
Citation: Liu, Y.; Hu, Q.; Wu, Q.; Liu,

X.; Zhao, Y.; Zhang, D.; Han, Z.;

Cheng, J.; Ding, Q.; Han, Y.; et al.

Probabilistic Circuit Implementation

Based on P-Bits Using the Intrinsic

Random Property of RRAM and

P-Bit Multiplexing Strategy.

Micromachines 2022, 13, 924.

https://doi.org/10.3390/

mi13060924

Academic Editor: Jung Ho Yoon

Received: 18 April 2022

Accepted: 8 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Probabilistic Circuit Implementation Based on P-Bits Using the
Intrinsic Random Property of RRAM and P-Bit
Multiplexing Strategy
Yixuan Liu 1,2 , Qiao Hu 1, Qiqiao Wu 3, Xuanzhi Liu 3, Yulin Zhao 4, Donglin Zhang 4, Zhongze Han 4,
Jinhui Cheng 3, Qingting Ding 4, Yongkang Han 1, Bo Peng 1, Haijun Jiang 1, Xiaoyong Xue 2 , Hangbing Lv 4

and Jianguo Yang 1,4,*

1 Zhejiang Lab, Hangzhou 311121, China; 20112020109@fudan.edu.cn (Y.L.); qhu@mail.ustc.edu.cn (Q.H.);
hanyk@zhejianglab.com (Y.H.); pengb806@nenu.edu.cn (B.P.); jianghaijun@zhejianglab.com (H.J.)

2 School of Microelectronics, Fudan University, Shanghai 200433, China; xuexiaoyong@fudan.edu.cn
3 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China;

wuqiqiao@mail.ustc.edu.cn (Q.W.); xuanzhi@mail.ustc.edu.cn (X.L.); chengjinhui@mail.ustc.edu.cn (J.C.)
4 Key Laboratory of Microelectronic Devices Integrated Technology, Institute of Microelectronics of Chinese

Academy of Sciences, Beijing 100029, China; zhaoyulin@ime.ac.cn (Y.Z.);
zhangdonglin20@mails.ucas.ac.cn (D.Z.); hanzhongze@ime.ac.cn (Z.H.); dingqingting@ime.ac.cn (Q.D.);
lvhangbing@ime.ac.cn (H.L.)

* Correspondence: yangjianguo@ime.ac.cn; Tel.: +86-10-82995585

Abstract: Probabilistic computing is an emerging computational paradigm that uses probabilistic
circuits to efficiently solve optimization problems such as invertible logic, where traditional digital
computations are difficult to solve. This paper proposes a true random number generator (TRNG)
based on resistive random-access memory (RRAM), which is combined with an activation function
implemented by a piecewise linear function to form a standard p-bit cell, one of the most important
parts of a p-circuit. A p-bit multiplexing strategy is also applied to reduce the number of p-bits
and improve resource utilization. To verify the superiority of the proposed probabilistic circuit, we
implement the invertible p-circuit on a field-programmable gate array (FPGA), including AND gates,
full adders, multi-bit adders, and multipliers. The results of the FPGA implementation show that our
approach can significantly save the consumption of hardware resources.

Keywords: p-circuits; p-bits; invertible logic; TRNG based on RRAM; multiplexing strategy

1. Introduction

In conventional computing systems, due to the constraints of the von Neumann
architecture, huge computation and memory space and extremely long operation time
are always required to solve many classical problems such as combinatorial optimization
problems, neural networks, invertible logic, etc. To solve these problems effectively, new
calculation methods have been continuously explored. Probabilistic computing, as a
new computational paradigm, provides an attractive means to solve the above problem
effectively with a small area and low power consumption, called a p-circuit [1,2]. The
key role in the p-circuit is played by a probabilistic bit (p-bit), a robust unit fluctuating
in time between 0 and 1, unlike conventional binary digital circuits where bits are used
to represent a certain 0 or 1 [3], and a p-bit interacts with other p-bits in the same system
using specific principles. Implementing the Boolean function with a p-circuit can achieve
accuracy comparable to that of a standard digital circuit and, more importantly, is invertible,
a unique feature not found in standard digital circuits. When operating in direct mode,
the input is clamped, and the network provides the correct output. In the inverted mode,
the output is clamped, and the network fluctuates between all possible inputs that are

Micromachines 2022, 13, 924. https://doi.org/10.3390/mi13060924 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13060924
https://doi.org/10.3390/mi13060924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-3969-1833
https://orcid.org/0000-0001-9001-4569
https://orcid.org/0000-0002-3387-1238
https://doi.org/10.3390/mi13060924
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13060924?type=check_update&version=1

Micromachines 2022, 13, 924 2 of 12

consistent with that output. When in floating mode, the network fluctuates between all the
correct combinations of inputs and outputs.

Any random signal generator whose randomness can be tuned with a third terminal
should be a suitable building block for the p-bit. In mathematical terms, p-bits can be
described as Equation (1):

mi(t) = sgn{rand(−1, 1) + tanh(Ii(t))} (1)

where rand (−1, 1) represents a random number uniformly distributed between −1 and 1,
tan h is an activation function, and sgn is the sign function (with binary 1 or −1 outputs).
When the input Ii(t) is zero, the output mi(t) takes on a value of −1 or 1 with equal
probability. A large positive input makes the output more likely to be 1 while a large
negative input makes the output more likely to be−1. Different p-bits can be interconnected
according to

Ii(t) = I0(hi + ∑
j

Jijmj(t)) (2)

where Jij is the coupling coefficient, hi is the external bias, and I0 controls the strength of the
interconnections. The values of Jij, hi and I0 are determined by the problem to be solved.

As mentioned above, one crucial part of constructing a p-circuit is implementing the
p-bit in hardware. At present, there are three main ways to implement p-bits: Microcon-
trollers [3], digital circuits (field-programmable gate array (FPGA)/ASIC) [4,5], and new
memory devices (MRAM, resistive random-access memory (RRAM)) [6–8]. There are two
common problems in implementing p-bits with microcontrollers and digital circuits: One
is the high energy consumption and the other is the waste of resources during operation.
We can greatly reduce energy consumption by using new devices to implement p-bits, but
as the number of p-bits increases, the variability between devices due to dispersion of the
devices will need to be corrected [9]. We adopt the strategy of p-bit multiplexing, which
reduces the waste of resources and avoids the additional design needed to correct the vari-
ability between devices, and finally achieves invertible logic with low power consumption
and fewer resources.

2. Proposed P-Bit Design

The overall structure diagram of the proposed probabilistic computing system is
shown in Figure 1, which mainly includes the p-circuit, UART (Universal Asynchronous
Receiver/Transmitter) interface, PC, and controller. The p-circuit completes the invertible
logic, and the UART interface collects data and transmits it to the PC, the most important
part of which is the components and implementation of the p-circuit. The p-circuit is the
key to implementing invertible logic, which consists of a p-bit and weight-logic. In this
section and the next section, we will describe and show the realization of the p-bit and
weight logic in detail, respectively.

Since signals are represented by definite 0 and 1 in digital circuits, we convert
Equation (1) into the following form:

mi(t) = step{rand(0, 1)− sigmoid(Ii(t))} (3)

where rand(0, 1) can be generated by the RRAM-based true random number generator
(TRNG), the sigmoid function can be implemented by piecewise linear approximation
(PWL), and the step function can be completed by the comparator. We will describe the
specific implementation of these three parts separately below.

Micromachines 2022, 13, 924 3 of 12Micromachines 2022, 13, x FOR PEER REVIEW 3 of 13

PC

Controller

UART

Interface

P-circuit

TRNG
based on RRAM

Activation
function
（PWL）

16

16

+
-

MUX2

mi1 mi2 min···

Weight-matrix

outi1 outi2 outin

···

M
U

X
1

Ii1

Ii2

Iin

···
Select [en 1,···,en n]

P-bit

Weight-logic

16

16
16

mi

Ii

16

Sampling

Updating

P-bit

Weight-logic

P-circuit

Figure 1. Block diagram of a probabilistic computing system including p-circuit, UART interface,

PC, and controller (top). Detailed p-circuit structure (bottom): P-bit (green), weight-logic (yellow).

2.1. TRNG Based on RRAM

Compared with the traditional CMOS random number generator, the random

number generator designed with RRAM has the advantages of a small area, low power

consumption, and good randomness, which is more attractive [10,11,12,13]. The RRAM

stack includes the bottom electrode (BE, TiN), top electrode (TE, TiN), and TaOx layer.

The TaOx is deposited by PVD serving as the switching layer. Figure 2a shows the cross-

section of RRAM cells in the array used in this study. The RRAM is built between contact

(CT) and Metal 1 (M1). The magnified view of the RRAM cell structure is shown in Figure

2b. A TaOx switching layer was formed in the trench of M1 in connection with CT. An

interface layer with a thickness of 1.5 nm∼5 nm was formed between the TaOx layer and

TE. The detailed process flow of the RRAM device can be found in our previous work [14].

Figure 2c illustrates the typical DC I-V characteristics of the RRAM cell measured at room

temperature, demonstrating a low 80 µA switching current and a low operation voltage

below 1.5 V. During the DC test, the bias voltage of the transistor (NMOS) is 1.4 V due to

the need for current limiting protection of the RRAM device during the set operation,

while the SL is grounded, and the BL provides different DC voltages. For reset operation,

the transistor bias voltage is 2.5 V, while BL is grounded, and SL provides different DC

voltages.

Figure 1. Block diagram of a probabilistic computing system including p-circuit, UART interface, PC,
and controller (top). Detailed p-circuit structure (bottom): P-bit (green), weight-logic (yellow).

2.1. TRNG Based on RRAM

Compared with the traditional CMOS random number generator, the random number
generator designed with RRAM has the advantages of a small area, low power consumption,
and good randomness, which is more attractive [10–13]. The RRAM stack includes the
bottom electrode (BE, TiN), top electrode (TE, TiN), and TaOx layer. The TaOx is deposited
by PVD serving as the switching layer. Figure 2a shows the cross-section of RRAM cells in
the array used in this study. The RRAM is built between contact (CT) and Metal 1 (M1). The
magnified view of the RRAM cell structure is shown in Figure 2b. A TaOx switching layer
was formed in the trench of M1 in connection with CT. An interface layer with a thickness
of 1.5 nm∼5 nm was formed between the TaOx layer and TE. The detailed process flow of
the RRAM device can be found in our previous work [14]. Figure 2c illustrates the typical
DC I-V characteristics of the RRAM cell measured at room temperature, demonstrating
a low 80 µA switching current and a low operation voltage below 1.5 V. During the DC
test, the bias voltage of the transistor (NMOS) is 1.4 V due to the need for current limiting
protection of the RRAM device during the set operation, while the SL is grounded, and the
BL provides different DC voltages. For reset operation, the transistor bias voltage is 2.5 V,
while BL is grounded, and SL provides different DC voltages.

The noise (including RTN [15] and flicker noise) affected by the local trap (a crystal
defect or chemical center in a semiconductor capable of capturing electrons or holes) is
shown in Figure 2d. The noise is utilized as the entropy source for the p-bit circuit in this
work. The amplitude of the noise in the 28 nm RRAM can reach the order of microamps,
making it easier to detect and utilize the noise to form a true random number generator
compared to the noise of other new devices [16]. The noise extraction circuit is shown in
the inset in Figure 3b. When the VG is high, the transistor is turned on, the corresponding
RRAM unit is selected, and a small read voltage (Vread = 0.3 V) is applied to the RRAM. Due
to the internal noise of the RRAM, the voltage at the positive input of the comparator is not
fixed but has small voltage fluctuations. Upon comparing the Vre f with it, the comparator

Micromachines 2022, 13, 924 4 of 12

will output random 0 and 1 results. NIST 800-22 (National Institute of Standards and
Technology, Gaithersburg, MD, USA) randomness test suites are performed on 10 M bits
collected from the RRAM chip. As shown in Figure 3a, the data passed all test items,
showing a high quality of randomness. The generated true random number will be used by
the probability modulation module including the sigmoid function circuit and comparator
to realize the bitstream with adjustable probability. Figure 3b shows the average value of mi
obtained after 106 cycles of sampling when the input changes, which highly fits the sigmoid
function. Figure 3c–e shows the statistical value of mi when Ii is equal to −2, 0 and +2,
respectively, over 300 cycles. When performing FPGA function implementation, we first
sample and collect the random number sequence generated by the RRAM-based TRNG
and store it in RAM, which continuously outputs the random number sequence to verify
the function of the circuit.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 13

CT

WL
SL

BL

−2 −1 0 1 2

Figure 2. Structure and characteristics of RRAM. (a) The cross-section of RRAM cell in a 28 nm
process 1T1R array. The RRAM unit is built between contact and Metal 1; (b) the magnified view of
the cell structure; (c) typical DC I-V characteristics of the RRAM cell and structure of 1T1R RRAM;
(d) the noise measured in the 28 nm RRAM cell; the array size is 16 Kb.

The noise (including RTN [15] and flicker noise) affected by the local trap (a crystal
defect or chemical center in a semiconductor capable of capturing electrons or holes) is
shown in Figure 2d. The noise is utilized as the entropy source for the p-bit circuit in this
work. The amplitude of the noise in the 28 nm RRAM can reach the order of microamps,
making it easier to detect and utilize the noise to form a true random number generator
compared to the noise of other new devices [16]. The noise extraction circuit is shown in
the inset in Figure 3b. When the 𝑉 is high, the transistor is turned on, the corresponding
RRAM unit is selected, and a small read voltage (𝑉 = 0.3 V) is applied to the RRAM.
Due to the internal noise of the RRAM, the voltage at the positive input of the comparator
is not fixed but has small voltage fluctuations. Upon comparing the 𝑉 with it, the com-
parator will output random 0 and 1 results. NIST 800-22 (National Institute of Standards
and Technology, Gaithersburg, MD, USA) randomness test suites are performed on 10 M
bits collected from the RRAM chip. As shown in Figure 3a, the data passed all test items,
showing a high quality of randomness. The generated true random number will be used
by the probability modulation module including the sigmoid function circuit and com-
parator to realize the bitstream with adjustable probability. Figure 3b shows the average
value of 𝑚 obtained after 106 cycles of sampling when the input changes, which highly
fits the sigmoid function. Figure 3c–e shows the statistical value of 𝑚 when 𝐼 is equal
to −2, 0 and +2, respectively, over 300 cycles. When performing FPGA function implemen-
tation, we first sample and collect the random number sequence generated by the RRAM-
based TRNG and store it in RAM, which continuously outputs the random number se-
quence to verify the function of the circuit.

Figure 2. Structure and characteristics of RRAM. (a) The cross-section of RRAM cell in a 28 nm
process 1T1R array. The RRAM unit is built between contact and Metal 1; (b) the magnified view of
the cell structure; (c) typical DC I-V characteristics of the RRAM cell and structure of 1T1R RRAM;
(d) the noise measured in the 28 nm RRAM cell; the array size is 16 Kb.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 13

(c)Normalized time(Ii=−2)

−8 −6 −4 −2

Figure 3. Probabilistic-adjustable randomness of P-bit. (a) NIST-verified results at p = 0.5; (b) the
time-averaged output of p-bit, which fits sigmoid well; (c–e) the statistical value of 𝑚 when 𝐼 is
equal to −2, 0, +2, respectively, over 300 cycles.

2.2. Sigmoid Function
We use PWL [17] to implement the sigmoid function in the digital method, which is

different from [4] using a lookup table (LUT) and [5] using a finite state machine (FSM).
Since the input–output curve of the P-bit is highly coincident with the sigmoid function,
and the sigmoid function tends to saturate when the input exceeds the interval [−8, +8],
we restrict the input range of the sigmoid function to the interval [−8, +8] and use fifteen
broken lines to approximate the sigmoid function. Then, the input and output of the sig-
moid function are quantized by a 16-bit fixed-point number. For the input, we use one
MSB to represent the sign, the middle three bits to represent the integer, and the rest to
represent the decimal. For the output, all 16 bits are used to represent the decimal. Table
1 shows the truth table of the 15-segment polyline approximating the sigmoid function
for x > 0 only, due to the symmetry of the sigmoid function. Taking the input range of 0
to 1 as an example, the slope of the broken line is 0.25, so the output starts at 0.5, and the
decimal part of the input is shifted to the right by 2 places to achieve multiplication by
0.25. In this way, the use of multipliers can be avoided, effectively saving hardware re-
sources.

Table 1. The truth table of the 15-segment polyline approximates the sigmoid function for x > 0.

Input Range Input Value Output Range Output Value Slope
[0, 1) 0000xxxxxxxxxxxx [0.5, 0.75) 10xxxxxxxxxxxxxx 0.25
[1, 2) 0001xxxxxxxxxxxx [0.75, 0.875) 110xxxxxxxxxxxxx 0.125
[2, 3) 0010xxxxxxxxxxxx [0.875, 0.9375) 1110xxxxxxxxxxxx 0.0625
[3, 4) 0011xxxxxxxxxxxx [0.9375, 0.96875) 11110xxxxxxxxxxx 0.03125
[4, 5) 0100xxxxxxxxxxxx [0.96875, 0.984375) 111110xxxxxxxxxx 0.015625
[5, 6) 0101xxxxxxxxxxxx [0.984375, 0.9921875) 1111110xxxxxxxxx 0.0078125
[6, 7) 0110xxxxxxxxxxxx [0.9921875, 0.99609375) 11111110xxxxxxxx 0.00390625
[7, 8) 0111xxxxxxxxxxxx [0.99609375, 1) 11111111xxxxxxxx 0.001953125

Figure 3. Probabilistic-adjustable randomness of P-bit. (a) NIST-verified results at p = 0.5; (b) the
time-averaged output of p-bit, which fits sigmoid well; (c–e) the statistical value of mi when Ii is
equal to −2, 0, +2, respectively, over 300 cycles.

Micromachines 2022, 13, 924 5 of 12

2.2. Sigmoid Function

We use PWL [17] to implement the sigmoid function in the digital method, which is
different from [4] using a lookup table (LUT) and [5] using a finite state machine (FSM).
Since the input–output curve of the P-bit is highly coincident with the sigmoid function,
and the sigmoid function tends to saturate when the input exceeds the interval [−8, +8],
we restrict the input range of the sigmoid function to the interval [−8, +8] and use fifteen
broken lines to approximate the sigmoid function. Then, the input and output of the
sigmoid function are quantized by a 16-bit fixed-point number. For the input, we use one
MSB to represent the sign, the middle three bits to represent the integer, and the rest to
represent the decimal. For the output, all 16 bits are used to represent the decimal. Table 1
shows the truth table of the 15-segment polyline approximating the sigmoid function for
x > 0 only, due to the symmetry of the sigmoid function. Taking the input range of 0 to 1 as
an example, the slope of the broken line is 0.25, so the output starts at 0.5, and the decimal
part of the input is shifted to the right by 2 places to achieve multiplication by 0.25. In this
way, the use of multipliers can be avoided, effectively saving hardware resources.

Table 1. The truth table of the 15-segment polyline approximates the sigmoid function for x > 0.

Input Range Input Value Output Range Output Value Slope

[0, 1) 0000xxxxxxxxxxxx [0.5, 0.75) 10xxxxxxxxxxxxxx 0.25
[1, 2) 0001xxxxxxxxxxxx [0.75, 0.875) 110xxxxxxxxxxxxx 0.125
[2, 3) 0010xxxxxxxxxxxx [0.875, 0.9375) 1110xxxxxxxxxxxx 0.0625
[3, 4) 0011xxxxxxxxxxxx [0.9375, 0.96875) 11110xxxxxxxxxxx 0.03125
[4, 5) 0100xxxxxxxxxxxx [0.96875, 0.984375) 111110xxxxxxxxxx 0.015625
[5, 6) 0101xxxxxxxxxxxx [0.984375, 0.9921875) 1111110xxxxxxxxx 0.0078125
[6, 7) 0110xxxxxxxxxxxx [0.9921875, 0.99609375) 11111110xxxxxxxx 0.00390625
[7, 8) 0111xxxxxxxxxxxx [0.99609375, 1) 11111111xxxxxxxx 0.001953125

2.3. Comparator

A 16-bit comparator compares the outputs of the sigmoid function and the TRNG. If
the output of the activation function is larger than TRNG, the output mi is 1; otherwise,
the output is 0. Figure 3b shows the time-average characteristics of p-bit, where mi is
the statistical average value of mi over 106 sampling cycles. When the input Ii is 0, mi
randomly fluctuates between 0 and 1 with equal probability, so the time-average output mi
is approximately equal to 0.5. As the input Ii increases, the number of 1 generated by the
p-bit will exceed the number of 0, increasing the time-averaged output mi.

3. Weight-Logic Implementation

As mentioned above, the p-circuit consists of a p-bit and weight-logic. The p-bit is
presented in Section 2, and adjusts the probability of output 1 according to the calculation
result of the weight-logic and waits for the weight-logic to sample. In this section, we will
show the design of the weight-logic, including the calculation of the weight-matrix and the
multiplexing strategy applied therein.

3.1. Weight-Matrix

The weight-matrix implements Equation (2) employing adders and multipliers, the
structure of which is shown in Figure 4. Sometimes it is necessary to fix the output of some
p-bits to a certain value, so we use MUXs to choose between the fluctuation value (min) and
the certain value (Fixn), which is controlled by the Clamp[1 : n]. Since mj in Equation (2) is
bipolar (mj ∈ {−1,+1}), the p-bit output mi in Equation (3) is unipolar (mj ∈ {0, 1}), so we
use 2-bit signed registers with LSB fixed to 1 for the conversion instead of linear mapping
through y = 2×m− 1, which can reduce one multiplication and one additional operation.

Micromachines 2022, 13, 924 6 of 12

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 13

2.3. Comparator
A 16-bit comparator compares the outputs of the sigmoid function and the TRNG. If

the output of the activation function is larger than TRNG, the output 𝑚 is 1; otherwise,
the output is 0. Figure 3b shows the time-average characteristics of p-bit, where 𝑚 is the
statistical average value of 𝑚 over 106 sampling cycles. When the input 𝐼 is 0, 𝑚 ran-
domly fluctuates between 0 and 1 with equal probability, so the time-average output 𝑚
is approximately equal to 0.5. As the input 𝐼 increases, the number of 1 generated by the
p-bit will exceed the number of 0, increasing the time-averaged output 𝑚 .

3. Weight-Logic Implementation
As mentioned above, the p-circuit consists of a p-bit and weight-logic. The p-bit is

presented in Section 2, and adjusts the probability of output 1 according to the calculation
result of the weight-logic and waits for the weight-logic to sample. In this section, we will
show the design of the weight-logic, including the calculation of the weight-matrix and
the multiplexing strategy applied therein.

3.1. Weight-Matrix
The weight-matrix implements Equation (2) employing adders and multipliers, the

structure of which is shown in Figure 4. Sometimes it is necessary to fix the output of some
p-bits to a certain value, so we use MUXs to choose between the fluctuation value (𝑚)
and the certain value (𝐹𝑖𝑥), which is controlled by the 𝐶𝑙𝑎𝑚𝑝[1: 𝑛]. Since 𝑚 in Equa-
tion (2) is bipolar (𝑚 ∈ {−1, +1}), the p-bit output 𝑚 in Equation (3) is unipolar (𝑚 ∈{0,1}), so we use 2-bit signed registers with LSB fixed to 1 for the conversion instead of
linear mapping through 𝑦 = 2 × 𝑚 − 1, which can reduce one multiplication and one
additional operation.

mi1

Fix1

out1

Clamp[1]

reg
Ji1

Sum
(adders)

mi2

Fix2

out2

Clamp[2]

reg
Ji2

min

Fixn

outn

Clamp[n]

reg
Jin

···

hi

Ii1

Ii2

Iin

···
Weight-matrix

1

1

1

Figure 4. The structure of the weight-matrix. MUXs are used to choose the fluctuation value (min)
or a certain value (Fixn). 2-bit signed registers with LSB fixed to 1 are used to convert p-bit output
m ∈ {0, 1} to a bipolar m ∈ {−1,+1} representation.

3.2. Multiplexing Strategy

For every p-circuit, there is a requirement that the p-bit must update serially. In [4], an
additional sequencer circuit is used to force an updating sequence between p-bits. In this
paper, we propose a multiplexing strategy to reduce the number of p-bits and complete
the serial update of p-bits through FSM in the weight-matrix. Taking the N-bit ripple
carry adder (RCA) as an example, in which we adopt the two multiplexing strategies. The
first multiplexing strategy is applied to the basic unit full adder (FA) of RCA as shown in
Figure 5b,c. Usually, it takes five p-bits to construct an FA, where A, B, and CI are the inputs
of the FA, and S and CO are the outputs of the FA. In this work, we only need one p-bit as
a generator to produce 0 or 1 probabilistically, while some registers store the states of the
p-bit. This multiplexing strategy not only performs serial updates naturally but also greatly
reduces the number of p-bits. We use two MUXs to achieve p-bit time-division multiplexing
as shown in Figure 5b. The signal to control the MUX is generated by the weight-matrix
module, and the concrete operation process is shown in Figure 5c. Starting with state 1, the
circuit accomplishes two things in each state: Firstly, the input of the corresponding p-bit
is calculated based on the interconnect coefficient (Jij), the external bias (hi), and the p-bit
output (mi; secondly, the corresponding control signal is set to 1 to update the p-bit. An FA
needs to go through five states to complete an update of all bits. The second multiplexing
strategy is applied to N-bit RCA as shown in Figure 5a, and the update order is from FA1
to FAn. Although the multiplexing strategy increases the operation time, it is acceptable for
statistical-based probabilistic computing to reduce hardware consumption.

Micromachines 2022, 13, 924 7 of 12

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 13

Figure 4. The structure of the weight-matrix. MUXs are used to choose the fluctuation value (𝑚𝑖𝑛)

or a certain value (𝐹𝑖𝑥𝑛). 2-bit signed registers with LSB fixed to 1 are used to convert p-bit output

𝑚 ∈ {0,1} to a bipolar 𝑚 ∈ {−1,+1} representation.

3.2. Multiplexing Strategy

For every p-circuit, there is a requirement that the p-bit must update serially. In [4],

an additional sequencer circuit is used to force an updating sequence between p-bits. In

this paper, we propose a multiplexing strategy to reduce the number of p-bits and

complete the serial update of p-bits through FSM in the weight-matrix. Taking the N-bit

ripple carry adder (RCA) as an example, in which we adopt the two multiplexing

strategies. The first multiplexing strategy is applied to the basic unit full adder (FA) of

RCA as shown in Figure 5b,c. Usually, it takes five p-bits to construct an FA, where A, B,

and CI are the inputs of the FA, and S and CO are the outputs of the FA. In this work, we

only need one p-bit as a generator to produce 0 or 1 probabilistically, while some registers

store the states of the p-bit. This multiplexing strategy not only performs serial updates

naturally but also greatly reduces the number of p-bits. We use two MUXs to achieve p-

bit time-division multiplexing as shown in Figure 5b. The signal to control the MUX is

generated by the weight-matrix module, and the concrete operation process is shown in

Figure 5c. Starting with state 1, the circuit accomplishes two things in each state: Firstly,

the input of the corresponding p-bit is calculated based on the interconnect coefficient

(𝐽𝑖𝑗), the external bias (ℎ𝑖), and the p-bit output (𝑚𝑖; secondly, the corresponding control

signal is set to 1 to update the p-bit. An FA needs to go through five states to complete an

update of all bits. The second multiplexing strategy is applied to N-bit RCA as shown in

Figure 5a, and the update order is from FA1 to FAn. Although the multiplexing strategy

increases the operation time, it is acceptable for statistical-based probabilistic computing

to reduce hardware consumption.

FA1

···
FA2 FAn

mFA1 mFA2 mFAn···

IFA1

IFA2

IFAn

···

Select [en_FA1,···,en_FAn]

Weight-logic_FA

mi

Ii

P-bit

N-bit RCA P-circuit mFAi

Weight-matrix

mAi mBi mCIi mSi mCOi

IAi

IBi

ICIi

ISi

ICO

outAi

outBi

outCIi

outSi

outCOi

IFAi

Select [en_A1,···,en_CO]

Read

out

SCO

SS

SCISB

SA

en_S=1en_CO=1

en_A=1

en_B=1

en_CI=

1

FSM

(b)

(c)

(a)

Figure 5. Proposed N-bit ripple carry adder (RCA). (a) The structure of N-bit RCA p-circuit using

two-multiplexing strategy; (b) the structure of FA using time-division multiplexing; (c) the

calculation process in the weight-matrix.

4. Implementation Results

This section shows simulation results of the invertible AND gate, FA, 16-bit RCA,

and 4-bit multiplier. The implementation of the invertible circuits in this section is based

on the mathematical description of the p-bit and the coupling relationship between p-bits,

Figure 5. Proposed N-bit ripple carry adder (RCA). (a) The structure of N-bit RCA p-circuit using
two-multiplexing strategy; (b) the structure of FA using time-division multiplexing; (c) the calculation
process in the weight-matrix.

4. Implementation Results

This section shows simulation results of the invertible AND gate, FA, 16-bit RCA, and
4-bit multiplier. The implementation of the invertible circuits in this section is based on
the mathematical description of the p-bit and the coupling relationship between p-bits, as
shown in Equations (1) and (2). In hardware, they correspond to the p-bit module and
weight-logic module, respectively. The coupling weights Jij between p-bits are determined
by the invertible logic problem to be implemented. The p-circuits system constantly updates
its values and obtains the correct solution to the problem with a higher probability.

4.1. Invertible AND Gate and Full Adder (FA)

The invertible AND gate and FA can be implemented as p-circuits following the architec-
ture of Figure 1 using the matrix JAND, JFA and vector hAND, hFA in Equations (4) and (5) [18].

JAND =

 0 −1 +2
−1 0 +2
+2 +2 0

 hAND =

+1
+1
−2

 (4)

JFA =

0 −1 −1
−1 0 −1

+1
+1

+2
+2

−1 −1 0
+1 +1 +1

+1
0

+2
−2

+2 +2 +2 −2 0

 hFA =

0
0

0
0
0

 (5)

For the invertible AND gate and FA, we have implemented three different modes: The
directional mode, which clamps the inputs, the inverse mode, which clamps the output,
and the floating mode where the input and output are floating. Figures 6 and 7 show the
steady-state statistics of the AND gate and FA. In Figure 6a, inputs A and B are clamped
at 1 by Clamp and Fixn signals, and output C is held at 1 for a long time during 300 sampling
cycles. Figure 6b shows the inverse mode where output C is clamped to 0. From the figure,
the three combinations of input (A, B) have a relatively higher probability of occurrence,
namely (0,0), (0,1), and (1,0), which is consistent with the truth table of the AND gate. In
Figure 6c, all the inputs and output are floating, and the probabilities of all correct AND
gate input and output combinations are significantly high, close to 0.25. Similar to the
invertible AND gate, Figure 7 shows the results of the invertible FA. FA works in the

Micromachines 2022, 13, 924 8 of 12

directional mode when the input (A, B, CI) is clamped to (1,1,0), in the inverse mode when
the output (S, CO) is clamped to (1,1), and in the floating mode when the input and output
are floating. The invertible AND gate and FA require three clock cycles and five clock
cycles, respectively, to complete a calculation.

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 13

as shown in Equations (1) and (2). In hardware, they correspond to the p-bit module and

weight-logic module, respectively. The coupling weights 𝐽𝑖𝑗 between p-bits are

determined by the invertible logic problem to be implemented. The p-circuits system

constantly updates its values and obtains the correct solution to the problem with a higher

probability.

4.1. Invertible AND Gate and Full Adder (FA)

The invertible AND gate and FA can be implemented as p-circuits following the

architecture of Figure 1 using the matrix 𝑱𝑨𝑵𝑫, 𝑱𝑭𝑨 and vector 𝒉𝑨𝑵𝑫, 𝒉𝑭𝑨 in Equations

(4) and (5) [18].

 𝑱𝑨𝑵𝑫 = [
0 −1 +2

−1 0 +2
+2 +2 0

] 𝒉𝑨𝑵𝑫 = [
+1
+1
−2

] (4)

𝑱𝑭𝑨 =

[

0 −1 −1
−1 0 −1

+1
+1

+2
+2

−1 −1 0
+1 +1 +1

+1
0

+2
−2

+2 +2 +2 −2 0]

 𝒉𝑭𝑨 =

[

0
0
0
0
0]

 (5)

For the invertible AND gate and FA, we have implemented three different modes:

The directional mode, which clamps the inputs, the inverse mode, which clamps the

output, and the floating mode where the input and output are floating. Figure 6 and

Figure 7 show the steady-state statistics of the AND gate and FA. In Figure 6a, inputs A

and B are clamped at 1 by Clamp and Fixn signals, and output C is held at 1 for a long time

during 300 sampling cycles. Figure 6b shows the inverse mode where output C is clamped

to 0. From the figure, the three combinations of input (A, B) have a relatively higher

probability of occurrence, namely (0,0), (0,1), and (1,0), which is consistent with the truth

table of the AND gate. In Figure 6c, all the inputs and output are floating, and the

probabilities of all correct AND gate input and output combinations are significantly high,

close to 0.25. Similar to the invertible AND gate, Figure 7 shows the results of the invertible

FA. FA works in the directional mode when the input (A, B, CI) is clamped to (1,1,0), in

the inverse mode when the output (S, CO) is clamped to (1,1), and in the floating mode

when the input and output are floating. The invertible AND gate and FA require three

clock cycles and five clock cycles, respectively, to complete a calculation.

Normalized time

Dir: A = 1 B = 1

[A B C]

A
P

r
o
b

a
b

il
it

y

Normalized time

Float

Normalized time

Inv: C = 0

B
C

[A B C] [A B C]

A
BC

P
r
o
b

a
b

il
it

y

P
r
o
b

a
b

il
it

y
[A

 B
 C

]

P = 0.9703

P = 0.0297

×33

P = 0.3253

P = 0.0103

P = 0.2328

P = 0.008

×32

(a) (b) (c)

×29

Figure 6. Invertible AND gate operation. (a) Directional mode: Clamping the inputs (A, B) to (1,1), the
time-dependent output of C for the AND gate (top), the statistics collected for 106 samples (bottom);
(b) inverse mode: Clamping the outputs C to 0, time-dependent outputs of (A, B) for the AND gate
(top), the statistics collected for 106 samples (bottom); (c) floating mode: All the inputs and output
are floating, time-dependent nodes of (A, B, C) for the AND gate (top), the statistics collected for
106 samples (bottom).

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 13

Figure 6. Invertible AND gate operation. (a) Directional mode: Clamping the inputs (A, B) to (1,1),

the time-dependent output of C for the AND gate (top), the statistics collected for 106 samples

(bottom); (b) inverse mode: Clamping the outputs C to 0, time-dependent outputs of (A, B) for the

AND gate (top), the statistics collected for 106 samples (bottom); (c) floating mode: All the inputs

and output are floating, time-dependent nodes of (A, B, C) for the AND gate (top), the statistics

collected for 106 samples (bottom).

Normalized time

Dir: A = 1 B = 1 CI = 0

A

P
r
o

b
a

b
il

it
y

Normalized time

Float

Normalized time

Inv: S = 1 CO = 0

B
C

[CO S CI B A]

A
B

S

P
r
o

b
a

b
il

it
y

P
r
o

b
a

b
il

it
y

[CO S CI B A]

P = 0.7595

P = 0.1425

×5.3

P = 0.7223

P = 0.1097

P = 0.0741

P = 0.0255

×6.6

(a) (b) (c)

C
O

C
I

×3

CI CO
FA

[CO S CI B A][CO S CI B A]

Figure 7. Invertible full adder operation, similar to invertible AND gate including directional mode

(a), inverse mode (b), and floating mode (c).

4.2. 16-Bit Ripple Carry Adders (RCA)

We cascade the constructed invertible FAs to form an N-bit RCA as shown in Figure

8a, and randomly select the data A = 40,627, B = 32,970 as an example to illustrate the three

different modes of the invertible 16-bit RCA. In Figure 8b, RCA works in the directional

mode (used for addition), A and B are clamped through Clamp and Fixn signals, and S is

countered for a long time. The probability of the correct result is significantly high (near

0.016) among the 217 possibilities. In Figure 8c, we clamp A and S to use RCA as a

subtraction in inverse mode, and the probability of B = 32,970 is much higher than the

others, which are close to 0.019. In Figure 8d, we clamp only S and calculate the sum of A

and B. The highest probability (close to 0.028) is for A + B = 73,597. Figure 8d shows a great

ability to extract the correct answer despite large fluctuations, which is useful in some NP

problems such as the Subset Sum Problem. The invertible 16-bit RCA requires 80 clock

cycles to complete a calculation.

Figure 7. Invertible full adder operation, similar to invertible AND gate including directional
mode (a), inverse mode (b), and floating mode (c).

Micromachines 2022, 13, 924 9 of 12

4.2. 16-Bit Ripple Carry Adders (RCA)

We cascade the constructed invertible FAs to form an N-bit RCA as shown in Figure 8a,
and randomly select the data A = 40,627, B = 32,970 as an example to illustrate the three
different modes of the invertible 16-bit RCA. In Figure 8b, RCA works in the directional
mode (used for addition), A and B are clamped through Clamp and Fixn signals, and S
is countered for a long time. The probability of the correct result is significantly high
(near 0.016) among the 217 possibilities. In Figure 8c, we clamp A and S to use RCA as
a subtraction in inverse mode, and the probability of B = 32,970 is much higher than the
others, which are close to 0.019. In Figure 8d, we clamp only S and calculate the sum of
A and B. The highest probability (close to 0.028) is for A + B = 73,597. Figure 8d shows a
great ability to extract the correct answer despite large fluctuations, which is useful in some
NP problems such as the Subset Sum Problem. The invertible 16-bit RCA requires 80 clock
cycles to complete a calculation.

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 13

Dir(Add) Dir(Add)

P
r
o
b

a
b

il
it

y

S

Inv(Sub) Inv(Sub)

P
r
o
b

a
b

il
it

y

B

Clamp S Clamp S

A+B

P
r
o

b
a

b
il

it
y

P
r
o
b

a
b

il
it

y

P
r
o

b
a

b
il

it
y

P
r
o
b

a
b

il
it

y

A1 B1

S1

FA1

A2 B2

S2

FA2 ···

An Bn

Sn

FAn Sn+10(a)

(b)

(c)

(d)

Clamp A = 40627

+ Clamp B = 32970

S = 73597

Clamp A = 40627

+ B = 32970

Clamp S = 73597

A = {0,···,2
16

}

+ B = {0,···,2
16

}

Clamp S = 73597

Figure 8. Invertible 16-bit RAC operation. (a) N-bit RCA is designed based on constructed invertible

full adders; (b) clamping A and B working in directional mode (used for addition). The left is the

statistics of S over a period, and the right is the statistics of 100 samples around the correct S; (c)

clamping A and S working in inverse mode (used for subtraction); (d) only clamping S, and the

statistics of A + B.

4.3. 4-Bit Multiplier

We construct a 4-bit multiplier consisting of four invertible AND gates and three

invertible FAs as shown in Figure 9, which can be applied to multiplication, division, and

factorization. We take 2 × 3 = 6 as an example to illustrate these three functions of the

multiplier. In the multiplication process, we clamp A = 2, B = 3, and count S ([S4, S3, S2,

S1]), and S = 6 appears with the highest probability, close to 0.45. In this division, we clamp

A = 2, S = 6, and count B ([B2, B1]), with B = 2 taking place with the highest probability,

close to 0.6. In factorization, we just clamp S = 6 and count A and B ([A2, A1, B2, B1]), and

the relatively high probability of (1101) and (1011) implies that A = 2, B = 3 or A = 3, B = 2

is more likely. An invertible 4-bit multiplier requires 18 clock cycles to complete a

calculation.

Figure 8. Invertible 16-bit RAC operation. (a) N-bit RCA is designed based on constructed invertible
full adders; (b) clamping A and B working in directional mode (used for addition). The left is
the statistics of S over a period, and the right is the statistics of 100 samples around the correct S;
(c) clamping A and S working in inverse mode (used for subtraction); (d) only clamping S, and the
statistics of A + B.

Micromachines 2022, 13, 924 10 of 12

4.3. 4-Bit Multiplier

We construct a 4-bit multiplier consisting of four invertible AND gates and three
invertible FAs as shown in Figure 9, which can be applied to multiplication, division, and
factorization. We take 2 × 3 = 6 as an example to illustrate these three functions of the
multiplier. In the multiplication process, we clamp A = 2, B = 3, and count S ([S4, S3, S2, S1]),
and S = 6 appears with the highest probability, close to 0.45. In this division, we clamp
A = 2, S = 6, and count B ([B2, B1]), with B = 2 taking place with the highest probability,
close to 0.6. In factorization, we just clamp S = 6 and count A and B ([A2, A1, B2, B1]), and
the relatively high probability of (1101) and (1011) implies that A = 2, B = 3 or A = 3, B = 2 is
more likely. An invertible 4-bit multiplier requires 18 clock cycles to complete a calculation.

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 13

Dir(Mul): A = 2 B = 3

S

Inv(Div): S = 6 A = 3 Float(Factor): S = 6

Pr
ob

ab
ili

ty

B

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

A1B1

S1

FA1

A2B2

S2

FA20

(a) (b)

(c)

[A2A1 B2B1]

A2B2

S3

FA3 S4

A1 B1

0 0

(d)

P = 0.6164

P = 0.1515

×4

P = 0.1289

P = 0.2699

P = 0.4651

P = 0.0938

×2

×5

Figure 9. Invertible 4-bit multiplier operation. (a) The structure of 4-bit multiplier based on inverti-
ble AND gates and FA; (b) multiplication: Clamping A = 2, B = 3, the statistics of S; (c) division:
Clamping A = 2, S = 6, the statistics of B; (d) factorization: Clamping S = 6, the statistics of A and B.

5. Conclusions
In this work, invertible logic circuits are realized by combining RRAM and digital

circuits. Table 2 shows a comparison between the previous work and this work in terms
of a hardware implementation of invertible logic. We design an RRAM-based TRNG to
replace the pseudo-random number generator formed by the linear feedback shift register
(LFSR) and combined it with the activation function implemented by PWL to form a
standard p-bit unit. We also propose a p-bits multiplexing strategy to save hardware re-
sources. Since our work is primarily based on a digital circuit approach, we also compare
this work with two previous works on purely digital circuit implementations in terms of
hardware resources such as the number of LUTs and registers required, as shown in Table
3. Table 3 shows the number of LUTs and registers used in this work, [4], and [5] to im-
plement invertible AND gates, invertible FA, and invertible 32-bit RCA, respectively. The
percentage based on [5] can more intuitively illustrate the superiority of this work in sav-
ing resource utilization. We use the Xilinx Kintex ultrascale XCKU0401-FBVA676 FPGA
(San Jose, CA, USA). From the circuit structure analysis, the RRAM-based TRNG uses
more than 100 times fewer transistors than the LFSR [9], and our method has greatly re-
duced hardware resources.

Figure 9. Invertible 4-bit multiplier operation. (a) The structure of 4-bit multiplier based on invertible
AND gates and FA; (b) multiplication: Clamping A = 2, B = 3, the statistics of S; (c) division: Clamping
A = 2, S = 6, the statistics of B; (d) factorization: Clamping S = 6, the statistics of A and B.

5. Conclusions

In this work, invertible logic circuits are realized by combining RRAM and digital
circuits. Table 2 shows a comparison between the previous work and this work in terms of a
hardware implementation of invertible logic. We design an RRAM-based TRNG to replace
the pseudo-random number generator formed by the linear feedback shift register (LFSR)
and combined it with the activation function implemented by PWL to form a standard p-bit
unit. We also propose a p-bits multiplexing strategy to save hardware resources. Since our
work is primarily based on a digital circuit approach, we also compare this work with two
previous works on purely digital circuit implementations in terms of hardware resources
such as the number of LUTs and registers required, as shown in Table 3. Table 3 shows the
number of LUTs and registers used in this work, [4], and [5] to implement invertible AND
gates, invertible FA, and invertible 32-bit RCA, respectively. The percentage based on [5]
can more intuitively illustrate the superiority of this work in saving resource utilization.
We use the Xilinx Kintex ultrascale XCKU0401-FBVA676 FPGA (San Jose, CA, USA). From
the circuit structure analysis, the RRAM-based TRNG uses more than 100 times fewer
transistors than the LFSR [9], and our method has greatly reduced hardware resources.

Micromachines 2022, 13, 924 11 of 12

Table 2. Hardware implements of invertible logic.

Ref.
P-Bit

Output Value
RNG Activation Function

[3] MCU MCU (sigmoid) MCU
[4] LFSR LUT (tanh) FPGA
[5] LFSR FSM (tanh) ASIC and FPGA
[6] MTJ No need Resistance network

This work RRAM PWL (sigmoid) FPGA

Table 3. FPGA resource utilization of the invertible logic circuit.

Invertible Logic Circuit
This Work [5] [4] This Work/[5]

LUTs Registers LUTs Registers LUTs Registers LUTs Registers

AND 45 59 257 307 156 123 17.5% 19.2%
FA 85 76 400 329 1345 586 21.3% 23.1%

32-bit RCA 2731 1678 10,455 1910 38,814 18,071 26.1% 87.9%

Author Contributions: Data curation, Y.L., X.L. and B.P.; visualization, Y.L.; writing—original draft
preparation, Y.L.; software, Q.H.; writing—review & editing, Q.H.; Q.W. and J.Y.; methodology,
Q.W. and Y.Z.; formal analysis, D.Z. and Q.D., investigation, Z.H. and Y.H.; validation, J.C. and H.J.;
funding acquisition, J.Y.; supervision, X.X., H.L. and J.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under
Grant No. 2018YFB2202900, in part by the Major Scientific Research Project of Zhejiang Lab
(No.2022PF0AC01), and in part by the National Natural Science Foundation of China under Grants
92164204, 61904200, and 62025406 and the Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant No. XDB44000000.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, B.; Camsari, K.Y.; Behin-Aein, B.; Datta, S. Intrinsic optimization using stochastic nanomagnets. Sci. Rep. 2017, 7, 44370.

[CrossRef] [PubMed]
2. Lin, Y.; Zhang, Q.; Tang, J.; Gao, B.; Li, C.; Yao, P.; Liu, Z.; Zhu, J.; Lu, J.; Hu, X.S.; et al. Bayesian Neural Network Realization by

Exploiting Inherent Stochastic Characteristics of Analog RRAM. In Proceedings of the 2019 IEEE International Electron Devices
Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019.

3. Pervaiz, A.Z.; Ghantasala, L.A.; Camsari, K.Y.; Datta, S. Hardware emulation of stochastic p-bits for invertible logic. Sci. Rep.
2017, 7, 10994. [CrossRef] [PubMed]

4. Pervaiz, A.Z.; Sutton, B.M.; Ghantasala, L.A.; Camsari, K.Y. Weighted p-Bits for FPGA Implementation of Probabilistic Circuits.
IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 1920–1926. [CrossRef] [PubMed]

5. Smithson, S.C.; Onizawa, N.; Meyer, B.H.; Gross, W.J.; Hanyu, T. Efficient CMOS invertible logic using stochastic computing.
IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2263–2274. [CrossRef]

6. Camsari, K.Y.; Salahuddin, S.; Datta, S. Implementing p-bits with embedded MTJ. IEEE Electron Device Lett. 2017, 38, 1767–1770.
[CrossRef]

7. Camsari, K.Y.; Faria, R.; Sutton, B.M.; Datta, S. Stochastic p-bits for invertible logic. Phys. Rev. 2017, 7, 031014. [CrossRef]
8. Faria, R.; Camsari, K.Y.; Datta, S. Low-barrier nanomagnets as p-bits for spin logic. IEEE Magn. Lett. 2017, 8, 1–5. [CrossRef]
9. Borders, W.A.; Pervaiz, A.Z.; Fukami, S.; Camsari, K.Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel

junctions. Nature 2019, 573, 390–393. [CrossRef] [PubMed]
10. Jiang, H.; Belkin, D.; Savel’ev, S.E.; Lin, S.; Wang, Z.; Li, Y.; Joshi, S.; Midya, R.; Li, C.; Rao, M.; et al. A novel true random number

generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882. [CrossRef] [PubMed]
11. Rai, V.K.; Tripathy, S.; Mathew, J. Memristor based random number generator: Architectures and evaluation. Procedia Comput. Sci.

2018, 125, 576–583. [CrossRef]
12. Stoller, S.; Campbell, K.A. Demonstration of three true random number generator circuits using memristor created entropy and

commercial off-the-shelf components. Entropy 2021, 23, 371. [CrossRef] [PubMed]

http://doi.org/10.1038/srep44370
http://www.ncbi.nlm.nih.gov/pubmed/28295053
http://doi.org/10.1038/s41598-017-11011-8
http://www.ncbi.nlm.nih.gov/pubmed/28887489
http://doi.org/10.1109/TNNLS.2018.2874565
http://www.ncbi.nlm.nih.gov/pubmed/30387748
http://doi.org/10.1109/TCSI.2018.2889732
http://doi.org/10.1109/LED.2017.2768321
http://doi.org/10.1103/PhysRevX.7.031014
http://doi.org/10.1109/LMAG.2017.2685358
http://doi.org/10.1038/s41586-019-1557-9
http://www.ncbi.nlm.nih.gov/pubmed/31534247
http://doi.org/10.1038/s41467-017-00869-x
http://www.ncbi.nlm.nih.gov/pubmed/29026110
http://doi.org/10.1016/j.procs.2017.12.074
http://doi.org/10.3390/e23030371
http://www.ncbi.nlm.nih.gov/pubmed/33804665

Micromachines 2022, 13, 924 12 of 12

13. Taskiran, Z.G.C.; Taşkıran, M.; Kıllıoğlu, M.; Kahraman, N.; Sedef, H. A novel memristive true random number generator design.
COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 208–224. [CrossRef]

14. Lv, H.; Xu, X.; Yuan, P.; Dong, D.; Gong, T.; Liu, J.; Yu, Z.; Huang, P.; Zhang, K.; Huo, C.; et al. BEOL based RRAM with one
extra-mask for low cost, highly reliable embedded application in 28 nm node and beyond. In Proceedings of the 2017 IEEE
International Electron Devices Meeting (IEDM), Piscataway, NJ, USA, 2–6 December 2017.

15. Veksler, D.; Bersuker, G.; Vandelli, L.; Padovani, A.; Larcher, L.; Muraviev, A.; Chakrabarti, B.; Vogel, E.; Gilmer, D.C.; Kirsch,
P.D. Random telegraph noise (RTN) in scaled RRAM devices. In Proceedings of the 2013 IEEE International Reliability Physics
Symposium (IRPS), Monterey, CA, USA, 14–18 April 2013.

16. Gong, T.; Dong, D.; Luo, Q.; Xu, X.; Yang, J.; Yu, J.; Ding, Q.; Lv, H.; Liu, M. Quantitative Analysis on Resistance Fluctuation of
Resistive Random Access Memory by Low Frequency Noise Measurement. IEEE Electron Device Lett. 2021, 42, 312–314. [CrossRef]

17. Tommiska, M.T. Efficient digital implementation of the sigmoid function for reprogrammable logic. IEE Proc. Comput. Digit. Tech.
2003, 150, 403–411. [CrossRef]

18. Biamonte, J.D. Nonperturbative k-body to two-body commuting conversion Hamiltonians and embedding problem instances
into Ising spins. Phys. Rev. A 2008, 77, 052331. [CrossRef]

http://doi.org/10.1108/COMPEL-11-2018-0463
http://doi.org/10.1109/LED.2021.3049655
http://doi.org/10.1049/ip-cdt:20030965
http://doi.org/10.1103/PhysRevA.77.052331

	Introduction
	Proposed P-Bit Design
	TRNG Based on RRAM
	Sigmoid Function
	Comparator

	Weight-Logic Implementation
	Weight-Matrix
	Multiplexing Strategy

	Implementation Results
	Invertible AND Gate and Full Adder (FA)
	16-Bit Ripple Carry Adders (RCA)
	4-Bit Multiplier

	Conclusions
	References

