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Abstract: Metal-catalyzed chelation-assisted C�H olefinations
have emerged as powerful tools for the construction of
functionalized alkenes. Herein, we describe the rhoda-electro-
catalyzed C�H activation/alkenylation of arenes. The olefina-
tions of challenging electron-poor benzamides were thus
accomplished in a fully dehydrogenative fashion under electro-
chemical conditions, avoiding stoichiometric chemical oxi-
dants, and with H2 as the only byproduct. This versatile
alkenylation reaction also features broad substrate scope and
used electricity as a green oxidant.

C�H alkenylations have proven to be a powerful tool for C�
C bond formation.[1,2] While considerable advances have been
accomplished for palladium-,[3] rhodium-,[4] and ruthenium-
catalyzed[5] C�H alkenylation reactions by chelation assis-
tance[6] (Scheme 1a), major challenges continue to be asso-
ciated with these C�C bond-forming reactions. Among these,
pioneering studies were reported by the groups of van
Leeuwen,[7] Yu,[8] Miura/Satoh,[9] Glorius,[10] and Acker-
mann.[11] However, the requirement for toxic and waste-
generating stoichiometric oxidants translates into a strong
demand for environmentally friendly and atom-economic
strategies.

In recent years, electrosynthesis has gained significant
attention owing to the use of waste-free and inexpensive
electric current as a redox equivalent, thereby avoiding
stoichiometric amounts of toxic and costly chemical redox
agents.[12–14] However, to the best of our knowledge, there has
been only a single report on metal-catalyzed directed C�H
olefination using electricity as the oxidant.[15] In 2007, Jutand
reported two examples of an electrochemical palladium(II)-
catalyzed Fujiwara–Moritani-type reaction, in which benzo-

quinone was required as a redox mediator in a divided cell
setup (Scheme 1b). Considering that there has been no
breakthrough progress in the development of convenient
electrooxidative C�H olefination for more than a decade, the
development of a general and efficient electrochemical
method for alkenylation reactions is in high demand. To this
end, we have now unraveled an unprecedented rhodium-
catalyzed electrooxidative olefination through the use of
benzamides as the substrates, on which we report herein
(Scheme 1c). Salient features of our strategy comprise
(a) alkenylations through versatile rhodium catalysis, (b) a
user-friendly undivided cell setup, (c) no additional electro-
lyte, (d) high regio- and monoselectivities, and (e) efficient
transformation of inherently electron-deficient benzamides.

We initiated our studies by probing various reaction
conditions for the envisioned electrochemical rhodium-cata-
lyzed C�H alkenylation reaction of benzamide 1a in a user-
friendly undivided cell setup (Table 1). After extensive
optimization, we found that the reaction of benzamide 1a
with styrene (2a) in the presence of [Cp*RhCl2]2 (2.5 mol%)
and NaOPiv in t-AmOH/H2O (3:1) delivered product 3aa
with 73 % isolated yield (entry 1). Furthermore, we found that
NaOPiv was the best base for the reaction, although other
carboxylate additives were also effective (entries 2 and 3).
Notably, ortho-alkenylation of benzamide 1 followed by
intramolecular cyclization to provide cyclic lactams was not
observed.[16] Attempts to replace the reaction medium by
other solvents failed (entries 4 and 5). In contrast to the
palladium catalysis, p-benzoquinone (BQ) as catalytic redox
mediator was not required (entry 6). When the alkenylation

Scheme 1. Metal-catalyzed direct C�H activation/alkenylation.
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reaction was performed on a 1 mmole scale, the product 3aa
was isolated in 85% yield (entry 10). Control experiments
confirmed the essential role of the electricity and the rhodium
catalyst for the electrooxidative alkenylation (entries 11–14).

With the optimized reaction conditions in hand, we
explored the scope of the electrochemical transformation.
We first examined the C�H electroalkenylation with sub-
stituted alkenes 2 (Scheme 2). Independent of the electronic
properties and positions of the substituents, a wide range of
styrenes 2a–2n efficiently underwent the intermolecular
alkenylation to afford (E)-stilbenes 3 in good yields. The
structure of product 3ac was further confirmed by single-
crystal X-ray analysis.[17a] Heteroaryl- and naphthyl-substi-
tuted alkenes were also compatible, and the expected
products 3ao–3ap were obtained in moderate to good
yields. Alkyl-substituted terminal alkenes gave a minor
amount of product. The alkenylation reaction was compatible
with various sensitive functional groups, such as chloro,
bromo, nitrile, and hydroxyl.

The scope of the alkenylation reaction was further
examined with various substituted arenes 1 (Scheme 3).
Generally, electron-donating as well as electron-withdrawing
substituents on the benzamides 1 did not significantly alter the
reaction efficiency and (E)-stilbenes 3 were selectively
obtained (3ea–3ja). In addition, the steric hindrance of
a substituent in the ortho-position was found to have
a considerable impact on the reaction (3ba–3da). Interest-
ingly, due to the dual coordination of an ether oxygen atom
and a carbonyl oxygen atom in the reaction of substrate 1k
with 2a, the alkenylation took place at the more sterically
hindered C�H bond to deliver product 3ka,[17b] which was
consistent with earlier report.[18] It is noteworthy that a,b-
unsaturated amides,[19] such as substrate 1n, also reacted with

styrene and the corresponding diene product 3na was
obtained. Heterocyclic amides, such as thiophene-3-carbox-
amide (1 p) and indol-2-carboxamide (1q), were also appli-
cable in this transformation to afford the corresponding
products 3oa–3qa. Additionally, when the alkenylation was
tested with para-substituted symmetrical benzamides 1r–1t,
the corresponding products were obtained in moderate yield,
along with minor amounts of the diolefinated products.

Next, we sought to examine various substitutions in the
amide motif, considering diversity in both steric and elec-
tronic properties (Table 2). Indeed, the regioselectivity was
improved with an increase in steric hindrance at the NH
moiety, which can regulate the coordination to the rhodium
center. These findings clearly showed that changing to

Table 1: Optimization of the rhodium-catalyzed C�H olefination.[a]

Entry Deviation from standard conditions Yield [%][b]

1 none 73
2 KOPiv instead of NaOPiv 54
3 NaOAc instead of NaOPiv 38
4 i-PrOH/H2O (1:1) trace
5 H2O trace
6 addition of TEMPO (0.1 equiv) 65
7 8 mA instead of 4 mA 60
8 80 8C, 30 h 40
9 [Cp*RhCl2]2 (1.5 mol%) 50
10 1 mmol scale (4 mL solvent) 85
11 no electricity trace
12 Cu(OAc)2 (2.0 equiv) instead of electricity 0
13 Pd(OAc)2 instead of [Cp*RhCl2]2 0
14 [Cp*IrCl2]2 instead of [Cp*RhCl2]2 0

[a] Standard conditions: Undivided cell, GF anode, Pt cathode, constant
current (CCE) = 4 mA, 1a (0.4 mmol), 2a (0.8 mmol), NaOPiv
(0.8 mmol), [Cp*RhCl2]2 (2.5 mol%), t-AmOH/H2O (4 mL), under air,
18 h. [b] Yield of isolated product.

Scheme 2. Rhoda-electrocatalyzed C�H olefination with alkenes 2.
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a longer N-alkyl group leads to lower conversion. Reactions
could not be conducted with a secondary N-alkyl group or N-
cycloalkyl benzamide. Thus, we propose that the N-methyl
amide group is the best choice for this transformation (see
Table S-4 for more details).

The optimized protocol was also applied to the conversion
of 3,4,5-trimethoxybenamide (1u) to access the biologically
relevant combretastatin A4 derivative 3ui. The scalability of
the C�H activation was also investigated and a 6 mmole scale
reaction of 1a and 2 i yielded 1.2 g of product 3 i with reduced
catalyst loading (Scheme 4).

To probe the reaction mechanism, we explored the
electrochemical C�H activation by means of cyclic voltam-
metry (Figure 1 and Figures S1 and S2 in the Supporting
Information). The addition of NaOPiv and the substrate 1a
led at a scan rate of 100 mVs�1 to an oxidation potential of
Ep,ox = 1.5 V vs. SCE the Cp*RhIII species. The modified
substrates N-phenylacetamide 5 and N,N-dimethylbenzamide
6 with weakly coordinating oxygen[20a,b] gave no products and
the starting materials were recovered (Scheme 5a,b). Under
the standard conditions, H/D exchange between amide 1a
and D2O was observed in the presence of alkene 2a, revealing
significant deuteration in the recovered substrate 1a (Scheme
5c). Considering that this rhodium(III)-catalyzed electro-
oxidative alkenylation includes a C�H activation step,
a kinetic isotope effect (KIE) study was also conducted
(Scheme 5d). The intermolecular competition experiments
provided a PH/PD value of 2.1 and parallel independent
reactions resulted in a value of kH/kD of 1.1. These results
indicate that the C�H cleavage is likely not the rate-
determining step.[20c]

On the basis of our experimental results and related
literature,[14a,b,d, 21] a plausible catalytic cycle is presented for
the rhodium(III)-catalyzed electrochemical C�H alkenyla-
tion. As depicted in Figure 2, coordination of the N-atom of
amide 1a to Cp*RhIII and subsequent directed cyclorhodation
at the ortho-position affords rhodacycle A. Then, alkene 2

Scheme 3. Rhoda-electrocatalysis with benzamides 1.

Table 2: Screening of the amide directing group.

Entry X 1, recovered [%] Ratio 3/4[a] 3, yield [%][a]

1 H 1v, 20 2:1 3va, 34
2 Me 1w, 10 4:1 3wa, 64
3 Et 1x, 20 7:1 3xa, 60
4 n-Pr 1y, 41 8:1 3ya, 40
5b n-Pr 1y, 5 1.1:1 3ya, 43
6 i-Pr 1a’, 96 – 0
7 1b’, 95 – 0
8 t-Bu 1d’, 99 – 0
9 Ts 1 f’, 0 – 0
10 Ph 1g’, trace – trace

[a] Yield of isolated product. [b] 2.5 equiv 2a.

Scheme 4. a) Combretastatin A4 analogue and b) gram-scale reaction.
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insertion occurs to give intermediate B, which undergoes b-
hydrogen elimination to form 3 together with a rhodium(II)
species, which is formed after dissociation of the N-atom in C.
Finally, the rhodium(II) species is reoxidized to rhodium(III)
at the anode, generating molecular hydrogen as the byproduct
at the cathode and completing the catalytic cycle.

In conclusion, we have shown that benzamides, a common
motif in natural products and drugs, are suitable substrates for
selective and efficient rhodium(III)-catalyzed electrooxida-
tive C�H olefination reactions using alkenes. Notably, both
electron-poor and electron-rich styrenes were well tolerated
as well as many sensitive functional groups, including bromo,
hydroxyl, and nitro. Our observations have shown that the
bulk of the alkyl group on the amide motif is a critical factor
for achieving monoselectivities in high yields. Control experi-

ments and H/D exchange studies were conducted and
a plausible mechanism was proposed.
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