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Simple Summary: Understanding the regulatory mechanism underlying grain development is
essential for wheat improvement. The early grain expanding phase boasts critical biological events
like embryogenesis and initiation of grain filling. RNA sequencing analysis of this developmental
stage revealed dynamic expressions of genes related to cell division, starch biosynthesis, and hormone
biosynthesis. An unbalanced expression among triads may play critical roles as shown by multiple
enriched metabolic pathways. Our work demonstrated complex regulation mechanisms in early
grain development and provided useful information for future wheat improvement.

Abstract: Grain development, as a vital process in the crop’s life cycle, is crucial for determining
crop quality and yield. The wheat grain expanding phase is the early process involving the rapid
morphological changes and initiation of grain filling. However, little is known about the molecular
basis of grain development at this stage. Here, we provide a time-series transcriptome profile of
developing wheat grain at 0, 2, 4, 6, 8, and 10 days after pollination of the wheat landrace Chinese
Spring. A total of 26,892 differentially expressed genes, including 1468 transcription factors, were
found between adjacent time points. Co-expression cluster analysis and Gene Ontology enrichment
revealed dynamic expressions of cell division and starch biosynthesis related structural genes and
transcription factors. Moreover, diverse, differential and drastically varied expression trends of the
key genes related to hormone metabolism were identified. Furthermore, ~30% of triads showed
unbalanced expression patterns enriching for genes in multiple pivotal metabolic pathways. Hormone
metabolism related genes, such as YUC10 (YUCCA flavin-containing monooxygenase 10), AOS2
(allene oxide synthase 2), CYP90D2 (cytochrome P450 90D2), and CKX1 (cytokinin dehydrogenase 1),
were dominantly contributed by A or D homoeologs of the triads. Our study provided a systematic
picture of transcriptional regulation of wheat grains at the early grain expanding phase which should
deepen our understanding of wheat grain development and help in wheat yield improvement.

Keywords: wheat; grain expanding phase; transcriptome dynamics; homoeolog expression bias;
time-series RNA-seq

1. Introduction

Wheat (Triticum aestivum) is one of the most important crops worldwide and wheat
grain provides approximately 20% of calories consumed by humans [1]. Along with the
rapidly increasing population, the demand to improve wheat yield and quality is becoming
more and more urgent. Wheat yield and quality are largely determined at early grain
development, especially the first 14 days after pollination (DAP) because this period is
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critical for final wheat yield and quality and is featured by rapid grain expansion where the
morphogenesis is largely established via continuous cell division and expansion and the
endosperm starts to fill with starch [2–4]. Other important events like embryogenesis, the
formation of syncytium, cellularization of the endosperm and the early grain-filling (i.e.,
starch and gluten accumulation) in the endosperm cells also occur at this time period [4].
Thus, the proper setup of the grain structure determines the subsequent grain fill and
maturation in the next 45 DAP. Transcriptome study of the grain developmental process
has been studied [1,5,6]. Yet, the transcriptomic dynamics of the grain enlargement phase
are not well deciphered and a broader view of the molecular basis underlying the cell
division and grain-filling initiation should contribute to wheat improvement.

Hormones, such as auxin (IAA), cytokinin (CK), brassinosteroid (BR), abscisic acid
(ABA), and gibberellic acid (GA), have been found to be key regulators of grain devel-
opment, especially the grain expanding phase, as has been widely demonstrated in Ara-
bidopsis, maize, and rice [7,8]. For instance, elevated CK levels were found in endosperm
cell divisions in the early stage of rice and maize grain development [9,10]. Auxin, for
instance, exerts a central role in grain development due to its multiple effects on pattern
formation, cell division and expansion [7]. Relocation of PIN1 and PIN7, two important
auxin efflux transporters, has been shown to be functionally essential for embryo polarity
establishment [11]. Moreover, BRand auxin are crucial for endosperm development, and
many genes regulating grain size and endosperm development are correlated with levels
and signaling of BR and auxin [12], while ABA was suggested to negatively mediate seed
size by influencing the timing of endosperm cellularization [13]. However, few studies
systematically investigated genes affecting hormone metabolism on the transcription level
during the wheat grain enlargement phase.

Common wheat is a hexaploid with three sub-genomes A, B, and D [14]. The availabil-
ity of high-quality genome sequences recently allowed detailed study of gene expression
patterns in the polyploid wheat. Polyploidization often results in homoeolog expression
bias that, in many cases, were caused by epigenetic modifications including DNA methyla-
tion and histone modifications [15,16]. A significant portion of triads (1:1:1 homoeologs
from three subgenomes) exhibit homoeolog expression bias [15]. These unbalanced ex-
pressions of homoeologs often affect plant growth, development, and stress responses
in wheat [16–18]. Despite this, much remains unknown about their potential biological
contributions to grains at early development.

Here, we performed a study of RNA-seq analysis at six consecutive time points (0, 2,
4, 6, 8, and 10 DAP) that concur with the grain expanding phase. Co-expression cluster
analysis of differentially expressed genes identified characteristic expression patterns of
structural genes and transcription factors that were known in model plants to be involved
in cell division and starch biosynthesis. Expression of hormone related genes exhibited
synergistic functions of these important factors during wheat grain development. Moreover,
homoeologs from the three sub-genomes were found to have unbalanced expression pat-
terns participating in various important metabolic pathways. Therefore, our work provided
new insights into the dynamic transcriptional regulation during the grain expanding phase
in wheat and a useful resource for future gene function characterization and application in
wheat yield improvement.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Chinese Spring (CS) was used in this study and grown in the Institute of Crop Sciences
(ICS) experimental station in Beijing (116◦ E, 40◦ N). Grains were collected at 0, 2, 4, 6, 8,
and 10 days after pollinations (DAP) with three biological replicates. After briefly being
frozen in liquid nitrogen, grains were stored in a −70 ◦C freezer until use.
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2.2. RNA Extraction and Sequencing

Total RNA was extracted with TRIzol reagent (Invitrogen, Burlington, ON, Canada).
Strand-specific RNA-seq libraries were constructed using TruSeq Stranded mRNA Library Prep
Kit (Illumina, San Diego, CA, USA) to generate Illumina sequencing libraries according to the
manufacturer’s instructions. Paired-end sequencing was performed on a HiSeq X Ten sequencer.

2.3. Identification of Differentially Expressed Genes

Raw reads were filtered using the fastp software with default parameters [19]. We
aligned the clean reads to the reference genome of Triticum aestivum cv. Chinese Spring
(IWGSC RefSeq v2.1. https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_
Assemblies/v2.1/ (accessed on 2 September 2021)) using the STAR program [20] and unique
alignments with less than two mismatches were retained for transcript assembly by the
Cufflinks software (v2.2.1. http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.1/
(accessed on 8 May 2021)) [21]. The assembled transcripts of all the samples were merged
by TACO [22]. The number of reads mapped in each gene model were counted using the
htseq-count script in HTSeq [23] based on the merged transcript. Gene expression levels
were normalized as fragments per kilobase of transcript per million mapped reads (FPKM).

Differentially expressed genes (DEGs) between adjacent time points were identified
using the R DESeq2 package [24]. Genes with adjusted p-value < 0.05 and an absolute value
of log2 fold change ≥ 1 were considered as DEGs. For each comparison, the consecutively
earlier time point was used as a control. Gene Ontology (GO) enrichment analysis was
conducted using the R clusterProfiler package [25].

2.4. k-Means Cluster Analysis

We performed k-means cluster analysis by using Pearson’s correlation distance based
on the scaled FPKM values of DEGs. Different values for k were validated and k = 10 was
selected as the most optimal cluster number according to the highest overall Silhouette
coefficient (Figure S1).

2.5. Genome-Wide Identification of Transcription Factor Family

Transcription factors (TFs) were predicted and clustered into 51 families using the
PlantTFDB database [26] based on their protein sequences. The over-representation of a TF
family was significant when the p-value of Fisher’s exact test was <0.01.

2.6. Comparison of Relative Expression Levels among the Three Homoeologs of Triads

A total of 14,284 triads were found to have homoeologs in all three subgenomes
using OrthoFinder software [27] based on protein sequences (Table S1). We defined a
triad as expressed when the summed FPKM value of the A, B, and D homoeologs was >1.
According to the previously reported method [15], expressed triads at each time point were
further classified into seven categories including (1) Balance: similar expressions across the
triad; (2) A dominant, (3) B dominant, and (4) D dominant: expression of one homoeolog
far beyond the remaining two, (5) A suppressed, (6) B suppressed, and (7) D suppressed:
expression of one homoeolog far below the remaining two. Pathway enrichment analysis
was performed based on the MapMan annotation using the R clusterProfiler package [25].

3. Results
3.1. Transcriptome Analysis of Wheat Grains at Expanding Phase

To investigate the transcriptome dynamics during the grain expanding phase in common
wheat, we performed RNA-seq assays at six time points when grains were evidently expanding.
This process occurred during 0 to 10 DAP (days after pollinations) for Chinese Spring (CS)
(Figure 1A). A total of 962.89 million high-quality (Q30 > 90%) reads were obtained, with an
average of 53.49 million reads (>8 Gb) for biological replicates. These reads were aligned to
the reference genome of the CS (IWGSC RefSeq v2.1), with the average rate of 90.24% unique
alignment (Table S2). The uniquely mapped reads for each sample were used to determine the
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normalized expression level as fragments per kilobase of transcript length per million mapped
reads (FPKM) of each protein-coding gene. Spearman correlation coefficient (SCC) between the
biological replicates of different tissues varied from 0.95 to 0.99, reflecting the high-quality of
these biological replicates (Table S3; Figure 1D).

Figure 1. Overview of gene expression profiles during the wheat grain expanding phase. (A) Mor-
phology of developing grains of T. aestivum cv. Chinese Spring at 0, 2, 4, 6, 8, and 10 DAP. (B) The
number of expressed genes (FPKM > 1) in the A, B, and D subgenomes at each time point. (C) A Venn
diagram showing the number of expressed genes shared among or specific to different time points.
(D) Cluster dendrogram and Spearman correlation coefficient (SCC) of gene expression profiles
among three biological replicates and different time points. The solid circle represents one biological
replicate. The scale bar is the SCC. (E) Principal component analysis (PCA) plot of samples with three
biological replicates at the six time points on basis of gene expression profiles.

A total of 54,182 expressed genes (FPKM > 1) were found in the grain expanding
phase of CS, covering 50.68% of total annotated genes. Similar to previous studies [15], the
number of expressed genes were similar among the three subgenomes (A: 18,086 genes,
51.00%; B: 17,963 genes, 50.18%; D: 17,925 genes, 52.31%). In addition, the number of
expressed genes retained high levels in 0–6 DAP and then reduced starting at 8 DAP
(Figure 1B). Of these expressed genes, 33,231 (61.33%) produced mRNAs detected in all the
samples (Figure 1C), whereas 20,951 genes (38.67%) were expressed only at a specific time
point, from 1636 at 0 DAP to 184 at 8 DAP (Figure 1C). Our data indicated that the early
developing grains of wheat exhibited rapidly altering expression profiles, highlighting a
reduction in gene activities in more mature grains.

To investigate the global differences in the transcriptome dynamics during grain
expanding phase, we performed unsupervised hierarchical clustering analysis (Figure 1D)
and principal component analysis (Figure 1E) based on the FPKM values of three biological
replicates at the six time points. The time points showing a higher expression correlation are
more similar in transcriptomes and biological processes. These two independent analyses
gave conserved patterns, i.e., transcriptomes of adjacent time points were clustered together,
particularly for samples at 8 and 10 DAP.
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3.2. Expression Clusters and Cellular Function of Differentially Expressed Genes

To capture temporal changes during the wheat grain expanding phase, we com-
pared gene expression levels among samples of the six time points. Using an adjusted
p-value < 0.05 and an absolute value of log2 fold change ≥1 as thresholds, a total of
26,892 genes (covering 49.63% of the total expressed genes) were identified to be signifi-
cantly differentially expressed genes (DEGs) between adjacent time points, with values
ranging from 1436 (10 DAP vs. 8 DAP) to 12,521 (6 DAP vs. 4 DAP) (Figure S2; Table S4).
Among identified DEGs, 9051, 8922, and 8783 genes (50.04%, 49.67%, and 49.00% of total
expressed genes) came from the A, B, and D genomes, respectively. Of these DEGs in A, B, and
D genomes, we found 5475, 5385, and 5421 homoeologs, respectively. In addition, DEGs were
mainly distributed on chromosome arm ends (Figure S3). Only 58 genes were differentially
expressed at all the time points, indicating complex transcriptional regulation of distinct
processes during the grain developing period. Next, we conducted Gene Ontology (GO)
enrichment for the DEGs between adjacent time points (Table S5). GO terms related to DNA
replication (GO:0006260), cell wall biogenesis (GO:0042546), and cell growth (GO:0016049)
were enriched in DEGs between 2 DAP vs. 0 DAP, 4 DAP vs. 2 DAP, and 6 DAP vs. 4 DAP.
Moreover, DEGs related to nutrient reservoir activity (GO:0045735) and embryo development
(GO:0009790) were found between 8 DAP vs. 6 DAP and 10 DAP vs. 8 DAP.

To further explore possible functions of these DEGs, k-means clustering analysis was
performed. DEGs were divided into ten clusters (C1–C10) containing 1480 to 5038 genes in each
cluster with distinct expression patterns (Figure 2A; Tables S6 and S7). The first three clusters
(C1–C3) contained 3233, 5038 and 2283 DEGs respectively. They showed higher expression levels
in 0–6 DAP. These DEGs were significantly (p-value < 0.05) enriched for cell division-associated
terms, such as DNA replication (GO:0006260), cell cycle (GO:0007049) and microtubule-based
process (GO:0007017), indicating frequent cell divisions during the early stage of grain expanding
phase (Figure 2B). Besides, genes related to cell differentiation (GO:0030154) and cell growth
(GO:0016049) were also enriched in clusters C1–C2 and C2–C3, respectively.

Figure 2. Co-expression clusters and over-representation of transcription factor (TF) genes in each
cluster. (A) Boxplots showing the expression trends of genes in ten co-expression clusters (C1–C10)
during the six time points. The orange dash line represents the average expression level of genes in
each cluster. For box plots, the central line represents median values; bounds of the box are the 25th
and 75th percentiles; whiskers were 1.5 * IQR (IQR: the interquartile range between the 25th and 75th
percentile). (B) Heatmap illustrating the enriched GO terms of genes in ten clusters. The GO term
with p-value < 0.01 (Fisher’s exact test) was considered to be significant. Cells of white-color in the
heat map represent insignificant GO terms. (C) Number and over-representation of TF genes of 28 TF
families in each of the ten clusters. Circle size is correlated with the number of TF genes in 28 TF
families. Circle color represents the −log10(p) of the enrichment analysis. The TF family with p-value
< 0.01 was considered as the significant over-representation.
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Despite the reversed expression patterns of clusters C2–C3 and C4–C5 (C4, 2915 genes,
C5, 2178 genes), they were both involved in embryo development (GO:0009790), consistent
with embryo developing events that occurred during this phase of grain development.
Moreover, cluster C4 contained genes with largely increased expression in 8–10 DAP,
showing significant enrichment for the nutrient reservoir (GO:0045735), glycogen (starch)
synthase activity (GO:0004373), and lipid droplet (GO:0005811), inferring the initiating of
grain filling. Clusters C6 and C7 contained 2312 and 2437 genes, respectively, displaying
preferentially expression in 2–4 DAP and 4–6 DAP. These genes were involved in photo-
synthesis (GO:0015979) as well as carbohydrate metabolic process (GO:0005975) which
may provide substances and energies for the intense cellular activities at these time points.
Notably, a significant enrichment for the cellulose biosynthetic process (GO:0030244) in
cluster C6 was observed, probably relating to cell wall formation activity during endosperm
cellularization. The remaining clusters (clusters C8–C10 with 2627, 1480, and 2389 genes)
were expressed highly for specific time points (0, 2, and 6 DAP, respectively), with genes
over-represented for other functional classes, such as response to the hormone, defense
response, and cell wall organization or biogenesis.

3.3. Expression Profiles of Key Genes Involved in Cell Division and Starch Biosynthesis

To investigate the potential molecular mechanism in grain expanding phase, we
further studied genes in clusters (C1–C3) that were enriched in cell cycle functions. A total
of 108, 164, and 54 cell cycle related genes were detected in clusters C1–C3, respectively.
Among them, we found one B-type cyclin-dependent kinase (CDK) CDKB1-2, three A-type
cyclin CYCA3-4, and five D-type cyclin (three CYCD5-1 and two CYCD6-1) in cluster C1
(Figure S4; Table S8), of which CDKB1-2 and CYCA3-4 are known to function in G2/M
transitions and the D-type cyclin have functions in G1/S transition [28,29].

Compared with cluster C1, C2 contained three CDKB2-2, four CYCA1-1, five CYCA2-4,
and five CYCB1-2 homologs, all of which were annotated to have functions in G2/M transi-
tions. Notably, the orthologs of CYCB1-2 in rice were known to be critical for endosperm
formation via the regulation of mitotic division [30]. In cluster C3, one CDKA1 involving in
G1/S transition, two CDKB1-2, three CYCA3-4 and two CKS1 (cyclin-dependent kinase-
subunit 1) were detected. The ortholog of CKS1 in Arabidopsis plays an essential role in
the regulation of the cell cycle that affects plant growth rate [31]. These results suggest that
the cell division precedes the subsequent grain filling.

It is known that the grain filling phase initiates when the endosperm cellularization
is finished [32]. Given cluster C4 contained genes enriched in glycogen (starch) synthase
activity (Figure 2B) which indicates the initiation of early grain-filling, we chose C4 to in-
vestigate the transcription of genes involved in starch and sucrose metabolism in particular.
The starch synthesis starts with the production of ADPglucose by AGPase (ADP-glucose
pyrophosphorylase) enzyme which is often regarded as the “committed step” of starch
synthesis [33]. We found that two AGPL1 genes encoding large subunits of AGPase and
three AGPS1 genes encoding small subunits expressed highly in 8–10 DAP (Figure S5;
Table S9). Besides, genes encoding starch synthase (SSSIIIa, 3), granule-bound starch syn-
thase (GBSSI, 3) and starch branching enzymes (SBE, 8), and debranching enzymes (ISA1,
3) were identified in cluster C4, confirming their functions in grain filling.

3.4. Differentially Expressed Transcription Factors

Transcription factors (TFs) have crucial roles in controlling plant growth, development
and phase changes by regulating gene expression [34]. Of the 5718 TFs identified using the
PlantTFDB database [26], 1468 (25.67%) from 50 different families were present during the
grain expanding phase, accounting for 5.46% of the total DEGs (Table S10). Among them,
MYB family members were the most prominent (120), followed by NAC (111), ERF (91),
and bHLH (90) (Figure S6). MYB proteins are key factors in regulatory networks controlling
development and metabolism under biotic and abiotic stress [35]. The number of TF genes
with peak expression levels at 0–6 DAP was more abundant (1188) than that (280) at later
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time points (8 and 10 DAP) when the grain-filling began (Table S11). Forty-seven (47) out of
50 families had more members in 0–6 DAP, including ARF (auxin response factor), AP2, B3,
GRAS, and GRF (growth-regulating factor) with important roles in plant growth regulation.
For example, 31 ARF family members (96.77%) were highly expressed in 0–6 DAP, only
one (3.23%) was expressed at 8–10 DAP. Whereas, the TF families related to a defense
response and storage accumulations, such as HSF (heat shock factor) and NF-YA (nuclear
transcription factor Y subunit alpha) tend to be more abundant in 8–10 DAP.

We further examined the TF numbers in different clusters and found 28 TF families
were significantly enriched (p < 0.01) in clusters except for C2 and C3 using Fisher’s
exact test (Figure 2C). Cluster C5 had the highest TF number (12) and C10 had the lowest
(1). Several significantly enriched TF families were identified in the same cluster. For
example, CK-responsive B-type ARR (Arabidopsis response regulator) genes were only
enriched in clusters C6 (30.43%) and C7 (47.83%) with high expressions in 2–6 DAP when
the endosperm underwent intense nuclear divisions as observed in Arabidopsis [36].
Moreover, the HSF and NAC families were significantly enriched in cluster C4. The
temporal-specific expression patterns of TFs suggest their distinct roles in regulating wheat
grain development and may be good candidates for further investigation.

3.5. Dynamic Hormone Metabolism during the Wheat Grain Expanding Phase

Since hormones are the predominant biochemical basis for grain morphogenesis [7],
we then analyzed the expression patterns of genes related to IAA, GA, BR, ABA, and CK
metabolism in the wheat grain expanding phase. For auxin, genes encoding key biosyn-
thesis enzymes including five TAR2 (tryptophan aminotransferase related 2), five YUC
(YUCCA flavin-containing monooxygenase, four YUC9, and one YUC10 were identified
most of which showed gradually increased expression levels along the grain develop-
ment (Figure 3A; Table S12). In comparison, auxin transporters, such as homologs for
auxin efflux transporter (PIN, 7 genes), auxin influx carrier (AUX, 3), and ATP binding
cassette B (ABCB, 8) had reversed expression patterns, i.e., decreasing over the time of
grain development (Figure S7). For BR, multiple genes encoding key biosynthesis enzymes,
such as DWARF1 (DWF1, two homologs), DET2 (deetiolated2, 2), DWF4 (3), and DWARF
(6) were found (Figure 3B; Table S12). We observed that the expression profiles of the
DWARF genes displayed one of two tendencies: high expression at 4 DAP or a gradual
increase over the grain expanding phase. DWARF_4, DWARF_5, and DWARF_6 manifested
the former pattern, while DWARF_1 and DWARF_3 showed the latter one. DWF1 genes
also showed two expression patterns with DWF1_1 and DWF1_2 expressing highly in
0–6 DAP and 4–10 DAP, respectively. Other biosynthesis enzymes (two DET2 and three
DWF4) and catabolic enzymes (four BAS1 (PHYB ACTIVATION-TAGGED SUPRESSOR1))
were increased in expression during grain development. For GA metabolism pathways,
homologs of nearly all genes for biosynthesis were differentially expressed including
one KO1 (ent-kaurene oxidase), three KAO2 (ent-kaurenoic acid oxidase), two GA20ox3
(gibberellin 20-oxidase), three GA3ox2 (gibberellin 3β-hydroxylase), and three GA2ox7
(Figure 3C; Table S12). In the ABA biosynthesis pathway, we found homologs to ZEP1
(zeaxanthin epoxidase1, 2), NCED1 (9-cis-epoxycarotenoid dioxygenase 1, 3), NCED5 (1),
ABA2 (ABA DEFICIENT2, 3), and ABA8ox (ABA 8′-hydroxylase, 2) genes that consistently
highly expressed before 8 DAP with the maximum expression level at 4 DAP (Figure 3D;
Table S12). For CK metabolism pathways, 13 cytokinin metabolism related genes, including
one homolog of LONELY GUY (LOG) in Arabidopsis, one isopentenyl transferase (IPT)
gene, and 11 putative cytokinin oxidase/dehydrogenase (CKX) genes, were identified
among the DEGs (Figure 3E; Table S12). The LOG and IPT exhibited peak expressions in
2–4 DAP, while the expressions of most CKX genes remained high before 8 DAP.
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Figure 3. Differential expression patterns of plant hormone metabolism related genes. Diagram of
hormone metabolism pathways (upper) and heat maps (lower) of the expression of genes related to
the synthesis of auxin (A), brassinosteroids (B), gibberellic acid (C), abscisic acid (D), and cytokinin
(E) across six time points (0, 2, 4, 6, 8, and 10 DAP). The intermediates and enzymes involved in the
biosynthesis of various hormones are indicated in blue and red, respectively. The gene expression
was displayed based on scaled FPKM values.

3.6. Homoeolog Expression Bias during Wheat Grain Development

As a polyploid plant, quantitative variations for many agronomic traits in wheat are
determined by multiple sets of homoeologs from the three subgenomes [37]. To explore
expression patterns across homoeologs, we focused on 14,284 sets of triads with all three
homoeologs available (Table S1). Among them, 6736 (47.16%) had at least one homoeolog
differentially expressed and were assigned to any one of the ten co-expression clusters. We
found only 1589 (23.59%) of triads with all three homoeologs expressing in the same cluster
and 2084 (30.84%) had two homoeologs expressing in the same cluster, demonstrating
expression divergence among homoeologs during the wheat grain development.

We then analyzed homoeolog expression bias in all the detected triads. Based on the
previously established classification criteria [15], triads (11,398) with the sum FPKM value
> 1 were divided into seven categories (See methods) (Figure 4A; Table S13). Most of the
triads (72.13% on average) have balanced expression patterns among three homoeologs
at six time points. Triads with one-homoeolog suppressed were less frequent (20.97% on
average), whereas triads with single-homoeolog dominant were least common (6.90% on
average; Figure 4B). Moreover, we also found that 71.82% of balanced triads remained
balanced at each of the six time points, whereas dominant and suppressed triads tended to
be more variable across the course of grain development, occupying 28.83% and 22.25% of
triads studied respectively (Figure 4C).

To investigate the functions of triads with unbalanced homoeolog expression patterns,
we firstly obtained 3657 triads with at least one homoeolog differentially expressed (Ta-
ble S13). Mapman annotation and enrichment analysis showed that triads in different
categories were significantly enriched for metabolic pathways including major and mi-
nor CHO (carbohydrate) metabolism, secondary metabolism, lipid metabolism, hormone
metabolism and cell wall (Figure 4D), suggesting their functions in early grain devel-
opment. Interestingly, triads in A-homoeolog suppressed or D-homoeolog suppressed
categories were enriched in the major CHO metabolism pathway including sugar and
starch metabolism (Table S14). Twelve triads were identified for sugar metabolism includ-
ing FBP1 (fructose-1,6-bisphosphatase 1) behaving as D-homoeolog suppressed at six time
points and so was, HXK3 (hexokinase 3) at 6–10 DAP, whereas CIN2 (cell wall invertase 2)
behaved as A-homoeolog suppressed at 0–4 DAP (Figure S8). For starch metabolism, the
expression of one SSSII gene was found to be mainly contributed by A and B homoeologs,
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while the second SBE gene was dominantly contributed by B and D homoeologs (Figure S8).
On the other hand, hormone-related triads (91) also accounted for a significant proportion
in categories of A dominant, B suppressed, and D dominant, suggesting the dominant
influence of A and D subgenome for hormone functions in wheat grain development.
Among these triads, enzymes for hormone metabolism, such as YUC10, AOS2 (allene oxide
synthase 2), and CYP90D2 (cytochrome P450 90D2) displayed A dominant expression
patterns at 6–10 DAP, and others, such as CKX1_2 and ZEP1, exhibited B suppressed
expression patterns at 2 DAP, a time point when the free-nuclear division occurred in
the endosperm. Notably, the YUC10 rice ortholog OsYUC11 has been shown to be a key
contributor to auxin biosynthesis in endosperm and is essential for grain filling [38]. In
addition, homologs of AOS4 and auxin efflux transporters (PIN1 and PIN7) showed B
suppressed or D dominant expression patterns at 0–6 DAP. Other hormone related genes,
such as homologs of the gibberellin receptor GID1C and auxin responsive genes (GH3-4 and
SAUR37) also displayed unbalanced expression patterns at some time points (Table S15;
Figure S9). Understanding the homoeolog expression patterns will help inform strategies
to improve crops by targeting and manipulating individual or multiple homoeologs to
quantitatively modulate grain development.

Figure 4. Homoeolog expression bias during the wheat grain expanding phase. (A) Ternary plot
showing relative expression abundance of triads in 0 DAP as an illustration. Each point represents
a triad with an A, B, and D coordinate representing the relative contribution of each homoeolog to
the overall triad expression. Triads in vertices correspond to single-subgenome–dominant categories
(A dominant, B dominant, and D dominant: expression of one homoeolog beyond those of the
others), whereas triads close to edges and between vertices correspond to suppressed categories
(A suppressed, B suppressed, and D suppressed: expression of one homoeolog below those of the
others). Balanced triads (Balance: similar expressions across three homoeologs) are shown in gray.
The dotted lines represent grid lines connecting the labels of the three axes. (B) The proportion of
triads in each category of homoeolog expression bias at six time points. (C) Sankey diagram showing
patterns of transition for triads belonging to each category of homoeolog expression bias at different
time points. The triad with the sum FPKM values of three homoeolog < 1.0 was assigned as the
low expression category. (D) Enrichment of metabolism functions among combined triads with at
least one differentially expressed homoeologous gene in each dominant and suppressed category
across early grain development. A pathway with p-value < 0.05 (Fisher’s exact test) was considered
significantly enriched.
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4. Discussion

The early development of wheat grain is critical for final grain yield. Compared with
previous studies on wheat early grain development based on microarray technology [5,6],
RNA-seq technology has obvious advantages for transcriptome dynamics analysis. Our
comprehensive analysis of time-series transcriptomes during the wheat grain expanding
phase revealed a large number of DEGs over the developing course, indicating dynamic and
complex gene regulation, consistent with previous observations in the wheat endosperm [1].

Cereal grain development often begins with double fertilization that generates diploid
embryos and triploid endosperms. During early developmental stages, the embryo and
endosperm grow rapidly through cell division and growth in a coordinated manner that is
affected by the maternal tissues likely the pericarp [39]. We showed here high expression
levels of cell cycle and starch biosynthesis related genes, specifically in 0–6 DAP and
the following 8–10 DAP, respectively, suggesting that these genes contributed to grain
expanding and the initiation of grain filling in wheat. Notably, several key regulators of the
mitotic cycle process, such as the CYCB1-2 [30] and CKS1 [31], as well as the rate-limiting
enzymes for starch biosynthesis (AGPL1 and AGPS1) [33] were observed and could be
potential targets for future molecular verification and breeding application.

Transcription factors are major factors for signal transduction and gene expression
regulation and play important roles in plant growth, development, and stress responses. In
this study, we found several TF families that were related to cell proliferation and growth,
such as ARF, B-type ARR and GRF expressed that were highly expressed in 0–6 DAP. Such
expression patterns are consistent with the developmental changes including the formation
of syncytium and the fast pericarp growth during the early grain development. Interest-
ingly, as shown in Figure S10, TaARF25, which is expressed highly in 0- and 4-DAP outer
pericarps, has been shown to positively regulate grain size and weight in our previous
study [40]. Moreover, the regulations of the early grain-filling process may be regulated
by other TF families, such as NF-YA and NAC with high expression levels in 8–10 DAP,
consistent with previous reports [41–43]. We identified a known wheat grain quality reg-
ulator of starch- and seed storage protein-related genes, TaNAC019 [42], which showed
a rapid increase in expression level from 8 DAP (Figure S11). Plant HSF genes are ex-
pressed not only in response to stress but also during various developmental programs,
including pollen development [44] and seed maturation [45]. The gradually increasing
expression of HSF genes from 0–10 DAP may suggest their roles in early grain filling under
adverse conditions.

Hormonal regulation of grain development and their dynamic changes during grain
development is widely studied in plants, such as Arabidopsis, maize and rice [7,46,47]. We
observed distinct expression patterns of numerous genes for the metabolism of various
hormones. The biosynthesis gene for ABA and CK tend to be expressed in 0–6 DAP, those
for auxin and GA in 8–10 DAP, while those for BR were expressed across the developmental
period. The sequential biosynthesis of different hormones may suggest their distinct
functions on wheat grain development. In rice, CK and BR, for example, may be involved
in regulating cell division at both the free nuclear (2 DAP) and cellularization (3 DAP) stages
in endosperm as shown in early grain development [46]. In wheat, one BR biosynthesis
gene (DWARF) and nearly all ABA biosynthesis genes were present at 2–4 DAP in addition
to CK biosynthesis genes, suggesting a largely conserved mode of action for these key
regulatory genes in the two grass species. Other BR biosynthesis (DWARF, DWF4, DET2,
and DWF1) and catabolic genes (BAS1) tend to express in the later stages to regulate
endosperm cell expansion, a well-known effect of BR on grain size development [12,46].

Auxin is a key regulator of grain development, orchestrating cell division, elongation,
differentiation, and embryonic development [7]. It is known that de novo synthesis of
auxin occurs during grain development and is associated with embryonic development
and endosperm starch biosynthesis [38,48,49]. We found that most TAR and YUC genes
were expressed highly from 8 DAP when the grain filling started, except for TAR2-D2
and YUC9-D2 which showed specific expressions in 2–6 DAP. In particular, the TAR2-A4,
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TAR2-B3, TAR2-D3, and YUC10-A were assigned in cluster C4 and co-expressed with genes
for starch biosynthesis enzymes (Figure S6), suggesting a possible relationship between
these two processes in grain filling. In addition to genes for de novo biosynthesis, auxin
transport proteins were responsible for the differential auxin distribution to shape organs
through the mediation of polar auxin transport [50]. We found differentially expressed
transporter genes including PIN1/2/7, AUX1 and ABCB1/19 genes, which have been shown
to participate in multiple developmental processes including embryogenesis, endosperm
initiation, and pericarp extension [11,51,52], highly expressed in 0–6 DAP, suggesting their
potential roles on the embryogenesis, endosperm initiation and pericarp growth. Converse
to ABA, GA has antagonistic roles in the regulation of signaling molecules and gene ex-
pression, contributing to concentrations of calcium, α-amylase, MAP kinase, and PH [53].
Nearly all the identified GA metabolism genes, such as those for biosynthesis (KO, KAO,
GA20ox, and GA3ox) and catabolism (GA2ox) expressed with an increasing level along the
grain development, particularly at 8–10 DAP, suggesting their potential effect on starch
degradation so as to affect grain quality. Taken together, hormones likely regulate multiple
biological processes in early grain development and the comprehensive expression profil-
ing should provide useful information for further understanding of hormone regulatory
mechanisms in wheat.

Investigating homoeolog expression bias may help pinpoint actively expressed genes
as targets for genetic improvement. The bias of expression among homoeologs contributed
differentially to various morphological and agronomical traits, such as the production of
rRNA and storage proteins, and in interaction with pathogens [1,54]. We found about 30%
of homoeolog triads showing unbalanced expression patterns, similar to a recent report
in wheat [15]. Triads with unbalanced expression patterns appear to be variable, with
28.83% being A-, B-, and D-dominant and 22.25% as A-, B-, and D-suppressed, showing a
strong transcriptional reprogramming at the grain expanding phase. Functional enrichment
analysis showed that these imbalance triads were enriched in multiple specific metabolic
pathways that may be critical for wheat grain development. For instance, among triads
associated with sugar and starch metabolism, expressions of A or D homoeologs tended to
be suppressed, indicating unbalanced contributions from B homoeologs on these important
pathways, while A and D homoeologs contributed to hormone metabolism triads. One
example was AOS2/4, a key biosynthesis enzyme gene for jasmonate whose expression was
contributed to by A- and D-homoeologs. Previous work also showed biased contributions
from A and D sub-genomes on the expression of a lipoxygenase gene that catalyzes the first
step in the jasmonate biosynthesis pathway under pathogen-inoculated conditions [17].
Differences in expression levels among the three homoeologs may be associated with
various regulation elements, such as cis- and trans-regulatory elements, DNA methylation
and histone modifications [15]. These underlying mechanisms for unbalanced homoeolog
expression need further investigation.

5. Conclusions

Systematic investigation of transcriptome dynamics during wheat grain expanding
phase (0–10 DAP) identified genes with specific expression patterns that may reflect their
important roles in cell division and early grain-filling during wheat early grain develop-
ment. The work elucidates the potential regulatory mechanisms of the cell cycle, starch
biosynthesis and hormone metabolism, and homoeolog expression bias in this process and
may provide candidate genes for further functional characterization. The knowledge may
serve as a valuable resource to develop molecular markers for wheat yield improvement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11020281/s1, Figure S1: Selection of an optimal number
of clusters based on Silhouette scores for k-means clustering approach. The dashed line in the plot
indicates the best cluster number k; Figure S2: Number of DEGs (differentially expressed genes)
between adjacent time points (0 DAP vs. 2 DAP; 2 DAP vs. 4 DAP; 4 DAP vs. 6 DAP; 6 DAP vs.
8 DAP; 8 DAP vs. 10 DAP) during wheat early grain development; Figure S3: DEG distribution along
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the three wheat subgenomes. DEG density was counted with 1-Mb windows; Figure S4: Heatmap
showing the expression profiles of cell cycle related genes in co-expression clusters C1 (A), C2 (B),
and C3 (C). The gene expression was displayed based on scaled FPKM values; Figure S5: Diagram (A)
displaying the starch biosynthesis pathway and heatmap (B) showing the expression profiles of starch
biosynthesis related genes in co-expression cluster C4. The gene expression was displayed based
on scaled FPKM values; Figure S6: Number of transcription factors (TFs) differentially expressed
between adjacent time points (0 DAP vs. 2 DAP; 2 DAP vs. 4 DAP; 4 DAP vs. 6 DAP; 6 DAP vs. 8 DAP;
8 DAP vs. 10 DAP) during wheat early grain development; Figure S7: Heatmap showing expression
profiles of auxin transporter genes differentially expressed during six time points. Figure S8: Bar
plot of homeologous genes related to sugar metabolism and starch biosynthesis with unbalanced
expression patterns. Bars of different colors represent different homoeolog of the A, B, and D
subgenomes. Tri-angles with different colors represent different categories of unbalanced expression
patterns; Figure S9: Bar plot of homoeologous genes related to hormone metabolism and signaling
with unbalanced expression patterns. Bars with different colors represent different homoeologs
from A, B, and D subgenomes. Tri-angles with different colors represent different categories of
unbalanced expression patterns; Figure S10: Expression levels of TaARF25 homoeologs from A, B,
and D genomes respectively during six time points; Figure S11: Expression levels of TaNAC109
homoeologs from A, B, and D genomes respectively in co-expression cluster C4 at six time points;
Table S1: List of triads identified based on protein sequences; Table S2: Statistics of sequencing data
and alignment; Table S3: Spearman Correlation Coefficients among three biological replicates based
on the FPKM values of expressed genes (FPKM > 1); TableS4: List of DEGs (differentially expressed
genes) between adjacent time points; Table S5: Significant GO enrichment for DEGs (differentially
expressed genes) between adjacent time points; Table S6: Genes assigned to ten co-expression clusters
by k-means clustering approach; Table S7: Numbers of genes assigned to ten co-expression clusters
by k-means clustering approach; Table S8: List of DEGs (differentially expressed genes) associated
with cell cycle in co-expression clusters C1–C3; Table S9: List of DEGs (differentially expressed
genes) associated with starch biosynthesis in co-expression cluster C4; Table S10: Genome-wide
transcription factors (TFs) identification based on protein sequences using PlantTFDB database;
Table S11: Numbers of transcription factors (TFs) with peak expression in pre-grain-filling and early
grain-filling stages; Table S12: List of DEGs (differentially expressed genes) associated with hormone
metabolism; Table S13: Triads in the seven categories of homoeolog expression patterns in each of
six time points; Table S14: Triads related to major CHO (carbohydrate) metabolism with unbalanced
homoeolog expression patterns; Table S15: Triads related to hormone metabolism with unbalanced
homoeolog expression patterns.

Author Contributions: A.L. and L.M. designed the experiment. X.K., F.W. and G.S. helped in
collecting the wheat grains; S.G. and S.L. helped in the field trial experiments. J.G. and Z.W. analyzed
the data. J.G. and A.L. wrote the manuscript with significant inputs from P.Z. and L.M. All authors
helped in revising the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: The work was supported by the National Natural Science Foundation of China (no.
31661143007, 31971930, 32072066).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in the Sequence
Read Archive of the National Center for Biotechnology Information (NCBI) under BioProject PR-
JNA780107.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pfeifer, M.; Kugler, K.G.; Sandve, S.R.; Zhan, B.; Rudi, H.; Hvidsten, T.R.; Mayer, K.F.X.; Olsen, O.-A. International Wheat Genome

Sequencing Consortium Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 2014, 345, 1250091.
[CrossRef] [PubMed]

2. Mechin, V.; Thevenot, C.; Le Guilloux, M.; Prioul, J.L.; Damerval, C. Developmental analysis of maize endosperm proteome
suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol. 2007, 143, 1203–1219. [CrossRef] [PubMed]

http://doi.org/10.1126/science.1250091
http://www.ncbi.nlm.nih.gov/pubmed/25035498
http://doi.org/10.1104/pp.106.092148
http://www.ncbi.nlm.nih.gov/pubmed/17237188


Biology 2022, 11, 281 13 of 14

3. Yan, L.; Liu, Z.; Xu, H.; Zhang, X.; Zhao, A.; Liang, F.; Xin, M.; Peng, H.; Yao, Y.; Sun, Q.; et al. Transcriptome analysis reveals
potential mechanisms for different grain size between natural and resynthesized allohexaploid wheats with near-identical AABB
genomes. BMC Plant Biol. 2018, 18, 28. [CrossRef] [PubMed]

4. Saulnier, L.; Guillon, F.; Chateigner-Boutin, A.-L. Cell wall deposition and metabolism in wheat grain. J. Cereal Sci. 2012, 56,
91–108. [CrossRef]

5. Capron, D.; Mouzeyar, S.; Boulaflous, A.; Girousse, C.; Rustenholz, C.; Laugier, C.; Paux, E.; Bouzidi, M.F. Transcriptional profile
analysis of E3 ligase and hormone-related genes expressed during wheat grain development. BMC Plant Biol. 2012, 12, 35.
[CrossRef]

6. Shewry, P.R.; Mitchell, R.A.; Tosi, P.; Wan, Y.; Underwood, C.; Lovegrove, A.; Freeman, J.; Toole, G.A.; Mills, E.C.; Ward, J.L. An
integrated study of grain development of wheat (cv. Hereward). J. Cereal Sci. 2012, 56, 21–30. [CrossRef]

7. Locascio, A.; Roig-Villanova, I.; Bernardi, J.; Varotto, S. Current perspectives on the hormonal control of seed development in
Arabidopsis and maize: A focus on auxin. Front. Plant Sci. 2014, 5, 412. [CrossRef]

8. Basunia, M.; Nonhebel, H.M. Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Funct.
Plant Biol. 2019, 46, 493–506. [CrossRef]

9. Rijavec, T.; Dermastia, M. Cytokinins and their Function in Developing Seeds. Acta Chim. Slov. 2010, 57, 617–629.
10. Yang, J.; Zhang, J.; Huang, Z.; Wang, Z.; Zhu, Q.; Liu, L. Correlation of cytokinin levels in the endosperms and roots with cell

number and cell division activity during endosperm development in rice. Ann. Bot. 2002, 90, 369–377. [CrossRef]
11. Friml, J.; Vieten, A.; Sauer, M.; Weijers, D.; Schwarz, H.; Hamann, T.; Offringa, R.; Jurgens, G. Efflux-dependent auxin gradients

establish the apical-basal axis of Arabidopsis. Nature 2003, 426, 147–153. [CrossRef]
12. Li, N.; Xu, R.; Li, Y. Molecular Networks of Seed Size Control in Plants. Annu. Rev. Plant Biol. 2019, 70, 435–463. [CrossRef]
13. Cheng, Z.J.; Zhao, X.Y.; Shao, X.X.; Wang, F.; Zhou, C.; Liu, Y.G.; Zhang, Y.; Zhang, X.S. Abscisic Acid Regulates Early Seed

Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 2014, 26,
1053–1068. [CrossRef]

14. Marcussen, T.; Sandve, S.R.; Heier, L.; Spannagl, M.; Pfeifer, M.; Jakobsen, K.S.; Wulff, B.B.H.; Steuernagel, B.; Mayer, K.F.X.;
Olsen, O.-A.; et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 2014, 345, 1250092. [CrossRef]

15. Ramirez-Gonzalez, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; van Ex, F.; Pasha, A.;
et al. The transcriptional landscape of polyploid wheat. Science 2018, 361, 6403. [CrossRef]

16. Leach, L.J.; Belfield, E.J.; Jiang, C.; Brown, C.; Mithani, A.; Harberd, N.P. Patterns of homoeologous gene expression shown by
RNA sequencing in hexaploid bread wheat. BMC Genom. 2014, 15, 276. [CrossRef]

17. Powell, J.J.; Fitzgerald, T.L.; Stiller, J.; Berkman, P.J.; Gardiner, D.M.; Manners, J.M.; Henry, R.J.; Kazan, K. The defence-associated
transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol. J. 2017, 15, 533–543.
[CrossRef]

18. Liu, Z.; Xin, M.; Qin, J.; Peng, H.; Ni, Z.; Yao, Y.; Sun, Q. Temporal transcriptome profiling reveals expression partitioning of
homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 152.
[CrossRef]

19. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
20. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast

universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]
21. Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential

gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578.
[CrossRef]

22. Niknafs, Y.S.; Pandian, B.; Iyer, H.K.; Chinnaiyan, A.M.; Iyer, M.K. TACO produces robust multisample transcriptome assemblies
from RNA-seq. Nat. Methods 2017, 14, 68–70. [CrossRef]

23. Anders, S.; Pyl, P.T.; Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 2015,
31, 166–169. [CrossRef]

24. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef]

25. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS
2012, 16, 284–287. [CrossRef]

26. Zhang, H.; Jin, J.; Tang, L.; Zhao, Y.; Gu, X.; Gao, G.; Luo, J. PlantTFDB 2.0: Update and improvement of the comprehensive plant
transcription factor database. Nucleic Acids Res. 2011, 39, D1114–D1117. [CrossRef]

27. Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238.
[CrossRef]

28. Dante, R.A.; Larkins, B.A.; Sabelli, P.A. Cell cycle control and seed development. Front. Plant Sci. 2014, 5, 493. [CrossRef]
29. Inze, D.; De Veylder, L. Cell cycle regulation in plant development. Annu. Rev. Genet. 2006, 40, 77–105. [CrossRef]
30. Guo, J.; Wang, F.; Song, J.; Sun, W.; Zhang, X.S. The expression of Orysa;CycB1;1 is essential for endosperm formation and causes

embryo enlargement in rice. Planta 2010, 231, 293–303. [CrossRef]
31. De Veylder, L.; Beemster, G.T.; Beeckman, T.; Inze, D. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing

meristem size and inhibiting cell-cycle progression. Plant J. 2001, 25, 617–626. [CrossRef] [PubMed]

http://doi.org/10.1186/s12870-018-1248-y
http://www.ncbi.nlm.nih.gov/pubmed/29402221
http://doi.org/10.1016/j.jcs.2012.02.010
http://doi.org/10.1186/1471-2229-12-35
http://doi.org/10.1016/j.jcs.2011.11.007
http://doi.org/10.3389/fpls.2014.00412
http://doi.org/10.1071/FP18323
http://doi.org/10.1093/aob/mcf198
http://doi.org/10.1038/nature02085
http://doi.org/10.1146/annurev-arplant-050718-095851
http://doi.org/10.1105/tpc.113.121566
http://doi.org/10.1126/science.1250092
http://doi.org/10.1126/science.aar6089
http://doi.org/10.1186/1471-2164-15-276
http://doi.org/10.1111/pbi.12651
http://doi.org/10.1186/s12870-015-0511-8
http://doi.org/10.1093/bioinformatics/bty560
http://doi.org/10.1093/bioinformatics/bts635
http://doi.org/10.1038/nprot.2012.016
http://doi.org/10.1038/nmeth.4078
http://doi.org/10.1093/bioinformatics/btu638
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1089/omi.2011.0118
http://doi.org/10.1093/nar/gkq1141
http://doi.org/10.1186/s13059-019-1832-y
http://doi.org/10.3389/fpls.2014.00493
http://doi.org/10.1146/annurev.genet.40.110405.090431
http://doi.org/10.1007/s00425-009-1051-y
http://doi.org/10.1046/j.1365-313x.2001.00996.x
http://www.ncbi.nlm.nih.gov/pubmed/11319029


Biology 2022, 11, 281 14 of 14

32. Opanowicz, M.; Hands, P.; Betts, D.; Parker, M.L.; Toole, G.A.; Mills, E.N.; Doonan, J.H.; Drea, S. Endosperm development in
Brachypodium distachyon. J. Exp. Bot. 2011, 62, 735–748. [CrossRef] [PubMed]

33. Martin, C.; Smith, A.M. Starch biosynthesis. Plant Cell 1995, 7, 971–985. [CrossRef] [PubMed]
34. Ramachandran, S.; Hiratsuka, K.; Chua, N.H. Transcription factors in plant growth and development. Curr. Opin. Genet. Dev.

1994, 4, 642–646. [CrossRef]
35. Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends

Plant Sci. 2010, 15, 573–581. [CrossRef]
36. Day, R.C.; Herridge, R.P.; Ambrose, B.A.; Macknight, R.C. Transcriptome analysis of proliferating Arabidopsis endosperm reveals

biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol.
2008, 148, 1964–1984. [CrossRef]

37. Borrill, P.; Adamski, N.; Uauy, C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 2015, 208,
1008–1022. [CrossRef]

38. Xu, X.; E, Z.; Zhang, D.; Yun, Q.; Zhou, Y.; Niu, B.; Chen, C. OsYUC11-mediated auxin biosynthesis is essential for endosperm
development of rice. Plant Physiol. 2021, 185, 934–950. [CrossRef]

39. Olsen, O.A. Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 2004, 16, S214–S227. [CrossRef]
40. Jia, M.; Li, Y.; Wang, Z.; Tao, S.; Sun, G.; Kong, X.; Wang, K.; Ye, X.; Liu, S.; Geng, S.; et al. TaIAA21 represses TaARF25-mediated

expression of TaERFs required for grain size and weight development in wheat. Plant J. 2021, 108, 1754–1767. [CrossRef]
41. Xu, J.-J.; Zhang, X.-F.; Xue, H.-W. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by

interacting with an ERF transcription factor. J. Exp. Bot. 2016, 67, 6399–6411. [CrossRef]
42. Gao, Y.; An, K.; Guo, W.; Chen, Y.; Zhang, R.; Zhang, X.; Chang, S.; Rossi, V.; Jin, F.; Cao, X.; et al. The endosperm-specific

transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant
Cell 2021, 33, 603–622. [CrossRef]

43. Zhang, Z.; Dong, J.; Ji, C.; Wu, Y.; Messing, J. NAC-type transcription factors regulate accumulation of starch and protein in maize
seeds. Proc. Natl. Acad. Sci. USA 2019, 116, 11223–11228. [CrossRef]

44. Renak, D.; Gibalova, A.; Solcova, K.; Honys, D. A new link between stress response and nucleolar function during pollen
development in Arabidopsis mediated by AtREN1 protein. Plant Cell Environ. 2014, 37, 670–683. [CrossRef]

45. Kotak, S.; Vierling, E.; Baumlein, H.; von Koskull-Doring, P. A novel transcriptional cascade regulating expression of heat stress
proteins during seed development of Arabidopsis. Plant Cell 2007, 19, 182–195. [CrossRef]

46. Zhang, X.; Tong, J.; Bai, A.; Liu, C.; Xiao, L.; Xue, H. Phytohormone dynamics in developing endosperm influence rice grain
shape and quality. J. Integr. Plant Biol. 2020, 62, 1625–1637. [CrossRef]

47. Sun, X.; Shantharaj, D.; Kang, X.; Ni, M. Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr.
Opin. Plant Biol. 2010, 13, 611–620. [CrossRef]

48. Cheng, Y.; Dai, X.; Zhao, Y. Auxin synthesized by the YUCCA flavin Monooxygenases is essential for embryogenesis and leaf
formation in Arabidopsis. Plant Cell 2007, 19, 2430–2439. [CrossRef]

49. McAdam, E.L.; Meitzel, T.; Quittenden, L.J.; Davidson, S.E.; Dalmais, M.; Bendahmane, A.I.; Thompson, R.; Smith, J.J.; Nichols,
D.S.; Urquhart, S.; et al. Evidence that auxin is required for normal seed size and starch synthesis in pea. New Phytol. 2017, 216,
193–204. [CrossRef]

50. Smith, R.S.; Bayer, E.M. Auxin transport-feedback models of patterning in plants. Plant Cell Environ. 2009, 32, 1258–1271.
[CrossRef]

51. Ugartechea-Chirino, Y.; Swarup, R.; Swarup, K.; Peret, B.; Whitworth, M.; Bennett, M.; Bougourd, S. The AUX1 LAX family of
auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann. Bot. 2010,
105, 277–289. [CrossRef]

52. Cao, J.; Li, G.; Qu, D.; Li, X.; Wang, Y. Into the Seed: Auxin Controls Seed Development and Grain Yield. Int. J. Mol. Sci. 2020, 21,
1662. [CrossRef]

53. Bethke, P.C.; Schuurink, R.; Jones, R.L. Hormonal signalling in cereal aleurone. J. Exp. Bot. 1997, 48, 1337–1356. [CrossRef]
54. Feldman, M.; Levy, A.A.; Fahima, T.; Korol, A. Genomic asymmetry in allopolyploid plants: Wheat as a model. J. Exp. Bot. 2012,

63, 5045–5059. [CrossRef]

http://doi.org/10.1093/jxb/erq309
http://www.ncbi.nlm.nih.gov/pubmed/21071680
http://doi.org/10.1105/tpc.7.7.971
http://www.ncbi.nlm.nih.gov/pubmed/7640529
http://doi.org/10.1016/0959-437X(94)90129-Q
http://doi.org/10.1016/j.tplants.2010.06.005
http://doi.org/10.1104/pp.108.128108
http://doi.org/10.1111/nph.13533
http://doi.org/10.1093/plphys/kiaa057
http://doi.org/10.1105/tpc.017111
http://doi.org/10.1111/tpj.15541
http://doi.org/10.1093/jxb/erw409
http://doi.org/10.1093/plcell/koaa040
http://doi.org/10.1073/pnas.1904995116
http://doi.org/10.1111/pce.12186
http://doi.org/10.1105/tpc.106.048165
http://doi.org/10.1111/jipb.12927
http://doi.org/10.1016/j.pbi.2010.08.009
http://doi.org/10.1105/tpc.107.053009
http://doi.org/10.1111/nph.14690
http://doi.org/10.1111/j.1365-3040.2009.01997.x
http://doi.org/10.1093/aob/mcp287
http://doi.org/10.3390/ijms21051662
http://doi.org/10.1093/jxb/48.7.1337
http://doi.org/10.1093/jxb/ers192

	Introduction 
	Materials and Methods 
	Plant Materials and Growth Conditions 
	RNA Extraction and Sequencing 
	Identification of Differentially Expressed Genes 
	k-Means Cluster Analysis 
	Genome-Wide Identification of Transcription Factor Family 
	Comparison of Relative Expression Levels among the Three Homoeologs of Triads 

	Results 
	Transcriptome Analysis of Wheat Grains at Expanding Phase 
	Expression Clusters and Cellular Function of Differentially Expressed Genes 
	Expression Profiles of Key Genes Involved in Cell Division and Starch Biosynthesis 
	Differentially Expressed Transcription Factors 
	Dynamic Hormone Metabolism during the Wheat Grain Expanding Phase 
	Homoeolog Expression Bias during Wheat Grain Development 

	Discussion 
	Conclusions 
	References

