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Machine Learning (ML) algorithms have been important tools for the extraction of useful knowledge from 
biological sequences, particularly in healthcare, agriculture, and the environment. However, the categorical 
and unstructured nature of these sequences requiring usually additional feature engineering steps, before an ML 
algorithm can be efficiently applied. The addition of these steps to the ML algorithm creates a processing pipeline, 
known as end-to-end ML. Despite the excellent results obtained by applying end-to-end ML to biotechnology 
problems, the performance obtained depends on the expertise of the user in the components of the pipeline. 
In this work, we propose an end-to-end ML-based framework called BioPrediction-RPI, which can identify 
implicit interactions between sequences, such as pairs of non-coding RNA and proteins, without the need for 
specialized expertise in end-to-end ML. This framework applies feature engineering to represent each sequence 
by structural and topological features. These features are divided into feature groups and used to train partial 
models, whose partial decisions are combined into a final decision, which, provides insights to the user by giving 
an interpretability report. In our experiments, the developed framework was competitive when compared with 
various expert-created models. We assessed BioPrediction-RPI with 12 datasets when it presented equal or better 
performance than all tools in 40% to 100% of cases, depending on the experiment. Finally, BioPrediction-RPI 
can fine-tune models based on new data and perform at the same level as ML experts, democratizing end-to-end 
ML and increasing its access to those working in biological sciences.
1. Introduction

With the advent of modern genetic sequencing techniques, there has 
been a large increase in the volume of biological sequences stored in 
databases [1,2]. Consequently, a diverse range of species information 
is cataloged within these repositories [3,4]. This accumulation of data 
requires developing advanced computational tools, designed for high 
performance, to efficiently process and extract valuable information 
[5]. Within the problems involving the analysis of biological sequences 
is the interaction between sequences, e.g., non-coding RNA (ncRNA) 
and protein interactions, collectively called RPIs. ncRNAs are a class 
of genetic material that cannot simply be categorized as part of the 
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non-essential DNA in the genome [6], as they play a complex role with 
numerous functions in the organism [7].

Different structures are present in ncRNAs. Among them, are Long 
Non-Coding RNAs (lncRNA), which are biological structures with at 
least 200 nucleotides [8]. LncRNAs play a crucial role in regulating 
genetic expressions and chromatin, influencing not only regions close 
to their transcription site but also more distant regions [7]. Further-

more, it is important to note that the expression levels of some lncRNAs 
are directly related to initial regulation pathways of solid cancers, con-

ferring them a significant role as biomarkers [9]. These observations 
underscore the prognostic importance of understanding this molecular 
class.
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A computational approach that has been gaining ground in this field 
is Machine Learning (ML). However, their efficient use faces several 
challenges. One of the major complications is the nature of the data: 
categorical and non-structured [10]. For example, we have A1L167, a 
human enzyme, which serves as an example of primary protein struc-

ture. In this sequence, denoted by the letters MKELQDIARLSD..., each 
letter represents a unique amino acid. This sequence exemplifies the lin-

ear arrangement of amino acids, forming the backbone of the protein. 
In this context, addressing RNA-protein interaction problems with an 
ML approach requires preprocessing this data to extract relevant infor-

mation to develop a predictive model. This process is known as feature 
engineering, typically carried out by experts, and is characterized as the 
most time-consuming step in ML [11].

Another significant challenge in applying ML models to biological 
data is the frequent lack of interpretability for biology professionals to 
effectively utilize these tools [12]. A model is considered a ‘black box’ 
when its complexity is so high that humans cannot interpret it, as is of-

ten the case with Deep Learning (DL) techniques [12]. The conception 
of the model as a “black box” raises concerns in the medical/biologi-

cal context, as these models will influence decision-making, which can 
impact other individuals or entities [13,12].

Recently, there has been a significant increase in studies focusing on 
enhancing the interpretability of ML algorithm results. This has led to 
the development of new methodologies, such as SHAP (SHapley Addi-

tive exPlanations) [14] and LIME (Local Interpretable Model-agnostic 
Explanations) [15]. Applying these approaches to trained models en-

ables a more detailed analysis by users, allowing them to understand 
which features influenced more the classification process and identify 
the global decision pattern, thereby leading to a deeper understanding 
and reliability regarding the predictions. Although many ML libraries 
and platforms are open to all users, not everyone knows how to start 
their studies on creating projects using ML [16]. In this context, a dis-

cussion about the democratization of Artificial Intelligence (AI) arises, 
involving many aspects such as democratization in model development 
[17], which can accelerate technological innovations [18]. This can be 
done by making models available in open-source, as well as using auto-

mated pipelines [17,19,18].

Considering this, we propose BioPrediction-RPI, a framework that 
can automatically extract and select the best features, identify the ideal 
ML model for each input, and adjust the best hyperparameters of this 
model to predict new RPIs. BioPrediction-RPI represents an end-to-end 
ML pipeline that encompasses all necessary steps for this type of task 
without human intervention. This means that even professionals who 
do not specialize in ML can use BioPrediction-RPI to develop models to 
predict new RPIs computationally. BioPrediction-RPI exclusively adopts 
classification models based on decision trees, intending to preserve the 
interpretability of the final model. Additionally, BioPrediction-RPI in-

corporates an interpretability module based on SHAP, providing the 
user with graphics that facilitate the understanding and interpretation 
of model decisions. This approach significantly contributes to a deeper 
understanding of the reasons why the model makes specific predictions, 
making the analysis more accessible and strengthening confidence in 
the obtained results. This article is guided by the following Research 
Question (RQ):

RQ: Is it possible to develop an end-to-end ML framework that 
operates without expert intervention, aiming to generate a classifi-

cation and detection model for implicit interactions between pairs 
of sequences, for example, ncRNA-protein, exhibiting competitive 
performance compared to expert models?

Finally, BioPrediction-RPI can play a crucial role in democratiz-

ing ML for non-experts, aiding in the advancement of studies related 
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to metabolism and providing a deeper understanding of pathways in-
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volved in diseases. Our proposal is available on GitHub.1 The main 
contributions of this study are:

• To the best of our knowledge, the first study to propose an au-

tomated pipeline to classify interactions between biological se-

quences, competitive with models developed by experts;

• BioPrediction-RPI does not require specialist human assistance;

• BioPrediction-RPI can accelerate new studies, democratizing the 
use of ML techniques by non-experts.

2. State-of-the-art

Several models are being developed to predict RPIs in numerous 
datasets that leverage the most modern approaches in ML. A representa-

tive example of the state-of-the-art is the RPITER model [20], based on 
DL. In this study, various approaches are explored to structure and ex-

tract features from the data, encompassing features such as amino acid 
frequency and extending to those associated with DL, such as word2vec 
and doc2vec. Subsequently, the model’s performance is evaluated com-

paratively against classical models (Random Forest and Support Vector 
Machine) and DL (Convolutional Neural Network (CNN) and Stacked 
Auto-Encoder (SAE)).

Another model is IPMiner [21], which employs a hybrid white and 
black box approach to predict new RPIs. Specifically, IPMiner utilizes 
a stacked autoencoder to extract features, followed by stacked mod-

els based on decision trees to classify molecular pairs as interactive or 
non-interactive. Another study, called EDLMFC [22], also employs DL 
approaches to classify interactions between RNA and proteins. EDLMFC 
uses feature derivatives for the three structural levels of the biological 
molecules, as input to a DL ensemble model. This ensemble combines 
with a bidirectional Long Short-Term Memory (BLSTM) network, en-

abling more accurate and comprehensive predictions in this specific 
context [22].

The LPI-deepGBDT, as described by Zhou et al. [23], utilizes deci-

sion trees with gradient boosting and an ML algorithm that combines 
multiple weak models to create a strong and robust model. Additionally, 
the approach complements the prediction process with a deep mapping 
architecture to identify implicit interactions. EnANNDeep [24] proposes 
an approach based on neural networks and deep decision trees, comple-

mented by the application of an adaptive classifier based on K-nearest 
neighbors. LPI-BLS [25] is a tool for predicting RPIs that does not 
employ DL techniques. Instead, it extracts frequency features from se-

quences and makes predictions through a stacked ensemble of linear 
regression models.

To clarify this, we present Table 1, which compares the studies from 
the literature with our proposal using some variables. The first column 
(labeled “End-to-End”) refers to models capable of directly inputting bi-

ological sequences in FASTA format and producing a model tailored to 
user data. The second column indicates the availability of interpretabil-

ity reports to assist the user. Next, the third column describes whether 
the studies utilize DL approaches or not. Finally, the last column (Exper-

imental Setting) denotes the number of tools compared in the validation 
step.

After reviewing these studies available in the literature, it is evi-

dent that most tools do not allow end-to-end ML, often requiring man-

ual feature extraction or operating with models on servers that make 
predictions. However, these models are usually already trained for spe-

cific situations, meaning they do not customize a model according to 
user data. Additionally, we observe that not all models use black box 
techniques, but none of them, except for BioPrediction-RPI, have a ded-

icated interpretability module. Finally, we note that BioPrediction-RPI 
was the proposal with the largest and most diverse validation, ensur-

ing extensive validation of its performance. Following this evaluation, 
1 https://github .com /0nurB /BioPredictionRPI -1 .0.
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Table 1

Categories evaluated in related works, such as end-to-end models, the 
presence of interpretability, the use of DL techniques, and the number 
of tools compared during the validation.

Tool End-to-end Interp. Module DL Validation

RPITER [20] no no yes 4

IPMiner [21] no no yes 4

RPISeq-RF [26] no no no 1

lncPro [27] no no no 1

EDLMFC [22] no no yes 3

CFRP [28] no no no 2

LPI-BLS [25] no no no 3

LPI-CatBoost [29] no no no 3

PLIPCOM [30] no no no 4

LPI-SKF [31] no no no 6

LPI-HNM [32] no no no 1

LPI-deepGBDT [23] no no yes 6

BioPrediction-RPI yes yes no 12

we realize that BioPrediction-RPI fills a gap in the literature by be-

ing an inclusive framework that assists users in building a personalized 
model according to their data. It achieves this without requiring tech-

nical knowledge in steps such as feature engineering, model selection, 
hyperparameter tuning, interpretability, and more.

3. Methodology

3.1. Validation experiments

To validate BioPrediction-RPI, we compared its performance with 
other state-of-the-art tools that predict RPIs. There are a total of 12 
different datasets, split into three different experiments. The first ex-

periment utilize five datasets (RPI369, RPI488, RPI1807, RPI2241, and 
NPInter), which are available in the RPITER article [20]. The objec-

tive is to compare the BioPrediction-RPI performance with the RPITER 
model and other tools reported in the original article. The size of each 
dataset is provided in Table 2. This comparison helps us understand 
how the new framework stands out in terms of effectiveness in predict-

ing interactions between RNA and proteins compared to several studies.

The datasets RPI369, RPI488, RPI1807, and RPI224, from RPITER 
[20], consist of a wide range of species in each dataset, ensuring a 
diverse set of genomes for validation in BioPrediction-RPI. For exam-

ple, proteins and RNAs from various organisms such as the Hepatitis 
delta virus, Homo sapiens, Aquifex aeolicus, Escherichia coli, Thermotoga 
maritima, Methanocaldococcus jannaschii, Bacillus subtilis, and Thermus 
thermophilus were found in these datasets, representing mammals, bac-

teria, and archaea.

In the second experiment, we used alternative versions of the 
RPI1807 and NPInter datasets, provided by EDLMFC [22]. These al-

ternative versions consider the same positive cases but adopt a different 
methodology to determine negative cases, in addition to filtering some 
positive interactions. The summary of the datasets for this experiment 
is presented in Table 3. This variation in the methodology for selecting 
negative cases provides a more comprehensive and robust analysis of 
BioPrediction-RPI’s performance.

In the last experiment, the focus is to test interactions between 
long non-coding RNA (lncRNA) and proteins. This experiment uses five 
datasets, three from human RNA-protein interactions (RPIs) and the 
other two correspond to plant RPIs [23], as referenced in Table 4. 
The intention is to enable the comparison of BioPrediction-RPI’s per-

formance with six previously validated tools using the same datasets.

It is important to emphasize that our model does not aim to be the 
most powerful in the literature; instead, it aims to be the most accessible 
with a performance close to models developed by experts and/or those 
that make use of DL techniques. Based on this, in the first experiment, 
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we assessed the competitiveness of BioPrediction-RPI concerning other 
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Table 2

Summary of datasets in the first experiment.

Dataset Interaction pairs Non-interaction pairs RNAs Proteins

RPI369 369 369 332 338

RPI488 243 245 25 247

RPI1807 1807 1436 1078 3131

RPI2241 2241 2241 841 2042

NPInter 10412 10412 4636 449

Table 3

Summary of datasets in the second experiment.

Dataset Interaction pairs Non-interaction pairs RNAs Proteins

NPInter 1943 1943 513 448

RPI1807 652 221 646 868

Table 4

Summary of datasets in the third experiment.

Dataset Interaction pairs Non-interaction pairs RNAs Proteins

1 3480 51686 935 59

2 3265 71075 885 84

3 4158 22572 990 27

4 948 2867 109 35

5 22133 49435 1704 42

studies, using 5-fold cross-validation, following the approach outlined 
in the article [20]. Since the author only reported the mean, it was 
used for performance comparison in a non-parametric Mann-Whitney U 
test, with a significance level (alpha) of 0.05, comparing the means of 
all metrics at once. The null hypothesis was that the mean of a given 
study was not statistically superior to that of BioPrediction-RPI (i.e., 
BioPrediction-RPI was competitive), and the alternative hypothesis was 
that the mean of a certain study was superior to that of BioPrediction-

RPI.

Furthermore, in experiments two and three, where mean, and stan-

dard deviations were reported, a one-tailed hypothesis t-test was con-

ducted. The null hypothesis posits that the mean of the first sample is 
equal to the mean of the second sample, while the alternative hypoth-

esis suggests that the mean of the first sample is greater than the mean 
of the second sample, in which BioPrediction-RPI is the second sample 
in all cases. If the mean of the compared tool is greater than that of 
BioPrediction-RPI in more than half of the metrics, our proposal will be 
considered non-competitive; otherwise, it will be considered competi-

tive. It is important to highlight that in all experiments, the mean and 
standard deviation resulted from 20 executions of our proposal.

3.2. Workflow: BioPrediction-RPI

BioPrediction-RPI has an automated workflow for building an end-

to-end ML pipeline to predict interactions, along with a report designed 
to explore some characteristics of the model. To initiate the model con-

struction, it is essential to input the path to the data, which consists of 
three main files: the list of known interactions and dictionaries contain-

ing the sequences for all proteins and RNAs. The list of interactions is 
shown in a table with three columns, where the first column contains 
protein names, the second column contains RNA names, and the third 
column indicates whether there is an interaction or not. The dictionar-

ies are files in FASTA format containing all the primary sequences of 
the biological sequences involved in the problem.

Afterward, the feature extraction module starts, where features are 
obtained to characterize each biological sequence. More specifically, 
there are two main types of features: structural and topological. Struc-

tural features refer to those extracted directly from the primary se-
quence of each molecule, including examples such as amino acid fre-
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Fig. 1. The initial part of the workflow, in blue, represents the inputs, while the pink indicates the internal processes. We observe the interactions being divided into 
their subsets, and the primary sequences are used to extract structural features, while the train set is used to derive topological features.

Table 5

Feature subsets to train the partial models.

Protein Subset 1 AAC, DPC, FFT_mean

RNA Subset 1 NAC, DNC, TNC

Protein Subset 2 FFT_H1, FFT_P1, FFT_V

RNA Subset 2 Rev_kmer, Pse_dnc, Pse_tnc

Protein Subset 3 FFT_H2, FFT_P2, FFT_NCI, FFT_SASA

RNA Subset 3 SCPseDNC, SCPseTNC

Protein Subset 4 Red_alphabet

RNA Subset 4 QNC

Protein and RNA Subset 5 Hub score, authority score, spectrum, degree centrality, etc.
quencies, Shannon entropy, and those utilizing physicochemical proper-

ties of each amino acid, such as hydrophobicity (H1), used to construct 
a numeric signal and treated with Fast Fourier Transform (FFT) for se-

quence characterization over a series of frequencies. On the other hand, 
topological features are derived from the interaction network present 
exclusively in the training set. These features include the number of 
interactions and other graph measures, such as centrality and between-

ness. Thus, each RNA and protein mentioned in the problem has a set 
of numerical columns that characterize their various properties. These 
initial steps can be seen in Fig. 1.

Next, datasets are constructed for the modeling stage by concate-

nating the features of proteins and RNAs with the interaction table, 
creating a table where each row contains the features of the sequences 
and the label associated with that pair. In total, 5 subsets of features 
were created, four exclusively with structural features and one exclu-

sive for topological features, with these sets presented in Table 5.

More specifically, we have several structural features based on fre-

quency, such as AAC, DPC, NAC, DNC, TNC, Pseudo-DNC, Pseudo-KNC 
[33], SCPseDNC, SCPseTNC [34], Reduced Alphabet, QNC [20]. Addi-

tionally, there are some features for proteins based on physicochemical 
properties and Fourier transform, such as those evaluating hydrophobic-

ity (H1), hydrophilicity (H2), side-chain length (V), polarity (P1), po-

larizability (P2), solvent-accessible surface area (SASA), and net charge 
index (NCI) [35]. Measures of complex networks are also included, both 
with only positive interactions and with positive and negative inter-
2270

actions. At this point, if the data has less than 20% positive samples, 
BioPrediction-RPI uses the training data concatenated with the first set 
of features to evaluate the best undersampling technique to balance the 
data. Three implemented techniques are available: random undersam-

pling, cluster centroids, and near miss.

The subsequent step involves training partial models for each feature 
set, aiming to reduce the dimensionality of the problem and, conse-

quently, improve efficiency in the final execution. In this process, the 
training set is used for model construction, and the validation set is 
utilized for performance evaluation. After developing these partial mod-

els, the probability of an instance belonging to the interaction class is 
employed as the new compressed feature. For example, consider using 
amino acid composition (AAC) to build a partial model, which initially 
includes 20 columns. After processing, the predicted probability derived 
from this partial model serves as the newly compressed AAC feature. 
However, in this case, it is used in conjunction with more than one de-

scriptor, as can be seen in Table 5.

This procedure is repeated for all feature sets, leading to the com-

pilation of a final dataset that contains all compressed features. This 
dataset is then used in the final training phase to integrate partial de-

cisions into a conclusive decision. At this stage, the validation set is 
utilized for training purposes, and the test set is employed to assess the 
performance of the final model. This approach ensures that there is no 
information leakage, as the test set remains unseen until the final evalu-

ation. In Fig. 2, the workflow of the partial models is also schematically 

outlined.
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Fig. 2. In pink, the internal processes, while in green, the outputs of BioPrediction-RPI. We can observe the formation of feature groups for training the partial 
models and how the partial predictions are utilized to compile the final training and testing sets.

Table 6

Hyperparameter Tuning in BioPrediction-RPI.

Hyperparameters Decision Tree Random Forest CatBoost XGBoost

Criterion gini, entropy gini, entropy - -

Depth/Max_Depth None, 1, 2, 4, 6, 8 None, 1, 2, 4, 6, 8 None, 1, 2, 4, 6, 8 None, 1, 2, 4, 6, 8

Min_Samples_Split 5, 10, 20 5, 10, 20 - -

Min_Samples_Leaf 5, 10, 20 5, 10, 20 - -

Learning_Rate - - 0.01, 0.05, 0.1 0.01, 0.05, 0.1

Scale_Pos_Weight - - 1, 2, 3 1, 2, 3

Class_Weight None, balanced - - -

Max_Features None, sqrt, log2 - - -

L2_Leaf_Reg - - 1, 3, 5 -
Finally, the model is constructed using the training sets to make 
the definitive decision regarding the classification of each interaction 
pair into its respective class. Both models are based on decision trees, 
such as Random Forest, Catboost, and XGBoost. However, only the fi-

nal model involves tuning the hyperparameters. For this, a random 
search approach is employed with 100 iterations. In each iteration, 
cross-validation with 5 folds is conducted, using the F1-score as the 
evaluation metric. The hyperparameter ranges are shown in Table 6. 
Once the model is ready, an interpretability report based on the SHAP 
Values library [14] is generated to elucidate the decision-making pro-

cess, and a usability report is created to clarify the metrics and proper-

ties of the model to the user.

3.3. Interpretability module

BioPrediction-RPI is tasked with generating an explanatory report 
for the end user, which succinctly outlines the key considerations of 
the trained model in the classification process. Additionally, it proposes 
an analysis of the most influential features based on a specific sample 
of inputs for each class. Thereby, each class is individually analyzed, 
providing a deep understanding of the underlying reasons behind the 
model’s predictions. Additionally, the interpretability module proposes 
to analyze how the magnitude of the values of each feature influences 
the model’s decision. These results are summarized through illustrative 
graphs in the report along with the model, offering a clear and infor-

mative visual representation of the relationships between the features 
and the model’s decisions. This feature enhances the understanding and 
interpretation of the model by the end user.

To conduct this analysis, the SHAP method [14] was adopted as 
2271

an interpretation methodology, responsible for consolidating various 
other methods existing in the literature, such as LIME [15]. This 
method presents an exclusive module aimed at tree-based algorithms 
[36], which produces consistent results in conjunction with the models 
trained by BioPrediction-RPI. SHAP (SHapley Additive exPlanations) is 
an interpretation methodology for ML models that is grounded in Game 
Theory. It uses the Shapley model to assign a contribution metric to 
each feature analyzed in classification tasks.

This model facilitates the extraction of Shapley values, which are 
numerical coefficients that quantify the individual contribution of each 
feature when it collaborates with two or more other features in the 
model. In the context of ML, the features used in prediction models are 
analogous to players in the Shapley model. The Shapley values calcu-

lated therefore quantify the individual contributions of each feature, 
taking into account various combinations or coalitions of features. This 
allows for a detailed understanding of how each feature influences the 
model’s classification decisions, providing insights into the relative im-

portance and impact of each feature within the model.

4. Results

Next, a compilation of experimental results is presented, elucidating 
the comparative performance of BioPrediction-RPI with literature stud-

ies. In the first experiment, we assessed the performances of the datasets 
RPI369, RPI488, RPI1807, RPI2241, and NPInter, as shown in Table 7. 
Initially, in all datasets, BioPrediction-RPI demonstrated competitive-

ness with all studies, both white-box and black-box models, according 
to the Mann-Whitney U one-sided test, with a significance level (al-

pha) of 0.05. In other words, even though there might be individual 
metrics with higher values when compared individually, there is no 

significant difference between the models as a whole. Furthermore, in 
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Table 7

Performance of the models in Experiment 1, measuring accuracy (ACC), precision (Pre), recall (Rec), specificity 
(Spec), Matthews correlation coefficient (MCC), and Area Under the Curve (AUC). All comparisons use the same 
data set.

Dataset Study ACC Pre Rec Spec MCC AUC

RPI369 RPITER 72.8 70.1 79.7 65.9 46.1 82.1

IPMiner 70.0 84.0 78.4 56.0 42.8 70.0

RPISeq-RF 71.3 72.4 71.6 70.2 42.6 71.3

lncPro 50.2 51.2 23.7 77.1 00.9 46.8

BioPrediction-RPI 79.1± 2.0 75.8 ± 3.0 88.7± 3.1 69.2 ± 6.0 60.4± 4.1 89.5± 1.9

RPI488 RPITER 89.3 94.3 83.9 94.7 79.3 91.1

IPMiner 89.3 95.1 94.6 83.5 79.3 89.3

RPISeq-RF 88.3 93.5 92.8 83.1 77.1 88.3

lncPro 85.6 94.0 77.0 94.7 72.5 92.9

BioPrediction-RPI 88.7 ± 1.4 92.2 ± 2.3 84.8 ± 0.8 92.5 ± 2.7 78.0 ± 2.6 90.1 ± 1.5

RPI1807 RPITER 96.8 95.9 98.6 94.6 93.6 99.0

IPMiner 96.8 95.5 96.5 97.8 93.5 96.6

RPISeq-RF 97.0 96.2 97.0 97.6 93.9 96.9

lncPro 47.2 53.2 44.5 50.6 -4.9 50.6

BioPrediction-RPI 95.3 ± 0.2 96.3± 0.5 95.3 ± 0.4 95.3 ± 0.7 90.5 ± 0.4 98.3 ± 0.3

RPI2241 RPITER 89.0 87.1 91.7 86.3 78.1 95.7

IPMiner 86.1 88.2 87.7 84.1 72.4 86.1

RPISeq-RF 85.1 86.3 86.1 83.8 70.2 85.1

lncPro 60.6 63.2 51.8 69.5 21.6 64.4

BioPrediction-RPI 84.8 ± 0.3 86.3 ± 1.0 82.9 ± 0.8 86.7± 1.3 69.8 ± 0.7 92.4 ± 0.2

NPInter RPITER 95.5 93.9 97.3 93.7 91.0 98.5

IPMiner 95.7 95.6 95.6 95.8 91.4 95.7

RPISeq-RF 94.3 93.6 93.7 94.9 88.5 94.3

lncPro 50.8 50.5 73.9 27.6 1.7 51.7

BioPrediction-RPI 95.3 ± 0.1 94.8 ± 0.1 95.8 ± 0.1 94.7 ± 0.1 90.5 ± 0.1 98.5± 0.1

Table 8

Performance of the models in Experiment 2. All comparisons use the same data set.

Dataset Tool ACC Pre Rec Spec F1 MCC AUC

RPI1807 EDLMC 93.8 ± 0.3 94.9 ± 0.3 96.9 ± 0.3 84.5 ± 0.9 95.9 ± 0.2 83.3 ± 0.8 96.7 ± 0.3
RPITER 93.5 ± 0.4 94.3 ± 0.3 97.1 ± 0.4 82.7 ± 1.1 95.7 ± 0.2 82.4 ± 1.0 97.7 ± 0.3
IPMiner 93.5 ± 0.3 92.7 ± 0.7 99.2± 0.4 76.8 ± 2.4 95.8 ± 0.2 82.6 ± 0.9 88.0 ± 0.3
CFRP 92.8 ± 0.4 77.4 ± 0.6 97.6 ± 0.4 77.4 ± 0.6 95.2 ± 0.2 79.7 ± 0.9 96.4 ± 0.1
BioPrediction-RPI 94.9± 1.2 96.8± 0.9 96.3 ± 0.9 90.5 ± 2.5 96.5± 0.8 86.8± 2.9 97.2± 1.3

NPInter v2.0 EDLMC 89.7± 0.2 88.2 ± 0.3 91.7± 0.4 87.7 ± 0.4 89.9± 0.2 79.5± 0.4 95.9± 0.2

RPITER 89.0 ± 0.6 87.0 ± 0.8 91.6 ± 0.6 86.2 ± 0.1 89.3 ± 0.6 78.1 ± 1.2 95.7 ± 0.4
IPMiner 82.8 ± 1.0 81.3 ± 1.3 84.3 ± 0.9 81.3 ± 1.3 83.2 ± 0.9 65.6 ± 2.0 82.7 ± 1.0
CFRP 82.1 ± 1.0 81.1 ± 0.3 77.2 ± 0.5 86.9 ± 0.3 81.1 ± 0.3 64.4 ± 0.5 88.4 ± 0.2
BioPrediction-RPI 88.5 ± 0.2 90.1± 0.4 86.4 ± 0.2 90.7 ± 0.4 88.1 ± 0.2 77.1 ± 0.4 93.7 ± 0.1
total, distributed among the 4 studies and 5 datasets, 120 metrics were 
tested, and only 29% of these metrics showed performance superior to 
BioPrediction-RPI by more than 1%. This finding represents the first 
evidence that BioPrediction-RPI is capable of competing with models 
developed by experts.

In the second experiment (see Table 8), the versions of EDLMC in the 
datasets RPI1807 and NPInter were evaluated. In the RPI1807 dataset, 
BioPrediction-RPI demonstrated competitiveness with all four evalu-

ated models. However, in the NPInter dataset, our proposal was com-

petitive with 2 of the four models, losing only to EDLMC and RPITER. 
In total, distributed among the 4 tools and 2 datasets, 48 metrics were 
evaluated. Only 11 of these metrics, when tested using the hypothesis t-
test, showed, on average, a superior performance to BioPrediction-RPI, 
representing only 20% of the total metrics evaluated. In other words, 
once again, BioPrediction-RPI is competitive in certain situations com-

pared to models built by experts.

In the third experiment (see Table 9), we evaluated five datasets of 
lncRNA-protein interactions. In the first three datasets, BioPrediction-

RPI did not demonstrate competitiveness with any of the 6 tools used 
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in the comparison. These datasets showed the highest class imbalance, 
with 6%, 4%, and 16% of positive samples, respectively. On the other 
hand, BioPrediction-RPI demonstrated competitiveness with all tools in 
datasets 4 and 5, which had the highest proportion of positive sam-

ples at 25% and 31%, respectively. That is, BioPrediction-RPI performs 
better on datasets without significant class imbalances, which already 
suggests a potential improvement in future versions of the tool. In to-

tal, among the 6 studies and 5 datasets, 180 metrics were assessed. 
However, only 40% of them were superior to BioPrediction-RPI, as ob-

served by the hypothesis test. This represents further evidence that 
BioPrediction-RPI is capable of competing with manually developed 
models by experts in certain scenarios.

4.1. Imbalanced data and negative sample

Analyzing datasets, especially from experiment 3, focusing on how 
negative samples are generated, can provide crucial insights, especially 
in the context of imbalanced data. In these datasets, there are 𝑅 RNAs 
and 𝑃 proteins, resulting in 𝑅 ×𝑃 =𝐴 possible combinations. Addition-

ally, each dataset includes a validated set 𝐶𝑝 with positive interactions. 

In Zhou et al. [23], all possible interactions that are not in 𝐶𝑝 are con-
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Table 9

Performance of the models in Experiment 3, measuring accuracy (ACC), precision (Pre), recall (Rec), F1-Score, Area Under the Curve 
(AUC), and Area Under the Curve precision-recall (AUPR). All comparisons use the same data set.

Datasets Metrics LPI-BLS LPI-CatBoost PLIPCOM LPI-SKF LPI-HNM LPI-deepGBDT BioPrediction-RPI

dataset 1 Precision 84.58 ± 0.14 83.17 ± 1.32 84.28 ± 0.60 87.57± 0.86 70.06 ± 1.71 84.57 ± 0.46 53.94 ± 2.93
Recall 65.50 ± 0.09 83.31 ± 1.40 96.32± 0.28 59.32 ± 1.56 71.34 ± 1.52 94.56 ± 0.70 55.95 ± 5.26
ACC 75.12 ± 0.05 83.10 ± 0.71 89.17 ± 0.39 72.54 ± 0.32 65.71 ± 1.12 89.64 ± 0.32 93.75± 0.38

F1 73.81 ± 0.12 83.14 ± 0.67 89.89± 0.33 62.98 ± 0.70 70.69 ± 1.48 89.27 ± 0.31 52.73 ± 1.62
AUC 91.92 ± 0.05 88.60 ± 0.48 93.13 ± 0.30 93.44 ± 0.73 77.74 ± 1.47 93.46 ± 0.40 95.04± 0.51

AUPR 88.51 ± 0.22 89.36 ± 0.49 92.24± 0.37 91.96 ± 0.92 82.60 ± 1.80 88.89 ± 0.91 56.35 ± 1.13

dataset 2 Precision 85.47 ± 0.31 82.20 ± 1.39 85.37 ± 0.65 86.27± 2.23 70.09 ± 1.69 85.67 ± 0.38 48.34 ± 4.35
Recall 67.38 ± 0.13 83.99 ± 2.01 96.28± 0.43 52.12 ± 1.07 68.93 ± 1.46 94.95 ± 0.63 54.78 ± 6.85
ACC 76.20 ± 0.18 82.58 ± 0.64 89.87 ± 0.34 70.65 ± 0.81 64.74 ± 0.88 89.52 ± 0.24 95.10± 0.28

F1 75.33 ± 0.20 82.82 ± 0.67 90.48 ± 0.27 58.28 ± 1.17 69.49 ± 1.40 91.05± 0.24 48.62 ± 2.15
AUC 93.01 ± 0.17 89.09 ± 0.44 93.89 ± 0.34 91.99 ± 1.49 76.77 ± 1.33 93.98 ± 0.28 96.01± 0.05

AUPR 89.75 ± 0.32 89.29 ± 0.50 92.66 ± 0.44 87.87 ± 2.60 80.39 ± 1.87 89.91± 0.68 52.56 ± 1.22

dataset 3 Precision 71.10 ± 0.11 68.71 ± 0.60 71.73 ± 0.84 72.98± 1.53 70.54 ± 1.69 70.89 ± 1.15 39.64 ± 3.47
Recall 62.70 ± 0.06 61.54 ± 2.41 76.18 ± 1.41 62.26 ± 0.58 69.30 ± 1.13 76.49± 2.49 45.59 ± 8.42
ACC 66.05 ± 0.12 66.77 ± 0.91 72.98 ± 0.34 65.44 ± 0.92 65.85 ± 0.97 72.36 ± 0.43 91.76± 1.60

F1 66.63 ± 0.08 64.80 ± 1.48 73.77± 0.34 59.50 ± 0.86 69.91 ± 1.19 73.37 ± 0.68 39.32 ± 2.11
AUC 78.49 ± 0.20 71.51 ± 1.21 82.23 ± 0.29 81.17 ± 1.59 77.94 ± 1.26 80.83 ± 0.42 88.78± 1.00

AUPR 74.69 ± 0.06 70.24 ± 1.09 80.60± 0.44 77.72 ± 1.98 80.39 ± 1.61 77.92 ± 0.70 44.26 ± 2.77

dataset 4 Precision 56.53 ± 0.88 46.13 ± 3.69 48.94 ± 5.08 61.08 ± 2.49 66.24 ± 5.01 58.70 ± 2.89 70.94± 2.53

Recall 53.28 ± 0.74 35.39 ± 7.00 31.90 ± 6.68 60.56 ± 2.80 63.42 ± 3.96 36.13 ± 4.53 76.65± 3.40

ACC 54.24 ± 0.48 48.01 ± 2.01 49.72 ± 3.06 57.27 ± 1.96 61.00 ± 2.74 55.06 ± 1.67 86.08± 0.64

F1 54.83 ± 0.81 38.12 ± 5.73 37.83 ± 5.97 54.01 ± 2.32 64.80 ± 4.45 43.97 ± 3.62 73.31± 0.60

AUC 58.43 ± 0.94 47.26 ± 2.70 48.91 ± 3.26 64.79 ± 3.79 70.38 ± 4.38 57.90 ± 2.07 91.44± 0.36

AUPR 85.79± 0.36 82.74 ± 0.79 49.87 ± 2.72 63.48 ± 3.40 74.35 ± 6.89 59.65 ± 1.76 76.70 ± 0.52

dataset 5 Precision 79.01 ± 0.21 77.13 ± 0.40 77.21 ± 0.21 75.17 ± 0.98 79.59 ± 1.57 80.18 ± 1.89 82.68± 0.70

Recall 70.63 ± 0.38 79.21 ± 1.35 85.69 ± 0.37 67.27 ± 0.37 66.82 ± 0.77 84.25 ± 2.61 86.97± 0.69

ACC 73.37 ± 0.25 77.85 ± 0.67 80.18 ± 0.18 67.26 ± 0.36 71.17 ± 0.53 81.29 ± 1.32 90.30± 0.12

F1 54.67 ± 2.50 79.70 ± 1.84 79.20 ± 0.71 59.08 ± 7.34 75.37 ± 2.90 81.15 ± 0.84 84.70± 0.09

AUC 50.13 ± 0.25 87.17 ± 1.33 85.44 ± 0.63 80.00 ± 11.36 89.59 ± 2.12 88.02 ± 1.72 96.31± 0.04

AUPR 73.08 ± 0.46 84.71 ± 1.64 81.87 ± 1.19 76.00 ± 16.57 88.36 ± 5.63 86.43 ± 2.53 86.84± 0.13

Table 10

Experiment 3 with new negative samples.

Dataset Precision (%) Recall (%) ACC (%) F1 (%) AUC (%) AUPR (%)

dataset 1 70.10 ± 0.05 98.71 ± 0.18 78.30 ± 0.02 81.96 ± 0.03 81.11 ± 0.10 84.73 ± 0.02
dataset 2 77.59 ± 0.10 96.56 ± 0.24 84.33 ± 0.05 85.60 ± 0.05 88.25 ± 0.19 87.92 ± 0.03
dataset 3 61.74 ± 1.71 82.53 ± 2.94 93.28 ± 0.27 69.97 ± 0.99 96.31 ± 0.41 73.00 ± 0.97
dataset 4 83.45 ± 0.68 84.17 ± 0.70 83.63 ± 0.31 83.57 ± 0.36 90.72 ± 0.37 87.78 ± 0.30
dataset 5 87.45 ± 0.62 93.02 ± 0.58 89.80 ± 0.14 90.13 ± 0.07 96.43 ± 0.24 91.98 ± 0.17
sidered negative samples, forming the negative sample set, 𝐶𝑛, so that 
𝐶𝑝 + 𝐶𝑛 = 𝐴. Since the corresponding study requires an input matrix 
of size (𝑅, 𝑃 ), which includes all labeled interactions, the author must 
incorporate all unknown interactions into the negative sample set.

However, this approach diverges with other methods of generating 
the negative set, as typically, in state-of-the-art practices, negative sets 
are created primarily to balance the datasets [37,26], avoiding adding 
possibly positive interactions without any criteria that hinder the mod-

el’s learning. In this context, exclusion criteria are often applied to 
prevent the inclusion of false-negative interactions in the dataset. The 
main criteria involve adding only negative pairs that have different sub-

cellular localization information [38–43] or only add negative pair with 
minimum structural dissimilarity with positive pairs (reducing the ho-

mologous sequences bias) [21,20,26].

Therefore, the datasets from Zhou et al. [23] may not fully represent 
biological sequence networks. The author includes numerous negative 
interactions that have not been experimentally verified, without apply-

ing specific exclusion criteria. This might introduce some potential false 
negatives, leading to deviations from an accurate representation. Conse-

quently, it raises questions about what the models trained on these data 
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are learning and their potential performance in real-world applications.
In this context, we conducted an additional experiment by reformu-

lating the negative samples in the datasets from experiment 3. We first 
etracted positive interactions from each dataset. Then, for identifying 
negative interactions, a pair of lncRNA-proteins is randomly selected. 
This pair, R1-P1, is discarded if there exists another pair, R2-P2, where 
the lncRNA R1 shares more than 80% sequence identity with R2, and 
the protein P1 shares more than 40% sequence identity with P2, fol-

lowing a method similar to the RPITER approach [20]. This process 
helps ensure a minimal dissimilarity between the assumed negative se-

quences and the positive ones, thereby reducing the likelihood of false 
negatives. The procedure is repeated until an equal number of positive 
and negative interactions are compiled, after which the data is used as 
input for BioPrediction-RPI. The results of this additional experiment 
are presented in Table 10.

We observe that in this new selection of negative data (essentially 
representing undersampling in the data), the performance across all 
datasets significantly improves compared to its previous performance. 
However, internally, BioPrediction-RPI applies subsampling techniques 
to resolve the imbalance in the data. This observation highlights how 
the method of selecting interactions to form datasets can influence 

model performance and its potential real-world applicability.
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Therefore, our performance was validated on 12 datasets, proving to 
be competitive with all other studies on at least one dataset. This sug-

gests that BioPrediction-RPI is capable of predicting interactions across 
various contexts and can be utilized by non-experts to create predic-

tive models with satisfactory performance. This reduces the necessity 
for deep technical knowledge in ML to carry out this task.

4.2. Illustrative example

To illustrate the applicability of BioPrediction-RPI, we conducted a 
complementary experiment using dataset 2 from experiment 3, which 
consists of 3265 positive samples and the negative samples generated in 
the previous section. This dataset comprises 885 RNAs and 84 proteins, 
totaling 74340 possible combinations. After generating all possible com-

binations, 3,265 known positive interactions were removed, along with 
3,265 generated negative interactions, leaving over sixty thousand un-

labeled interactions to be used as candidate interacting pairs. First, we 
observe the estimated performances during the model validation and 
for the first of the five folds generated in the cross-validation process 
(refer to Table 11).

In the subsequent step, the model from the first fold was utilized 
to predict candidate interactions. At this stage, 13,069 possible positive 
interactions between RNAs and proteins were identified, with this fold 
demonstrating a sensitivity of 99.58% and a precision of 76.42%. In 
other words, given the estimated sensitivity of the model, it is expected 
that approximately 99% of the positive interactions within the candi-

date set will be among the thirteen thousand interactions predicted as 
positive. Additionally, based on the estimated precision of the model, 
it is expected that approximately three out of every four interactions, 
among the thirteen thousand predicted as positive, will be confirmed as 
positive when tested experimentally. This implies the potential discov-

ery of approximately ten thousand new interactions upon experimental 
testing of this entire group predicted as positive. Finally, this experi-

ment shows that by knowing only 5% of the combinations, it is possible 
to build a model to accelerate the discovery of the remaining interac-

tions.

4.3. Running time

To evaluate the running time of BioPrediction-RPI, the execution 
times were measured across three datasets. In this experiment, an Idea-

Pad C340 (Intel Core i7-8565U, 20 GB RAM, and integrated Intel UHD 
Graphics 620) was used to execute the framework. The datasets used 
were RPI488, RPI2241, and NPInter from the initial experiments, and 
the size of each dataset along with its respective running time is pre-

sented in Table 12.

4.4. Interpretability

In the interpretability report, several graphs aim to emphasize which 
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features contributed most to a particular classification, and how the dis-

Table 11

Performance of the model in the hypothetical example.

Dataset Precision (%) Recall (%) ACC (

dataset 2 76.54 ± 2.25 98.80 ± 1.58 87.79
dataset 2 fold 1 76.42 99.58 84.68

Table 12

Execution Times for Datasets.

Dataset Interactio

RPI488 243

RPI2241 2241

NPInter 10412
Computational and Structural Biotechnology Journal 23 (2024) 2267–2276

tribution of possible values for each feature influences the classification 
of each class. In Fig. 3 and Fig. 4, we observe two examples of graphs 
that illustrate how each feature influences the classification, one for the 
final classification and another graph for a partial model. These graphs 
are designed to uncover patterns and analyze the relationship between 
the magnitude of a particular feature and its corresponding class. This 
visual representation helps in understanding the impact of individual 
features on the decision-making process of the model.

In the graph, each sample point is marked with a color within a 
red-blue spectrum. Red points represent the high magnitude of the fea-

ture in question, while blue points represent the low magnitude. The 
distance on the horizontal axis of the point concerning the center of 
the distribution (0.0) indicates how intensely this feature contributed, 
positively (positive SHAP values) or negatively (negative SHAP values), 
to the final classification in inferences of a particular class. On the left 
side, are the nine most influential features, accompanied by the partic-

ular analysis of each one.

Additionally, Fig. 5 displays an example of another type of chart gen-

erated by the interpretability module. This chart illustrates how each 
feature contributed to a specific classification. The chart title shows the 
inferred class and the identification number representing the sample 
in question. The features and their corresponding values are displayed 
on the left side of the chart. In the chart, the directed bars represent 
each feature’s contribution to the classification of the sample: a positive 
contribution (supporting the classification, shown in red) or a negative 
contribution (countering the classification, shown in blue). Similarly, 
longer bars are those that had the most influence on the model’s deci-

sion.

When examining partial model 2 as shown in Fig. 4, it is evident 
that the most significant features primarily relate to physicochemical 
properties and pseudo-frequencies. Notably, characteristics such as the 
volume, hydrophobicity, and polarity of proteins stand out as crucial 
for interaction. Upon closer inspection of a random sample in Fig. 5, 
features derived from the hydrophobicity (H1) and polarity (P1) of the 
protein are highlighted. These attributes are particularly valuable for 
biologists to explore further, as they may play critical roles in molecular 
interaction.

An important detail is that the user has the option to rely solely on a 
single partial model, using its decision to guide their experiments, even 
though this might result in slightly lower performance. This simplifies 
the decision-making process and makes it easier to interpret, which can 
be seen as an advantage. However, it’s important to acknowledge that 
not all features possess a direct biological meaning. Therefore, a crucial 
consideration for future versions is to focus on the development of fea-

tures with enhanced biological significance, which could replace those 
that are currently less interpretable.

5. Conclusion

In conclusion, the experimental results affirm that BioPrediction-
RPI is on par with and in some cases exceeds the performance of 

%) F1 (%) AUC (%) AUPR (%)

± 1.19 86.23 ± 1.38 87.79 ± 1.19 87.97 ± 1.06
86.47 88.83 88.10

n pairs Running time

945.46 s

5302.42 s

22967.61 s
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Fig. 3. This graph reveals how the partial predictions behave in each partial model, which is useful for evaluating if there are any unusual patterns in the decision-

making process.

Fig. 4. This graph reveals that the most relevant features are those associated with RNA (described as DNA, as the information is encoded in A, T, C, and G).

Fig. 5. An individual analysis of sample 212 from the training set, which belongs to the positive class, reveals that features related to SCPseTNC are the most 
f th
important. The top 9 features, when summed, represent half of the importance o

existing studies, marking it as a robust competitor in the field. While 
BioPrediction-RPI exhibits some limitations in handling unbalanced 
datasets, this gap presents a clear avenue for enhancement, particularly 
by adopting advanced data balancing techniques in future iterations. 
Despite these areas for improvement, comprehensive evidence suggests 
that BioPrediction-RPI not only competes but also challenges the dom-

inance of expert-developed models, affirming its position as a viable 
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alternative for biological prediction tasks. Finally, BioPrediction-RPI 
e other 128 features.

paves the way for the democratization of RPI prediction model develop-

ment, making sophisticated ML applications accessible to those without 
deep ML expertise.

CRediT authorship contribution statement

Bruno Rafael Florentino: Conceptualization, Data curation, Formal 

analysis, Methodology, Software, Validation, Visualization, Writing – 



Computational and Structural Biotechnology Journal 23 (2024) 2267–2276B.R. Florentino, R. Parmezan Bonidia, N.H. Sanches et al.

original draft, Writing – review & editing. Robson Parmezan Bonidia:

Conceptualization, Formal analysis, Funding acquisition, Methodology, 
Project administration, Supervision, Validation, Writing – original draft, 
Writing – review & editing. Natan Henrique Sanches: Software, Writ-

ing – original draft. Ulisses N. da Rocha: Formal analysis, Supervision, 
Validation, Writing – review & editing. André C.P.L.F. de Carvalho:

Conceptualization, Formal analysis, Funding acquisition, Project ad-

ministration, Supervision, Writing – original draft, Writing – review & 
editing.

Declaration of competing interest

We have no conflicts of interest to declare.

Acknowledgements

This research is funded by Canada’s International Development Re-

search Centre (IDRC) (Grant No. 109981).

References

[1] Jiang Pengfei, Sinha Sanjay, Aldape Kenneth, et al. Big data in basic and transla-

tional cancer research. Nat Rev Cancer 2022;22:625–39.

[2] Sadat Golestan Hashemi Farahnaz, Razi Ismail Mohd, Rafii Yusop Mohd, Sa-

dat Golestan Hashemi Mahboobe, Hossein Nadimi Shahraki Mohammad, Raste-

gari Hamid, et al. Intelligent mining of large-scale bio-data: bioinformatics appli-

cations. Biotechnol Biotechnol Equip 2018;32(1):10–29.

[3] Mingyue Cheng, Le Cao, Kang Ning. Microbiome big-data mining and applica-

tions using single-cell technologies and metagenomics approaches toward precision 
medicine. Front Genet 2019;10.

[4] Behzadi P, Gajdács M. Worldwide protein data bank (wwpdb): a virtual treasure for 
research in biotechnology. Eur J Microbiol Immunol (Bp) 2021;11(4):77–86.

[5] Chicco D. Ten quick tips for machine learning in computational biology. BioData 
Min 2017;10(35).

[6] Zhang Wenzhen, Wang Jianfang, Li Bingzhi, Sun Bing, Yu Shengchen, Wang Xiaoyu, 
et al. Long non-coding rna bnip3 inhibited the proliferation of bovine intramuscular 
preadipocytes via cell cycle. Int J Mol Sci 2023;24(4).

[7] Kopp Florian, Mendell Joshua T. Functional classification and experimental dissec-

tion of long noncoding rnas. Cell 2018;172(3):393–407.

[8] Xu Jinyang, Xu Jing, Liu Xinyu, et al. The role of lncrna-mediated cerna regulatory 
networks in pancreatic cancer. Cell Death Discov 2022;8:287.

[9] Cantile Monica, Di Bonito Maurizio, De Bellis Maura Tracey, Botti Gerardo. Func-

tional interaction among lncrna hotair and micrornas in cancer and other human 
diseases. Cancers 2021;13(3).

[10] Bonidia Robson P, Avila Santos Anderson P, de Almeida Breno LS, Stadler Peter F, da 
Rocha Ulisses N, Sanches Danilo S, de Carvalho André CPLF. BioAutoML: automated 
feature engineering and metalearning to predict noncoding RNAs in bacteria. Brief 
Bioinform 2022;23(4).

[11] Waring Jonathan, Lindvall Charlotta, Umeton Renato. Automated machine learn-

ing: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med 
2020;104:101822.

[12] Petch Jeremy, Di Shuang, Nelson Walter. Opening the black box: the promise 
and limitations of explainable machine learning in cardiology. Can J Cardiol 
2022;38(2):204–13. Focus Issue: New Digital Technologies in Cardiology.

[13] Rudin Cynthia. Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead. Nat Mach Intell 2019;1(5):206–15.

[14] Lundberg Su-In, e Lee Scott M. A unified approach to interpreting model predic-

tions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, 
et al., editors, Advances in neural information processing systems, vol. 30. Curran 
Associates, Inc.; 2017. p. 4765–74.

[15] Ribeiro Marco, Singh Sameer, Guestrin Carlos. “Why should I trust you?”: explaining 
the predictions of any classifier; 2016. p. 97–101.

[16] Dwivedi Yogesh K, Kshetri Nir, Hughes Lois, Slade Emma L, Jeyaraj Anand, Kar Anir-

ban K, et al. “So what if chatgpt wrote it?” multidisciplinary perspectives on oppor-

tunities, challenges and implications of generative conversational ai for research, 
practice and policy. Int J Inf Manag 2023;71:102642.

[17] Seger Elizabeth, Ovadya Aviv, Siddarth Divya, Garfinkel Ben, Dafoe Allan. 
Democratising ai: multiple meanings, goals, and methods. In: Proceedings of the 
2023 AAAI/ACM conference on AI, ethics, and society, AIES ’23. New York, NY, 
USA: Association for Computing Machinery; 2023. p. 715–22.

[18] Vanschoren Joaquin. Democratising artificial intelligence to accelerate scientific dis-

covery. In: Artificial intelligence in science: challenges, opportunities and the future 
of research. Paris: OECD Publishing; 2023.

[19] Thirunavukarasu Anand, Elangovan Karthik, Gutierrez Luis, Li Ying, Tan Ivan, 
Keane Patrick, et al. Democratizing artificial intelligence imaging analysis with au-

tomated machine learning: tutorial. J Med Internet Res 2023;25:e49949.

[20] Peng C, Han S, Zhang H, Li Y. Rpiter: a hierarchical deep learning framework for 
ncrna-protein interaction prediction. Int J Mol Sci March 2019;20(5):1070.

[21] Pan Xiaoyong, Fan Yong-Xian, Yan Junchi, Shen Hong-Bin. Ipminer: hidden ncrna-

protein interaction sequential pattern mining with stacked autoencoder for accurate 
computational prediction. BMC Genomics August 2016;17(1):582.

[22] Wang Jingjing, Zhao Yanpeng, Gong Weikang, Liu Yang, Wang Mei, Huang Xiao-

qian, et al. Edlmfc: an ensemble deep learning framework with multi-scale fea-

tures combination for ncrna–protein interaction prediction. BMC Bioinform March 
2021;22(1):133.

[23] Zhou Lin, Wang Zexuan, Tian Xiaojing, et al. LPI-deepGBDT: a multiple-layer deep 
framework based on gradient boosting decision trees for lncrna–protein interaction 
identification. BMC Bioinform 2021;22:479.

[24] Peng Lihong, Tan Jingwei, Tian Xiongfei, Zhou Liqian. EnANNDeep: an ensemble-

based lncRNA-protein interaction prediction framework with adaptive k-nearest 
neighbor classifier and deep models. Interdiscip Sci March 2022;14(1):209–32.

[25] Fan Xiao-Nan, Zhang Shao-Wu. Lpi-bls: predicting lncrna–protein interactions 
with a broad learning system-based stacked ensemble classifier. Neurocomputing 
2019;370:88–93.

[26] Muppirala Uday K, Honavar Vasant G, Dobbs Drena. Predicting rna-protein interac-

tions using only sequence information. BMC Bioinform 2011;12:489.

[27] Lu Qian, Ren Su, Lu Mingyuan, et al. Computational prediction of associations be-

tween long non-coding rnas and proteins. BMC Genomics 2013;14:651.

[28] Dai Qian, Guo Mengqi, Duan Xiangfeng, Teng Zhen, Fu Yiran. Construction of com-

plex features for computational predicting ncrna–protein interaction. Front Genet 
2019;10(18).

[29] Wekesa Julius S, Meng Jia, Luan Yushi. Multi-feature fusion for deep learning to 
predict plant lncrna-protein interaction. Genomics 2020;112(5):2928–36.

[30] Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncrna in-

teractions by diffusion and hetesim features across heterogeneous network. BMC 
Bioinform 2018;19(1):1–11.

[31] Zhou Yu-Kun, Hu Jie, Shen Zhi-An, Zhang Wei-Yun, Du Peng-Fei. Lpi-skf: pre-

dicting lncrna-protein interactions using similarity kernel fusions. Front Genet 
2020;11:1554.

[32] Zhou Yu-Kun, Shen Zhi-An, Yu Han, Luo Ting, Gao Yu, Du Peng-Fei. Predicting 
lncrna-protein interactions with mirnas as mediators in a heterogeneous network 
model. Front Genet 2020;10:1341.

[33] Bonidia Robson P, Domingues Douglas S, Sanches Danilo S, de Carvalho André CPLF. 
Mathfeature: feature extraction package for dna, rna and protein sequences based 
on mathematical descriptors. Brief Bioinform 2021:bbab434.

[34] Zhang Wen, Shi Jingwen, Tang Guifeng, Wu Wenjian, Yue Xiang, Li Dingfang. Pre-

dicting small rnas in bacteria via sequence learning ensemble method. In: 2017 IEEE 
international conference on bioinformatics and biomedicine (BIBM); 2017. p. 643–7.

[35] Arrigo Patrizio, Yang Lei, Han Yukun, Zhang Huixue, Li Wenlong, Dai Yu. Predic-

tion of protein-protein interactions with local weight-sharing mechanism in deep 
learning. BioMed Res Int June 2020;2020:5072520.

[36] Lundberg Scott M, Erion Gabriel, Chen Hugh, DeGrave Alex, Prutkin Jordan M, 
Nair Bala, et al. From local explanations to global understanding with explainable 
ai for trees. Nat Mach Intell 2020;2(1):2522–5839.

[37] Wekesa Jael Sanyanda, Meng Jun, Luan Yushi. Multi-feature fusion for deep learning 
to predict plant lncrna-protein interaction. Genomics 2020;112(5):2928–36.

[38] Chen Muhao, Ju Chelsea J-T, Zhou Guangyu, Chen Xuelu, Zhang Tianran, 
Chang Kai-Wei, et al. Multifaceted protein–protein interaction prediction based on 
Siamese residual rcnn. Bioinformatics July 2019;35(14):i305–14.

[39] Yu Bin, Chen Cheng, Zhou Hongyan, Liu Bingqiang, Ma Qin. Gtb-ppi: predict 
protein–protein interactions based on l1-regularized logistic regression and gradi-

ent tree boosting. Genomics Proteomics Bioinform 2020;18(5):582–92.

[40] Li H, et al. Deep neural network based predictions of protein interactions using 
primary sequences. Molecules 2018;23:1923.

[41] Sun T, Zhou B, Lai L, et al. Sequence-based prediction of protein-protein interaction 
using a deep-learning algorithm. BMC Bioinform 2017;18:277.

[42] Guo Yanzhi, Yu Lezheng, Wen Zhining, Li Menglong. Using support vector machine 
combined with auto covariance to predict protein–protein interactions from protein 
sequences. Nucleic Acids Res 2008;36:3025–30.

[43] Yang Lei, Xia Jun-Feng, Gui Jie. Prediction of protein-protein interactions from pro-

tein sequence using local descriptors. Prot Peptide Lett 2010;17(9).
2276

http://refhub.elsevier.com/S2001-0370(24)00177-6/bibBBBBF1BA1EE4F512535E5758ABCAC8F7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibBBBBF1BA1EE4F512535E5758ABCAC8F7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCEF71E5EFE6082F177E96B4D98980BA8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCEF71E5EFE6082F177E96B4D98980BA8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCEF71E5EFE6082F177E96B4D98980BA8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCEF71E5EFE6082F177E96B4D98980BA8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib399646AB78532E0239E64652556CC9A3s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib399646AB78532E0239E64652556CC9A3s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib399646AB78532E0239E64652556CC9A3s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCA94AFE1D2884F60C4D3FE6B944F39ECs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCA94AFE1D2884F60C4D3FE6B944F39ECs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib42B49D5402CADFADA4D82AA81559EC21s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib42B49D5402CADFADA4D82AA81559EC21s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD4321AD24A13A5D8B34B566A779AE1B8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD4321AD24A13A5D8B34B566A779AE1B8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD4321AD24A13A5D8B34B566A779AE1B8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib27497C297A5447489913E21667EDDC28s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib27497C297A5447489913E21667EDDC28s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib274047CA197C464774444896A9FB6701s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib274047CA197C464774444896A9FB6701s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD7377A43D9751C616BA977C86CC6A9B8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD7377A43D9751C616BA977C86CC6A9B8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD7377A43D9751C616BA977C86CC6A9B8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib96CCFCBA5AD187B1F37074617944F3E8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib96CCFCBA5AD187B1F37074617944F3E8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib96CCFCBA5AD187B1F37074617944F3E8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib96CCFCBA5AD187B1F37074617944F3E8s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib7958C4AF3AF2C12116D001398FE4778As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib7958C4AF3AF2C12116D001398FE4778As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib7958C4AF3AF2C12116D001398FE4778As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibEE7ABE32392BE779F8581687EE8AEF23s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibEE7ABE32392BE779F8581687EE8AEF23s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibEE7ABE32392BE779F8581687EE8AEF23s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibEC9F092401F8A4B8FB64F5A3D242972Fs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibEC9F092401F8A4B8FB64F5A3D242972Fs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCCE658C2D0A09CC0F08652C6D0D72769s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCCE658C2D0A09CC0F08652C6D0D72769s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCCE658C2D0A09CC0F08652C6D0D72769s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCCE658C2D0A09CC0F08652C6D0D72769s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibFB22C55847700D6AF9529431BF1C876Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibFB22C55847700D6AF9529431BF1C876Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibFB22C55847700D6AF9529431BF1C876Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibFB22C55847700D6AF9529431BF1C876Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib331CC7C51F4C2A49E30193948BD16678s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib331CC7C51F4C2A49E30193948BD16678s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib331CC7C51F4C2A49E30193948BD16678s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib331CC7C51F4C2A49E30193948BD16678s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibAED1BFF1B55EA3E668B284466ADAA680s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibAED1BFF1B55EA3E668B284466ADAA680s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibAED1BFF1B55EA3E668B284466ADAA680s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD67138D8B45D77B55907614B4D72183Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD67138D8B45D77B55907614B4D72183Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD67138D8B45D77B55907614B4D72183Cs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibC5C4448D9120936B0D3CF80C73FF7F84s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibC5C4448D9120936B0D3CF80C73FF7F84s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibF0C19D4670F1F33F427B7D8887D38C87s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibF0C19D4670F1F33F427B7D8887D38C87s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibF0C19D4670F1F33F427B7D8887D38C87s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib69BA45D0D73001A777175148E1C5FE0Ds1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib69BA45D0D73001A777175148E1C5FE0Ds1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib69BA45D0D73001A777175148E1C5FE0Ds1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib69BA45D0D73001A777175148E1C5FE0Ds1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib08431D2589CCA3B8CE55300F8BBDC652s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib08431D2589CCA3B8CE55300F8BBDC652s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib08431D2589CCA3B8CE55300F8BBDC652s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibA99D54E33B97C76FE90A5079B4A8CB0As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibA99D54E33B97C76FE90A5079B4A8CB0As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibA99D54E33B97C76FE90A5079B4A8CB0As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib795AD7FE3F5AC1C2B4C47F7CA90CA619s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib795AD7FE3F5AC1C2B4C47F7CA90CA619s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib795AD7FE3F5AC1C2B4C47F7CA90CA619s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib6CC54BF074BEC67D6571BE417BDC274Bs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib6CC54BF074BEC67D6571BE417BDC274Bs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib42B7E1BBD82553DEBDA9DFC97F616F15s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib42B7E1BBD82553DEBDA9DFC97F616F15s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib516E25D3B5F9A1DF81520D0BCDEAE8D7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib516E25D3B5F9A1DF81520D0BCDEAE8D7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib516E25D3B5F9A1DF81520D0BCDEAE8D7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib0D0B940DF33476B3545446DE675B0453s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib0D0B940DF33476B3545446DE675B0453s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib90DFDCA6695B4E7101BC3EA629DFAAF4s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib90DFDCA6695B4E7101BC3EA629DFAAF4s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib90DFDCA6695B4E7101BC3EA629DFAAF4s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCB0132005A4A2EC9B25ABC4BD1F2466Es1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCB0132005A4A2EC9B25ABC4BD1F2466Es1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCB0132005A4A2EC9B25ABC4BD1F2466Es1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib597A90A7494AFEAD2D880187B9855449s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib597A90A7494AFEAD2D880187B9855449s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib597A90A7494AFEAD2D880187B9855449s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib35247A4EEAFE4F0833B9A1DE993A1CBBs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib35247A4EEAFE4F0833B9A1DE993A1CBBs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib35247A4EEAFE4F0833B9A1DE993A1CBBs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib8A444A43BDF534C0C6338BB7809659B3s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib8A444A43BDF534C0C6338BB7809659B3s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib8A444A43BDF534C0C6338BB7809659B3s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib62702F7E0146E07253D89A8260E7393Bs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib62702F7E0146E07253D89A8260E7393Bs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib62702F7E0146E07253D89A8260E7393Bs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCF958A1D527287E9BA3A53DF3B9A034As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCF958A1D527287E9BA3A53DF3B9A034As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibCF958A1D527287E9BA3A53DF3B9A034As1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD977F5B1A56FD06F362885BC1C5CBBA4s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibD977F5B1A56FD06F362885BC1C5CBBA4s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib918D7CECA1ADD382DC37A4C20327E064s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib918D7CECA1ADD382DC37A4C20327E064s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib918D7CECA1ADD382DC37A4C20327E064s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibE61D3278B831C91286CD85847D7BEBB2s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibE61D3278B831C91286CD85847D7BEBB2s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bibE61D3278B831C91286CD85847D7BEBB2s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib30C4D9423C7B81D61A9F973C3BE3B598s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib30C4D9423C7B81D61A9F973C3BE3B598s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib2C1B99355C6F052ED4A9D904F28C24C7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib2C1B99355C6F052ED4A9D904F28C24C7s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib7D953A482C4D38A9958F6EF6179E56DAs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib7D953A482C4D38A9958F6EF6179E56DAs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib7D953A482C4D38A9958F6EF6179E56DAs1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib6523FE033B7BC272172570209CDA8108s1
http://refhub.elsevier.com/S2001-0370(24)00177-6/bib6523FE033B7BC272172570209CDA8108s1

	BioPrediction-RPI: Democratizing the prediction of interaction between non-coding RNA and protein with end-to-end machine l...
	1 Introduction
	2 State-of-the-art
	3 Methodology
	3.1 Validation experiments
	3.2 Workflow: BioPrediction-RPI
	3.3 Interpretability module

	4 Results
	4.1 Imbalanced data and negative sample
	4.2 Illustrative example
	4.3 Running time
	4.4 Interpretability

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


