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Single-cell expression profiling reveals the molecular states of
individual cells with unprecedented detail. Because these methods
destroy cells in the process of analysis, they cannot measure how
gene expression changes over time. However, some information
on dynamics is present in the data: the continuum of molecular
states in the population can reflect the trajectory of a typical cell.
Many methods for extracting single-cell dynamics from population
data have been proposed. However, all such attempts face a
common limitation: for any measured distribution of cell states,
there are multiple dynamics that could give rise to it, and by ex-
tension, multiple possibilities for underlying mechanisms of gene
regulation. Here, we describe the aspects of gene expression dynamics
that cannot be inferred from a static snapshot alone and identify
assumptions necessary to constrain a unique solution for cell
dynamics from static snapshots. We translate these constraints
into a practical algorithmic approach, population balance analysis
(PBA), which makes use of a method from spectral graph theory
to solve a class of high-dimensional differential equations. We use
simulations to show the strengths and limitations of PBA, and then
apply it to single-cell profiles of hematopoietic progenitor cells
(HPCs). Cell state predictions from this analysis agree with HPC fate
assays reported in several papers over the past two decades. By
highlighting the fundamental limits on dynamic inference faced by
any method, our framework provides a rigorous basis for dynamic
interpretation of a gene expression continuum and clarifies best ex-
perimental designs for trajectory reconstruction from static snapshot
measurements.
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Genome-scale high-dimensional measurements on single cells
have transformed our ability to discover the constituent cell

states of tissues (1). The most mature of these technologies,
single-cell RNA sequencing (scRNA-seq), can be applied at rel-
atively low cost to thousands and even tens of thousands of cells
to generate an “atlas” of cell states in tissues, while also revealing
transcriptional gene sets that define these states (2, 3). Rapidly
maturing technologies are also enabling single-cell measurements
of the epigenome (4), the proteome (5, 6), and the spatial organi-
zation of chromatin (7).
A more ambitious goal of single-cell analysis is to describe

dynamic cell behaviors and, by extension, to reveal dynamic gene
regulation. Since high-dimensional single-cell measurements are
destructive to cells, they reveal only static snapshots of cell state.
However, it has been appreciated that dynamic progressions of
cell state can be indirectly inferred from population snapshots by
methods that fit a curve or a tree to the continuous distribution
of cells in high-dimensional state space. A number of methods
address the problem of “trajectory reconstruction” from single-
cell data and have been used to order events in cell differenti-
ation (8–12), cell cycle (13), and perturbation response (14). The
most advanced algorithms have addressed increasingly complex
cell state topologies including branching trajectories (15).
The general challenge, even with perfect data, is that many

regulatory mechanisms can generate the same dynamic process,

and many dynamic processes can give rise to the same distribu-
tion. It is thus doubly impossible to rigorously infer mechanisms
from snapshots of cells. However, because the distributions still
reflect the underlying mechanisms, it is possible to consider
which mechanisms would be inferred if additional biophysical
constraints were imposed. In our opinion, the most useful current
methods for dynamic inference might be more accurately described
as methods for nonlinear dimensionality reduction, or “manifold
discovery”: they robustly solve the problem of how to describe a
static continuum of cell states using a small number of coordinates
but provide minimal guidance on how the observed static continuum
should be interpreted with respect to the many redundant dynamic
processes that could give rise to it.
Here, we explore whether one can derive a framework for inferring

cell state dynamics from static snapshots that explicitly incorporates
critical assumptions needed to disambiguate the alternative dynamics
associated with a static snapshot of single cells. Our second focus is to
develop a practical algorithm for dynamic inference, which we call
population balance analysis (PBA). PBA provides a continuum de-
scription of cell states, just as existing methods do. However, PBA
also formally solves a problem of dynamic inference from biophysical
principles and can thus be considered predictive of cell dynamics
under clearly stated assumptions. For example, it assigns to each
transcriptional state a set of testable fate probabilities. We apply PBA
to scRNA-seq data of hematopoietic progenitor cells (HPCs), rec-
onciling these data with fate assays made over the past few decades in
this system. Validation of novel PBA predictions in HPCs forms the
subject of another study (16).
The biophysical foundation of PBA is embodied by a diffusion-

drift equation over high-dimensional space, which, although simple to
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define, cannot be practically solved using established computational
tools. We therefore invoke an asymptotically exact and highly ef-
ficient solution to diffusion-drift equations using recent innovations
in spectral graph theory. The ubiquity of diffusion-drift equations in
fields of quantitative biology (17) and physics (18) suggests that
applications of these methods may exist in other fields. Overcoming
this computational challenge represents the major technical con-
tribution of this work.

Results
A First-Principles Relationship of Cell Dynamics to Static Observations.
When reconstructing a dynamic process from single-cell snapshot
data, cells are typically observed in a continuous spectrum of states
owing to asynchrony in their dynamics. The goal is to reconstruct
a set of rules governing possible dynamic trajectories in high-
dimensional gene expression space that are compatible with the
observed distribution of cell states. The inferred rules could rep-
resent a single curve or branching process in gene expression space,
or they could reflect a more probabilistic view of gene expression
dynamics. In some cases, multiple time points can be collected to
add clarity to the temporal ordering of events. In other cases, a
single time point could capture all stages of a dynamic process,
such as in steady-state adult tissue turnover.
To develop a framework for dynamic reconstruction from first

principles, we want to identify a general, model-independent,
mathematical formulation linking cell dynamics to static obser-
vations. One possible starting point is the “population balance
equation” [also known as the flux balance law (19)], which has the
following form:

∂c
∂t
=−∇ðcvÞ+Rc. [1]

Eq. 1 states that, in each small region of gene expression space,
the rate of change in the number of cells (left-hand side of the
equation) equals the net cell flux into and out of the region
(right-hand side) (Fig. 1A). The equation introduces the cell density,
c(x,t), which is the distribution of cell states from which we sample a
static snapshot of cells in an experiment. This density depends on
the net average velocity, v(x), of the cells at point x, a feature of the
dynamics that we want to infer. Notably, being an average quantity, v
is not necessarily a description of the dynamics of any individual cell,
but it alone governs the form of the sampled cell density c. Eq. 1 also
introduces a third variable: R(x) is a rate of cell accumulation and
loss at point x caused by the discrete phenomena of cell proliferation
and cell death, and by entrance and exit from the tissue being iso-
lated for analysis. Although Eq. 1 is likely a good starting point for
analyzing many biological systems, it nonetheless introduces some
specific assumptions about the nature of cell state space. First, it
approximates cell state attributes as continuous variables, although
they may in fact represent discrete counts of molecules such as
mRNAs or proteins. Second, it assumes that changes in cell state
attributes are continuous in time. This means, for example, that the
sudden appearance or disappearance of many biomolecules at once
cannot be described in this framework.

Multiple Dynamic Trajectories Can Generate the Same High-Dimensional
Population Snapshots. Given knowledge of the cell population
density, c(x,t), we hope to infer the underlying dynamics of cells by
solving for the average velocity field v in Eq. 1. This approach falls
short, however, because v is not fully determined by Eq. 1, and
even if it were, knowing the average velocity of cells still leaves some
ambiguity in the specific trajectories of individual cells. This raises the
question: Does there exist a set of reasonable assumptions that con-
strain the dynamics to a unique solution? To explore this question, we
enumerate the causes of nonuniqueness in cell state dynamics.
First, assumed cell entry and exit points strongly influence

inferred dynamics: For the same data, different assumptions about

the rates and location of cell entry and exit lead to fundamentally
different inferences of the direction of cell progression in gene
expression space, as illustrated in Fig. 1C. Cells can enter a system
by proliferation, by physically migrating into the tissue that is
being analyzed, or by up-regulating selection markers used for
sample purification (e.g., cell surface marker expression). Simi-
larly, cells exit observation by cell death, physical migration out of
the tissue being studied, or by down-regulation of cell selection
markers. Referring to Eq. 1, this discussion is formally reflected in
the need to assume a particular form for the rate field R(x) when
inferring dynamics v from the observed cell density c.
Second, net velocity does not equal actual velocity: A second

unknown is the stochasticity in cell state dynamics, reflected in
the degree to which cells in the same molecular state will follow
different paths going forward. A net flow in gene expression
space could result from imbalanced flows in many directions or
from a single coherent flow in one direction (Fig. 1D). If the goal
of trajectory analysis is to go beyond a description of what states
exist and make predictions about the future behavior of cells
(e.g., fate biases) given their current state, then it is necessary to
account for the degree of such incoherence of dynamics.
Third, rotations and oscillations in state space do not alter cell

density: Static snapshot data cannot distinguish periodic oscil-
lations of cell state from simple fluctuations that do not have a
consistent direction and periodicity (Fig. 1E). As with incoherent
motion above, predictive models may need to explicitly consider
oscillatory behaviors. The inability to detect oscillations from
snapshot data are formally reflected in Eq. 1 by invariance of the
concentration c to the addition to v of arbitrary rotational ve-
locity fields u satisfying ∇ðcuÞ= 0.
Fourth, hidden features of cell state can lead to a superposi-

tion of different dynamic processes: Stable properties of cell
state that are invisible to single-cell expression measurements,
such as chromatin state or tissue location, could nonetheless
impact cell fate over multiple cell state transitions (Fig. 1F). The
existence of such long-term “hidden variables” would clearly
compromise attempts to predict the future fate of a cell from its
current gene expression state.
Because of these phenomena, no unique solution exists for

dynamic inference. However, sensible predictions about dynamics
can still be made by making certain assumptions. Our framework
for cell trajectory analysis (see below) is based on explicit, rea-
sonable assumptions that together are necessary and sufficient to
constrain a unique solution (Fig. 2). These assumptions may
nevertheless be inaccurate in certain situations.

Construction of the PBA Framework. To infer cell dynamics from an
observed cell density c, we make the following assumptions.
The Fokker–Planck equation models memoryless cell state dynamics. The
first assumption is that the properties of the cell available for
measurement (such as its mRNA content) fully encode a probability
distribution over its possible future states. This assumption is made
implicitly by all current approaches to trajectory analysis and cell
fate prediction, and we reflect on its plausibility in the discussion.
An equivalent statement of this first assumption is that cell

trajectories are Markovian, or that any form of cellular memory
is encoded in their measured properties. If so, the cell trajecto-
ries underlying Eq. 1 can be approximated as biased random
walks, with a deterministic component that reflects the repro-
ducible aspects of cell state changes such as their differentiation
through stereotypical sequences of states, and a stochastic com-
ponent that reflects random fluctuations in cell state, partly driven
by bursty gene expression, fluctuations in cellular environment, and
intrinsic noise from low–molecular-number processes. In this ap-
proximation, with noise specifically treated as Gaussian in nature,
Eq. 1 takes the form of a Fokker–Planck equation.
Fokker–Planck equations have been applied previously to low-

dimensional biological processes, such as differentiation with a
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handful of genes (20) or a one-parameter model of cell cycle
progression (13). Here, we apply them to high-dimensional data.
Although Fokker–Planck descriptions are necessarily approxima-
tions, their emergence from first-principles descriptions of tran-
scriptional dynamics in terms of chemical master equations (21),
and their ubiquity in describing chemical reaction systems (22),
help justify their use instead of the more general form of Eq. 1.
Specifically, the generalized Fokker–Planck approximation takes
the form of Eq. 1 with velocity field, v= J − 1=2D∇log c, where the
first term is a deterministic average velocity field, and the second
term is a stochastic component of the velocity that follows Fickian
diffusion with a diffusion matrixD (Fig. 2). We assume here thatD
is isotropic and invariant across gene expression space. Although
more complex forms of diffusion could better reflect reality, we
propose that this simplification for D is sufficient to gain pre-
dictive power from single-cell data in the absence of specific data
to constrain it otherwise.
The resulting population balance equation is thus as follows:

∂c
∂t
=
1
2
∇ðD∇cÞ−∇ðcJÞ+Rc. [2]

Eq. 2 explains the rate of change of cell density (∂c=∂t) as a sum
of three processes: (i) stochastic gene expression, 1=2∇ðD∇cÞ,
which causes cells to diffuse out of high-density regions in gene
expression space; (ii) convergences (and divergences) of the mean
velocity field, ∇ðcJÞ, which cause cells to accumulate (or escape)
from certain gene expression states over time; and (iii) as before,
cell entry and exit rates, Rc, will cause certain cell states to gain or
lose cells over time.
Potential landscapes define a minimal model for dynamic inference. Our
second assumption is that there are no rotational (e.g., oscilla-
tory) gene expression dynamics. Although oscillations certainly
do exist in reality—for example, the cell cycle—it is impossible to
establish their existence from static snapshots alone. One is there-
fore forced to make an a priori assumption about their existence. In
cases where oscillations are orthogonal to the process of interest,
they may be safe to ignore. We systematically investigate the cost of
ignoring oscillations through several simulations and identify cir-
cumstances where it has a large impact. Our analysis of scRNA-seq
data in a later section suggests that useful predictions can be made
despite this assumption.
In the Fokker–Planck formalism, the presumed absence of os-

cillations implies that the velocity field J is the gradient of a po-
tential function F (i.e., J =−∇FÞ. The potential would define a
landscape in gene expression space, with cells flowing toward
minima in the landscape, akin to energy landscapes in descriptions
of physical systems. Applying the potential landscape assumptions
to Eq. 2 gives rise to the simplified diffusion-drift equation below,
where the potential is represented by a function FðxÞ:

∂c
∂t
=
1
2
D∇2c+∇ðc∇FÞ+Rc. [3]

A recipe for dynamic inference from first principles. Eq. 3 represents
our best attempt to relate an observed density of cell states (c)
to an underlying set of dynamical rules, now represented by a
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Fig. 1. Symmetries and inhomogeneities of the population balance law set
fundamental limits on dynamic inference. (A) Schematic of the population
balance law (Eq. 1), which serves as a starting point for inferring cell dy-
namics from high-dimensional snapshots. In each small region of gene ex-
pression space, the rate of change in cell density equals the net cell flux into
and out of the region. Symmetries and unknown variables of the population
balance law mean that there is no unique solution for dynamics from a static
snapshot (B), shown schematically in C–E. (C) Alternative assumptions on cell
entry and exit rates across gene expression space lead to different dynamic
solutions. (D) Snapshot data constrain only net cell flows through the population

balance law, and not the noise in dynamic trajectories of individual cells. (E)
A gauge symmetry of the population balance law means that static snap-
shots arising from periodic oscillations of cell state can also be explained by
simple fluctuations that do not have a consistent direction and periodicity.
(F) Hidden but stable properties of a cell—such as epigenetic state—allow
for a superposition of cell populations following different dynamic laws.
These unknowns are constrained by assumptions in any algorithm inferring
dynamics from static snapshot data.
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potential landscape (F) rather than the exact velocity field v.
Crucially, we have, in these first few sections of Results, explained
why the net cell velocity v is inherently unknowable from snap-
shot data, clarified why the description provided by a potential
field F is the best that any method could propose without further
knowledge about the system, and identified critical fitting pa-
rameters (D, R, and ∂c=∂t), which are not revealed by single-cell
snapshot measurements but are required for determining aspects
of the dynamics such as temporal ordering of states and fate
probabilities during differentiation. By starting from first prin-
ciples, it becomes clear that these requirements are not limited
to any particular algorithm; they affect any method one might
develop for trajectory inference.
The challenge now is to develop a practical approach that

relates the fitting parameters D, R, and ∂c=∂t to dynamic pre-
dictions through Eq. 3. In the following, we focus on steady-state
systems where ∂c=∂t= 0, and use prior literature to estimate R.
We report results for a range of values of D. Building on the work
here, more elaborate approaches could be taken, for example
determining R from direct measurements of cell division and cell
loss rates or integrating data from multiple time points to estimate
∂c=∂t, thus generalizing to non–steady-state systems.

Reducing to Practice: Solving the Population Balance Equation with
Spectral Graph Theory. Equipped with single-cell measurements
and estimates for each fitting parameter, we now face two
practical problems in using of Eq. 3 to infer cell dynamics: the
first is that Eq. 3 is generally high dimensional (reflecting the
number of independent gene programs acting in a cell), but
numerical solvers cannot solve diffusion equations on more than
perhaps 10 dimensions (23). Indeed, until now, studies that used
diffusion-drift equations such as Eq. 3 to model trajectories
(10, 13, 20) were limited to one or two dimensions, far below
the intrinsic dimensionality of typical scRNA-seq data (24). The
second practical problem is that we do not in fact measure the
cell density c: we only sample a finite number of cells from this
density in an experiment.

Overcoming these problems represents the main technical
contribution of this paper. We drew on a recent theorem by Ting
et al. (25) in spectral graph theory to extend diffusion-drift mod-
eling to arbitrarily high dimension. The core technical insight is
that an asymptotically exact solution to Eq. 3 can be calculated on
a nearest-neighbor graph constructed with sampled cells as nodes.
Our approach, which we call PBA, actually improves in accuracy
as dimensionality increases, plateauing at the underlying manifold
dimension of the data itself. We thus avoid conclusions based on
low-dimensional simplifications of data, which may introduce
distortions into the analysis. In practice, some intermediate de-
gree of dimensionality reduction could still be useful (say, to tens
or hundreds of dimensions), a point elaborated in Discussion. SI
Appendix provides technical proofs and an efficient framework
for PBA in any high-dimensional system.
The inputs to PBA are a list of sampled cell states x= ðx1, . . . xNÞ,

an estimate R= ðR1, . . .RNÞ for the net rate of cell accumulation or
loss at each state xi, and an estimate for the diffusion parameterD.
We are assuming steady state, so ∂c=∂t= 0. The output of PBA is a
discrete probabilistic process, that is, a Markov chain that de-
scribes the transition probabilities between the states xi. The
analysis is asymptotically exact in the sense that—if a potential
exists and the estimates for R and D are correct—the inferred
Markov chain will converge to the underlying continuous dynamical
process in the limit of sampling many cells (N→∞) and high
manifold dimension of the data (SI Appendix, Theory Supplement,
Theorem 4). We note that the requirement for many cells is to
reduce the variance of PBA estimates, and the requirement for high
dimension is to reduce the bias.
PBA computes the transition probabilities of the Markov

chain using a simple algorithm, which at its core involves a single
matrix inversion. Briefly:

i) Construct a k-nearest-neighbor (knn) graph G, with one
node at each position xi extending edges to the k nearest
nodes in its local neighborhood. Calculate the graph Lap-
lacian of G, denoted L.
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Fig. 2. Population balance analysis (PBA). Although many dynamics are consistent with a given static snapshot of cell states, testable assumptions can
constrain a unique solution. Shown schematically here is PBA, one such approach to dynamic inference under explicit assumptions. PBA constrains the
population balance law by assuming a dynamics that is Markovian and described by a potential landscape (see Construction of the PBA Framework for details),
and including fitting parameters that incorporate prior knowledge or can be directly measured. The resulting diffusion-drift equation is solved asymptotically
exactly in high dimensions on single-cell data through a graph theoretic result (SI Appendix, Theory Supplement and ref. 22). The PBA algorithm outputs transition
probabilities for each pair of observed states, which can then be used to compute dynamic properties such as temporal ordering and fate potential.
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ii) Compute a potential V = 1=2 L+R, where L+ is the pseu-
doinverse of L.

iii) To each edge ðxi → xjÞ, assign the transition probability

P
�
xi → xj

�
∼

(
eðVi−VjÞ=D if

�
xi, xj

�
is  an  edge  in G

0 if
�
xi, xj

�
is  not  an  edge  in G

.

With the Markov chain generating Eq. 3 available, it is possible
to calculate the temporal ordering of states, and the fate biases of
progenitor cells in a differentiation process, by integrating across
many trajectories (Fig. 2). These calculations are simple, generally
requiring a single matrix inversion. Temporal orderings can be
calculated from mean first-passage times; fate biases can be cal-
culated as absorbing fate probabilities of the Markov chain, start-
ing from each observed state. Specific formulas are provided in SI
Appendix, Theory Supplement, section 3. Confidence intervals on
inferred mean first-passage times and fate biases, and their sensi-
tivity to parameter choices, can be estimated by bootstrapping.
Code for implementing these and other aspects of PBA is avail-
able online at https://github.com/AllonKleinLab/PBA.

PBA Accurately Reconstructs Dynamics of Simulated Differentiation
Processes.We tested PBA on a sequence of simulations, first using
an explicit model of diffusion-drift process, and then moving on to
direct simulations of gene regulatory networks (GRNs). In the
first simulation (Fig. 3 and SI Appendix, Fig. S1), cells drift down a
bifurcating potential landscape into two output lineages, defined
formally as absorbing states in the dynamical system. Cell trajec-
tories span a 50-dimensional gene expression space (two of which
are shown in Fig. 3A). With 200 cells sampled from this simulated
system (Fig. 3B), PBA predicted dynamical properties of the
measured cells, including (i) their fate probabilities, defined as the
probabilities of reaching either of the absorbing states; and (ii)
their temporal ordering, defined as the mean first-passage time to
reach them from the simulation starting point. PBA made very
accurate predictions (Pearson correlation, ρ > 0.96; Fig. 1 C and
D) if provided with correct estimates of proliferation, loss, and
stochasticity (parameters R and D). Estimates of temporal or-
dering remained accurate with even fivefold error in these pa-
rameters (ρ > 0.93), but predictions of fate bias degraded (ρ >
0.77; SI Appendix, Fig. S2 A–D). Thus, even very rough knowledge
of the entry and exit points in gene expression space is sufficient to
generate a reasonable and quantitative description of the dy-
namics. Interestingly, PBA also remained predictive in the presence
of implanted oscillations (SI Appendix, Fig. S3; fate probability ρ >
0.9; temporal ordering ρ > 0.8). In addition, the simulations con-
firmed the theoretical prediction that inference quality improves as
the number of noisy genes (dimensions) increases, and as more cells
are sampled: maximum accuracy in this simple case was reached
after ∼100 cells and 20 dimensions (SI Appendix, Fig. S2 E–G).
These simulations showcase the ability of PBA not just to describe
continuum trajectories, but additionally to predict cell dynamics
and by extension cell fate. At the same time, they show the fragility
of dynamic inference to information not available from static
snapshots alone.
Having demonstrated the accuracy of PBA on an explicit

model of a diffusion-drift process, we next tested its performance
on gene expression dynamics arising from GRNs (Fig. 4). As be-
fore, we simulated cell trajectories, obtained a static snapshot of
cell states, and supplied PBA with this static snapshot as well as the
parameter R encoding the location of entry and exit points. We
began with a simple GRN representing a bistable switch, in which
two genes repress each other and activate themselves (Fig. 4A).
Simulated trajectories from this GRN begin with both genes at an
intermediate expression level, but quickly progress to a state where
one gene dominates the other (Fig. 4B). In addition to the two
genes of the GRN, we included 48 uncorrelated noisy dimensions.

With 500 cells sampled from this process, PBA predicted cell fate
bias (absorbing state probabilities) and temporal ordering (mean
first passage time from the start point) very well (r > 0.98 for fate
bias and r > 0.89 for ordering; Fig. 4C), although the precise ac-
curacy depended on the assumed level of diffusion D (SI Appendix,
Fig. S4; the values that gave the best results were used for Fig. 4).
PBA assumes the absence of oscillations in gene expression

space. Therefore, it is unclear how well PBA can infer cell tra-
jectories that result from GRNs with oscillatory dynamics. We
simulated an oscillatory GRN in the form of a “repressilator”
circuit (26) with the addition of positive-feedback loops that
create two “escape routes” leading to alternative stable fixed
points of the dynamics (Fig. 4D). Simulated trajectories from this
GRN begin with all genes oscillating, followed by a stochastic
exit from the oscillation when one of the genes surpasses a
threshold level (Fig. 4E). With 500 cells sampled from this
process, PBA was significantly less accurate than for the previous
simulations (Fig. 4F). Although PBA correctly identified which
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ation process. (A) Cells emerge from a proliferating bipotent state (source)
and differentiate into one of two fates (sinks 1 and 2) in a high-dimensional
gene expression space, with two dimensions shown. Heat map colors show a
potential field containing the cell trajectories. Example trajectories are
shown in white. (B) Static expression profiles sampled asynchronously
through differentiation serve as the input to PBA, which reconstructs tra-
jectories and accurately predicts future fate probabilities (C) and timing (D)
of each cell.
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cells were fully committed to the two “escape routes,” it was en-
tirely unable to resolve the fate biases of cells in the uncommitted
oscillatory state. PBA also made poor predictions of mean first-
passage time, underestimating the amount of time that cells spent
in the oscillatory state. Unsurprisingly, when the assumptions of
PBA are strongly violated, its prediction accuracy suffers.

PBA Predictions of Fate Bias in Hematopoiesis Reconcile Past Experiments.
To test PBA on experimental data from real biological systems, we
made use of single-cell gene expression measurements of 3,803 adult
mouse HPCs from another study by our groups (ref. 16; data at Gene
Expression Omnibus, accession no. GSE89754).

HPCs reside in the bone marrow and participate in the steady-
state production of blood and immune cells through a balance of
self-renewal and multilineage differentiation. Descriptions of HPC
differentiation invoke a tree structure, with gradual lineage-
restriction at branch points. However, the precise tree remains
controversial (27, 28), since existing measurements of fate po-
tential reflect a patchwork of defined HPC subsets that may have
internal heterogeneity (29) and provide only incomplete cover-
age of the full HPC pool. We asked whether PBA applied to
single-cell RNA profiling of HPCs could generate predictions
consistent with experimental data, and possibly help resolve these
controversies by providing a global map of approximate cell fate
biases of HPCs.
The single-cell expression measurements—derived from

mouse bone marrow cells expressing the progenitor marker Kit—
represent a mixture of multipotent progenitors as well as cells
expressing lineage commitment markers at various stages of
maturity. Since PBA depends on analyzing a k-nearest-neighbor
(knn) graph of the cells, we developed an interactive knn visu-
alization tool for single-cell data exploration, called SPRING
(https://kleintools.hms.harvard.edu/tools/spring.html; ref. 30). The
SPRING plot (Fig. 5A) revealed a continuum of gene expression
states that pinches off at different points to form several down-
stream lineages. Known marker genes (SI Appendix, Table S1)
identified the graph endpoints as monocytic (Mo), granulocytic (G),
dendritic (D), lymphoid (Ly), megakaryocytic (Mk), erythroid (Er),
and basophil or mast (Ba/Mast) cell progenitors (SI Appendix,
Fig. S5); we also identified cells in the graph expressing he-
matopoietic stem cell markers. The lengths of the branches
reflect the timing of Kit down-regulation and the abundance of
each lineage.
For steady-state systems, PBA requires as fitting parameters

an estimate of the diffusion strength D and the net rates of cell
entry and exit at each gene expression state (RÞ. We estimated R
using prior literature (Materials and Methods) and tested a range
of values of D, with the range chosen to ensure that the num-
ber of cells predicted to be multipotent by PBA would lie
within bounds established in the literature. All results that follow
hold over the physiological range of PBA parameter values (SI
Appendix, Fig. S6).
Applied to single-cell measurements, for the range of fitting

parameters, PBA estimated seven fate probabilities for each cell,
defined formally as the probabilities that a trajectory initiated at
each cell would terminate among the most mature cells in each
of the seven lineages (Materials and Methods). We compared
PBA results to fate probabilities reported for subsets of the HPC
hierarchy, which have been previously defined by cell surface
marker expression, and transcriptionally profiled using micro-
arrays. To carry out the comparison, we identified the cells in our
data that were most similar to each subset using their published
microarray profiles (Fig. 5B, red dots), and we then computed
the average PBA-predicted fate probabilities across cells in each
subset. Remarkably, for a panel of 12 progenitor cell populations
from six previous papers (31–36) (SI Appendix, Table S2) the PBA-
predicted fate outcomes (Fig. 5B, bar charts) closely matched fate
probabilities measured in functional assays (defined as the propor-
tion of clonogenic colonies containing a given terminal cell type;
SI Appendix, Fig. S5). The main qualitative disagreement be-
tween PBA predictions and experiment was in the behavior of
Lin−Sca1−Kit+IL7R−FcgRlowCD34− HPCs, previously defined as
megakaryocyte-erythroid precursors (31). Our prediction was that
these cells should lack megakaryocyte potential, which is indeed
consistent with recent studies (27, 29, 37). Excluding these cells,
our predicted fate probabilities matched experimental data with
correlation ρ = 0.91 (Fig. 5C). In another study (16), we test several
novel predictions in hematopoiesis emerging from PBA.
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Fig. 4. Test of PBA on cell states from a simulated gene regulatory network
(GRN). (A) We tested PBA on cell states sampled from a GRN composed of
two genes that repress each other and activate themselves. (B) Trajectories
from this GRN begin in an unstable state with both genes at an intermediate
level and progress to a stable state with one gene dominating. (C) PBA was
applied to a steady-state snapshot of cells from this process (shown on Left
using a force-directed layout generated by SPRING). The resulting predic-
tions for temporal ordering (Top) and fate probability (Bottom) are com-
pared with ground truth. (D) To challenge PBA, we defined a GRN with two
stable states that compete with semistable limit cycle. (E) Trajectories from
the GRN begin with all genes oscillating and then progress to stable state
where one pair of genes dominates. (F) PBA was applied to a steady-state
snapshot of cells from this process, with predictions for ordering (Top) and
fate probability (Bottom) compared with ground truth. In C and F, the mean
first-passage time (MFPT) is defined as the mean simulation time taken to
enter the neighborhood of each sampled state; the “fate probability” equals
the fraction of simulations starting from each sampled state that reach one
of the two absorbing states.
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Discussion
In developing PBA, we hoped that an algorithm with clear as-
sumptions would help to clarify the ways in which data analysis
might mislead us about the underlying biology. More practically,
we hoped that the algorithm would suggest how to best design

experiments to extract dynamic information from static mea-
surements, and how to visualize single-cell data to preserve as-
pects of the true dynamics. We discuss a number of points that
follow from our analysis, along with a note about the technical
underpinnings of PBA.
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Experimental Design for Trajectory Reconstruction from Static Snapshot
Measurements. We have shown that accurate dynamic inference
requires knowledge of the density of cells in high-dimensional state
space, as well as the rates of cell entry and exit across the density.
These requirements immediately suggest a set of principles for
experimental design to optimize dynamic inference. First, to mini-
mize distortions in the cell density in gene expression space, it is
useful to profile a single, broad population, and to avoid merging
data from multiple subpopulations fractionated in advance. Where
possible, one should consider testing for uniform cell-sampling
probability across states. Second, if cells of interest are sorted be-
fore analysis, it is best to minimize the number of sorting gates and
enrichment steps, since each introduces an additional term to the
entry/exit rates and subsequently a risk of distortion to the inferred
dynamics. The HPC dataset analyzed in this paper was well suited
for trajectory reconstruction because it consisted of a single pop-
ulation, enriched using a single marker (Kit). This contrasts with
previous scRNA-seq datasets of hematopoietic progenitors that
included a composite of many subpopulations (38) or used complex
FACS gates to exclude early progenitors (29).

How PBA Could Go Wrong. To constrain a unique solution for
trajectory reconstruction, PBA makes several strong assump-
tions, such as memoryless dynamics with respect to measured
states, the absence of oscillations in gene expression space, and
an adequately “large” number of sampled cells.
Oscillations. In SI Appendix, Fig. S3, we show that implanting os-
cillations into the bistable dynamical system shown in Fig. 3 does
not significantly affect prediction accuracy. On the other hand,
when we tested PBA on a GRN whose main fate decision-
making circuit is driven by oscillations (shown in Fig. 4), accu-
racy declined. In cases where oscillatory dynamics strongly in-
fluence cell fate (e.g., refs. 39 and 40), single-cell snapshot data
could therefore be misleading, and methods that infer dynamics
from continua of cell states, such as PBA, may be ill suited.
However, the simulation results suggest that oscillations may be
somewhat benign unless they are the primary driver of cell fate
decision making. The agreement of prediction to fate commit-
ment assays when we applied PBA to single-cell profiles of HPCs
suggests that, despite some sensitivity to assumptions, accurate
inference is possible for complex differentiation systems.
Memory. In general, the extent to which cell trajectories are de-
fined by the current state of each cell (i.e., Markovian) is unclear.
Non-Markovian dynamics could arise from “hidden variables,”
defined as stable properties of cell state that are not observed by
scRNA-seq but still impact a cell’s behavior over time. Hidden
variables could include chromatin state, posttranslational modi-
fications, cellular localization of proteins, metabolic state, and
cellular microenvironment. It is also possible that these proper-
ties percolate to some aspect of cell state that is observed, for

example, effecting a change in the expression of at least one gene
measured by RNA-seq. By altering the observed state, such
variables would thus not be hidden. For example, chromatin
state exists in constant dialogue with transcriptional state and
could be well reflected in mRNA content.
Statistical error. The exact convergence of PBA is proved in the
limit of high dimension and many cells, but it may be difficult to
discern whether it is statistically well powered for any given
dataset. Calculating statistical power is hampered by a lack of
formal convergence results for the graph operator at the heart of
PBA (25) and by the fact that the actual outputs of PBA (e.g.,
fate probabilities) are complex functions of this operator. Since a
knn graph is not the only possible construction that could be
considered, it is possible that other graph-construction approaches
may converge faster and would be preferred for particular den-
sities c(x). In practice, statistical power can be estimated through
bootstrapping, for example, by repeating the analysis for down-
sampled datasets or scanning over in parameters, including the
number of neighbors, k.

Normalization, Principal-Components Analysis, and Other Coordinate
Transformations. In this study, we described a framework for
modeling the movement of cells in a space of gene expression,
the units of which might be considered to be (dimensionless)
counts of individual molecules. How then should one think about
routine transformations of gene expression coordinates per-
formed during practical low-level processing of single-cell ex-
pression data, such as transformation into logarithmic space,
or dimensionality reduction by principal-components analysis?
Here, the asymptotic analysis of PBA makes clear that co-
ordinate transformations may not be important when cells are
densely sampled, as they should leave the empirical single-cell
graph topology unchanged. The equations of PBA are indeed
invariant to coordinate transformations, with the exception of
the diffusion operator, which is isotropic and spatially homoge-
neous but may not remain so upon coordinate system trans-
formation. Since our assumption of isotropic and invariant
diffusion is already an approximation, it does not support a priori
one coordinate system over another. For small and noisy data-
sets, the choice of coordinate system could affect conclusions,
however, and it is probably best to use the coordinate system that
provides the richest view of single-cell population structure, or
that agrees most with known biology.
A related question is whether technical noise in gene expres-

sion measurements can be distinguished from biological effects.
For scRNA-seq methods that use techniques such as linear
amplification and unique molecular identifiers, technical noise
can mostly be attributed to undersampling of the mRNAs in a
cell, and therefore follows a predictable Poisson distribution
determined by the underlying gene expression and technical
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Fig. 6. Potential landscapes arise from symmetric GRNs. (A) Inferences about the deterministic component of average cell velocities, J(x), can be interpreted
as statements about an underlying gene regulatory network (GRN), with dJi/dxj giving the sensitivity of the dynamics of gene i to the expression level of gene
j. (B) The existence of a potential landscape-driven dynamics implies that the underlying GRN has strictly symmetric interactions, which allows for some
common gene regulatory motifs but rules out many others.
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sampling rate. Distinguishing technical noise using known fea-
tures of this distribution would be an area for improvement.

Fundamental Limits on the Inference of Gene Regulatory Networks.
One promise of single-cell expression measurements is their pos-
sible use for reconstructing GRNs (2, 11). However, since any GRN
model entails specific hypotheses about the gene expression tra-
jectories of cells, efforts to infer GRNs from single-cell data must
also confront the limits of knowledge identified in our framework.
In particular, GRN inference may benefit from an explicit consid-
eration of cell entry and exit rates (embodied by R) and the rate of
change in the cell density (∂c=∂t), as well as acknowledging the
inability to distinguish oscillations from fluctuations.
Indeed, the inability to detect oscillations in single-cell data,

embodied in our framework by the use of a potential landscape,
suggests severe limits on the types of underlying gene regulatory
relationships that can be modeled. In fact, potential landscapes
can only emerge from GRNs with strictly symmetric interactions,
meaning every “arrow” between genes has an equal and opposite
partner. This result follows from observing that the arrows in a
GRN describe the influence of gene i on gene j, which is given by
∂J i=∂xj (Fig. 6A), where J is the deterministic component of av-
erage cell velocities (Eq. 2). The assumption of a potential
landscape (i.e., J =−∇FÞ then imposes symmetry on the GRN
because ∂Ji=∂xj = ∂Jj=∂xi = −∂2F=∂xi∂xj. Although a few well-
known GRN motifs follow this symmetry rule—such as the
“bistable switch” resulting from the mutual inhibition of two
genes—many others do not, such as negative-feedback loops and
oscillators (Fig. 6B). Potential landscapes are frequently invoked
to explain gene expression dynamics (10, 41, 42), and we have
shown them to be useful for predicting HPC fate outcomes in the
context of PBA. It seems paradoxical that a tool that provides
realistic phenomenological descriptions of gene expression dy-
namics reflects an entirely unrealistic picture for the underlying
gene regulatory mechanisms. Resolving this paradox is an in-
teresting direction for future work.

How Should We Visualize Single-Cell Data? At its core, the PBA
algorithm performs dynamic inference by solving a diffusion-drift
equation in high dimensions. This computation relies on a 2011

result in spectral graph theory by Ting et al. (25) that describes
the limiting behavior of k-nearest-neighbor graph Laplacians on
sampled point clouds. Interestingly, several recent studies (8, 15,
43) have developed k-nearest neighbor graph-based representa-
tions of single-cell data, and others have suggested embedding
cells in diffusion maps (24, 44) on the basis of other similarity
kernels. It has been unclear, until now, how to evaluate which of
these different methods provides the most useful description of
cell dynamics. Our technical results (SI Appendix, Theorems 1–4
in SI Appendix, Theory Supplement) confirm that certain graph
representations provide an asymptotically exact description of the
cell state manifold on which dynamics unfold, suggesting them to
be useful techniques for visualizing single-cell datasets. Therefore,
PBA formally links dynamical modeling to choices of single-cell
data visualization.

Materials and Methods
A formal derivation of PBA is provided with PBA pseudocode in SI Appendix,
Theory Supplement. A PBA implementation in Python is made available at
https://github.com/AllonKleinLab/PBA and was implemented as described in
SI Appendix, SI Methods, section 1. PBA was then applied to simulated
diffusion-drift processes, simulated GRNs, and to empirical data on HPCs:
numerical simulations of diffusion-drift processes are detailed in SI Appen-
dix, SI Methods, section 2; PBA application to these simulations in SI Ap-
pendix, SI Methods, section 3; the effect of gene oscillations on PBA
predictions in SI Appendix, SI Methods, section 4. GRN simulations and cor-
responding applications of PBA are detailed in SI Appendix, SI Methods,
section 5. For application to bone marrow data, data processing and nor-
malization of scRNA-seq data were carried out as described in SI Appendix, SI
Methods, section 5; and determination of the PBA parameters R and D for
empirical PBA was carried out as described in SI Appendix, SI Methods,
sections 7 and 8. Comparisons of PBA-predicted fate probabilities to pub-
lished datasets were carried out as described in SI Appendix, SI Methods,
section 9.
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