.

ML algorithms Model 1
AUROC

Model 2
AUROC

Model 3
AUROC

Model 4
AUROC

Model 5
AUROC

Model 6
AUROC

Extreme gradient boosting 0.926 0.959 0.944 0.975 0.940 0.978
CatBoost classifier 0.924 0.961 0.946 0.977 0.945 0.984
Extra Trees classifier 0.904 0.961 0.939 0.989 0.947 0.990
Random forest classifier 0.864 0.953 0.908 0.945 0.925 0.978
MLP classifier 0.859 0.959 0.922 0.977 0.930 0.983
Logistic regression 0.811 0.957 0.878 0.864 0.942 0.949
Support vector machine- linear kernel 0.808 0.956 0.874 0.876 0.932 0.943
K neighbors classifier 0.848 0.945 0.890 0.904 0.912 0.932

Table 2  Model performance for the best-performed algorithm

Prediction model Best algorithm Model performance

Accuracy AUROC
(95% CI)

Sensitivity Specificity PPV NPV F1 PLR NLR Scaled brier

Model 1 XGBoost 0.75 0.90 (0.89, 0.91) 0.899 0.657 0.621 0.913 0.74 2.63 0.15 0.297
Model 2 CatBoost 0.915 0.96 (0.95, 0.97) 0.918 0.913 0.754 0.975 0.83 10.63 0.09 0.609
Model 3 CatBoost 0.86 0.946 (0.94, 0.95) 0.886 0.857 0.662 0.959 0.76 6.22 0.13 0.462
Model 4 ET 0.95 0.987 (0.98, 1) 0.965 0.946 0.944 0.967 0.95 17.96 0.04 0.754
Model 5 ET 0.92 0.973 (0.95, 1) 0.881 0.943 0.881 0.942 0.88 15.36 0.13 0.696
Model 6 ET 0.95 0.993 (0.99, 1) 0.945 0.952 0.896 0.976 0.92 19.85 0.06 0.75
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Feature importance

XGBoost feature importance values were calculated to ana-
lyze the importance of each feature on the prognostic predic-
tion of each model. Figure 2 illustrates the top ten critical 
features from demographics and clinical data for predicting 
the need for intensive care (Model 1), the need for intubation 
(Model 2), and the risk of mortality (Model 3). These fea-
tures have the highest impact on predictions. The complete 
list of feature importance values is shown in Supplementary 

Figs. S1, S2, and S3. The study found that consciousness 
and general condition have the highest impact on predicting 
the prognosis of COVID-19. For example, respiratory or 
cardiovascular disease appears to have a substantial effect 
on predicting patients needing ICU, and oxygen saturation 
is a critical feature in predicting the need for intubation and 
the risk of mortality.

Similarly, Fig. 3 shows the top fifteen critical features 
for predicting Models 4, 5, and 6. The complete list of the 
feature importance is provided in Supplementary Figs. S4, 

Fig. 2  Feature importance for 
predicting models. A Feature 
importance in Model 1 (the 
need for intensive care), B 
Feature importance in Model 2 
(the need for intubation), and C 
Feature importance in Model 3 
(the risk of mortality)
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Fig. 3  Feature importance for 
predicting models. D Feature 
importance in Model 4 (the 
need for intensive care), E 
Feature importance in Model 5 
(the need for intubation), and F 
Feature importance in Model 6 
(the risk of mortality)
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S5, and S6. For example, the findings showed that serum 
albumin level has the highest impact on predicting the need 
for intensive care, and lymphocyte count has the highest 
impact on predicting mortality risk.

Discussion

This study used SVM, LR, RF, XGBoost, MLP, ET, Cat-
Boost, and k-NN classifiers to develop COVID-19 prog-
nostic prediction models. The findings revealed that tree-
based classifiers (e.g., CatBoost, XGBoost, and ET), as 
a component of ensemble models, provide a higher level 
of AUROC for predicting COVID-19 prognostics than 
regression, margin, neural network, and instance-based 
algorithms. One reason could be that tree-based classifiers 
better expose the non-linear relationships by partitioning 
training data into subsets. Moreover, empirical and theo-
retical evidence shows that ensemble techniques act as 
variance reduction mechanisms; they reduce the variance 
component of the error [44]. Several other studies also 
provided evidence of cases where ensemble-based models 
perform better than other ML algorithms [45–47].

SVM is a well-known and widely preferred algorithm 
in ML [22, 48]. However, despite its popularity, this study 
received poor algorithm performance from using SVM and 
k-NN. Nevertheless, contradictory findings are also avail-
able in the literature, such as SVM and LR algorithms 
outperforming RF and XGBoost algorithms [49] and SVM 
outperforming MLP and RF algorithms [50]. Given the 
findings of this study, the authors suggest using tree-based 
classifiers instead of SVM in prognostic predictions, espe-
cially when the models are built on large datasets with 
many features. Both SVM and k-NN algorithms require 
too much training time, and so incur a higher computa-
tional cost [17].

Considering the performances reported in other studies, 
literature review findings showed an accuracy rate above 
0.80, with a few studies reaching 0.99 [45, 51]. This study 
reports one of the highest performances in predicting the 
need for intensive care and mortality risk. However, it 
should be noted that such metrics might not reflect the 
applicability of these findings or their use in clinical prac-
tices [42].

This study calculated XGBoost feature importance val-
ues to understand the role of each feature in predicting 
COVID-19 prognostics. The study provided significant 
findings, especially in blood test-related features. On the 
one hand, this study obtained results consistent with those 
of other studies by recognizing the features of C-reactive 
protein, the ratio of lymphocytes, lactic acid, and serum 
calcium as having a substantial impact on COVID-19 
prognostic predictions [3, 12, 52, 53]. On the other hand, 

this study provided further evidence of basophil count, 
eosinophil count, and serum albumin level on COVID-19 
prognostic predictions.

In this study, lymphocytes are the most critical feature 
in predicting mortality (Fig. 3). Lower lymphocyte counts 
and higher neutrophil counts impact the prediction of a 
worse prognosis (Supplementary Figs. S4 and S6). Clini-
cal findings showed that a lower level of blood lympho-
cyte count is associated with mortality and deteriorating 
conditions in COVID-19 patients [54–56]. Similarly, our 
study provided evidence of the significance of basophils 
and eosinophils when predicting mortality, which is com-
patible with the results from other studies [25, 51, 57, 58]. 
Hence, it is reasonable to say that taking routine blood 
test samples and examining the complete blood test results 
would facilitate reliable prognostic predictions.

Serum albumin level was found to be another significant 
feature. It has been widely used as a negative acute-phase 
reactant, which means a decrease in its level indicates acute 
inflammation. A reduction in serum albumin levels increases 
the risk of mortality [59, 60]. Kheir et al. [61] reported the 
mean serum albumin level for the patients not admitted to 
ICU as 3.25 and 2.95 g/dl for the patients admitted to ICU. 
Similarly, we found the median serum albumin level to be 
3.08 g/dl for all hospitalized COVID-19 patients and a value 
of 2.74 g/dl for patients who died.

Considering clinical data, this study reaches the same 
conclusion as that of other studies, where patients’ age and 
chronic disease conditions are critical in predicting COVID-
19 prognostics, especially in mortality [6, 62, 63].

Limitations

This study highlights the value of ML algorithms in prog-
nostic predictions. However, this study has several limita-
tions. First, the study collected data from a single healthcare 
center. Involving more datasets from multiple centers could 
have resulted in more reliable prediction models. Similarly, 
studies revealed that COVID-19 might have different effects 
on diverse racial and ethnic groups. Hence, collecting data 
from a single country might limit the generalization of 
the findings. Second, the models used in this study might 
involve bias due to unclear reporting, assumptions made to 
manage missing values, and model overfitting. Third, only 
an internal validation study was conducted. The inclusion 
of external validation could have allowed more insights into 
the generalizability of the prediction models [64]. Indeed, 
the scaled brier scores also indicated low to poor clinical 
use with the results obtained in Models 1, 2 and 3, without 
conducting external validation. However, the integrated use 
of two datasets revealed promising results in Models 4, 5 
and 6. Fourth, the study involved data from patients across 
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a wide age range with low density at certain ages. This lim-
its modes’ learning ability. Fifth, there was a naturalistic 
imbalance between labels in each dataset, patients in ICU, 
intubated, or died. Sixth, this study used a relatively small 
sampling data size, especially in Models 4, 5 and 6.

Although ML algorithms have some common pitfalls 
[64], they can still complement the skills of healthcare 
professionals in patient prioritization, prognostic decision-
making, and resource management. Despite all limitations, 
this study used a considerably high number of COVID-19 
patient data containing thirty-seven features drawn from 
patient demographics, clinical data, and blood test results. 
A healthcare professional assisted in developing reliable 
assumptions, and the study reported high AUROC values 
for the performance of each model.

Conclusion

This study used eight supervised ML algorithms to predict 
the need for intensive care, intubation, and the risk of mor-
tality for COVID-19 patients. By estimating all three prog-
nostic predictions for individual patients, this study provides 
a different approach to addressing the multi-label problems 
in ML.

This study demonstrated the promising value of ML in 
COVID-19 prognostic predictions. The findings indicate 
that tree-based classifier algorithms perform best, although 
all algorithms obtained an AUROC value of over 80 per-
cent. Future studies might develop a hybrid approach using 
tree-based algorithms, which could be applied in broader 
healthcare settings.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11739- 022- 03101-x.
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