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Abstract: The management of exudative retinal diseases underwent a revolution due to the introduc-
tion of intravitreal treatments. There are two main classes of intravitreal drugs, namely anti-vascular
endothelial growth factors (anti-VEGF) and corticosteroids molecules. The clinical course and the
outcome of retinal diseases radically changed thanks to the efficacy of these molecules in determining
the regression of the exudation and the restoration of the macular profile. In this review, we described
the molecular features of classic retinal drugs, highlighting the main therapeutic targets, and we
provided an overview of new emerging molecules. We performed a systematic review of the current
literature available in the MEDLINE library, focusing on current intravitreal molecules and on new
emerging therapies. The anti-VEGF molecules include Bevacizumab, Pegaptanib, Ranibizumab,
Aflibercept, Conbercept, Brolucizumab, Abicipar-pegol and Faricimab. The corticosteroids approach
is mainly based on the employment of triamcinolone acetonide, dexamethasone and fluocinolone
acetonide molecules. Many clinical trials and real-life reports demonstrated their efficacy in exudative
retinal diseases, highlighting differences in terms of molecular targeting and pharmacologic profiles.
Furthermore, several new molecules are currently under investigation. Intravitreal drugs focus their
activity on a wide range of therapeutic targets and are safe and efficacy in managing retinal diseases.

Keywords: retinal diseases; anti-VEGF; corticosteroids; intravitreal injections; complement inhibitors;
chemokine receptor inhibitors; integrins inhibitors; tyrosine kinase inhibitors; nutraceutics

1. Introduction

The human retina may be affected by two macro groups of diseases, namely macu-
lopathies and retinopathies. Whereas maculopathies are confined to the central part of the
retina, bounded by the vascular arcades, retinopathies may extend up to the extreme retinal
periphery. These two categories can be further subdivided according to the main features
characterizing the disease, thus taking into consideration exudative or atrophic phenomena.

Exudation is an active process, and its nature depends on each specific retinal disease,
causing fluid to accumulate within the retina or in the subretinal space. It mainly involves
variable amounts of fluid, the major pathogenic features of which are the breakdown of
the blood-retinal barrier and increased inflammation [1–3]. Retinal diseases can also be
characterized by other types of debris, including lipofuscin and lipidic and proteinaceous
materials [3,4]. Retinal diseases can also be characterized by the progressive degeneration
of inner and outer retinal layers. These atrophic changes may occur independently or in
the context of an initial exudative disease [3,5].

Current retinal therapeutic approaches are based on these premises and designed
to prompt the exudation to regress, stimulate debris reabsorption or prevent the atrophy
from expanding. In this review, we discuss the biochemical properties of the main retinal
drugs, focusing on the association between their specific features and their therapeutic
employment in retinal diseases.
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2. Methods

We used keywords to explore all English language human subject articles in the
MEDLINE library. The keywords included the following: retinal disease, exudation,
atrophy, diabetic retinopathy, diabetic macular edema, age-related macular degeneration,
geographic atrophy, retinal vein occlusion, retinal dystrophy, vascular endothelial growth
factor, VEGF, anti-VEGF, intravitreal injections, steroids, corticosteroids, dexamethasone
implant, DEX implant, fluocinolone acetonide implant, emerging treatment, complement
inhibitor, integrin inhibitor. All the references were carefully examined by two expert
researchers (FB, AA), who collated and arranged all the relevant information, bearing in
mind this review’s main theme as expressed in the manuscript title.

3. Retinal Drugs for Exudative Diseases

The prognosis of retinal exudative diseases changed radically after the introduction
of intravitreal therapies. While the old laser-based treatments were effective in blocking
exudation, they were associated with an extremely poor visual outcome [6–8]; nowadays,
patients can expect to preserve their quality of life and a good visual function. The current
intravitreal therapeutic bullets consist of anti-vascular endothelial growth factor (anti-
VEGF) and corticosteroids. The pros of anti-VEGF drugs are their easier management and
the low instance of side effects; the cons comprise their limited duration, meaning a large
number of injections are required, and their contraindication in patients displaying a high
risk of cardiovascular dysfunction. In contrast, the pros of corticosteroids include their
longer duration, thus reducing the number of injections administered and their greater anti-
inflammatory action. Conversely, corticosteroids are closely associated with an increase in
intraocular pressure and a faster progression of cataracts.

In this review, we discuss the following anti-VEGF molecules: Bevacizumab (Avastin®,
Hoffmann-La Roche, Basel, Switzerland), Pegaptanib (Macugen, Eyetech/Pfizer, New York,
NY, USA), Ranibizumab (Lucentis®, Novartis Pharmaceuticals, Ottawa, Canada), Afliber-
cept (Eylea®, BAYER Pharma AG, Leverkusen, Germany), Conbercept (Chengdu Kanghong
Biotech Company, Sichuan, China), Brolucizumab (Beovu®, Novartis Pharmaceuticals,
Ottawa, ON, Canada), Abicipar-pegol (Allergan, Inc., Dublin, Ireland) and Faricimab
(Hoffmann-La Roche, Basel, Switzerland). We also examine the biochemical properties of
the following corticosteroids: triamcinolone acetonide, dexamethasone (DEX) (Ozurdex®,
Allergan, Inc., Irvine, CA, USA) and fluocinolone acetonide (FAc) (Iluvien®, Alimera Sci-
ences, Inc., Alpharetta, GA, USA). We go on to assess emerging retinal disease therapies,
such as complement inhibitors, integrin inhibitors and the new generation of molecules.

4. Vascular Endothelial Growth Factor in the Human Retina

Since most intravitreal molecules have been developed to act as a blockage of vascular
endothelial growth factor (VEGF), we found it useful to provide a brief overview of the
VEGF properties in the human retina. VEGF is a dimeric glycoprotein of ~40 kDa and is
fundamental in promoting angiogenesis during the development of the retina in verte-
brates [9,10]. VEGF is actually a family of proteins that includes VEGF-A, VEGF-B, VEGF-C,
VEGF-D, VEGF-E, VEGF-F and PGF (placental growth factor). These originate from the
splicing of a source molecule and are further characterized by different isoforms [11]. All
VEGF forms bind to different types of VEGF tyrosine kinase trans-membrane receptors;
VEGFR-1/Flt-1 (fms-like tyrosine kinase) and VEGFR-2/KDR/Flk-1 (kinase insert do-
main containing receptor/fetal liver kinase) are mainly associated with angiogenesis [12],
whereas Flt-3/Flk-2 and VEGFR-3/Flt-4 are involved in hematopoiesis and lymphangiogen-
esis [13]. VEGF production is up-regulated by the different isoforms of hypoxia inducible
factor-1 (HIF-1) to promote physiological angiogenesis, whereas other HIF isoforms are
involved in the regulation of VEGF expression [14]. Interestingly, VEGF production can
also be increased by insulin-like growth factor 1 (IGF-1), playing an important role in
retinal angiogenesis [15]. The main sources of VEGF are retinal pigmented epithelium
(RPE) cells [16], astrocytes [17], Müller cells [18], endothelium and ganglion cells [19].
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In pathological conditions, VEGF production is upregulated by increased hypoxia and
oxidative stress [20,21]; however, other mediators are involved in the stimulation of VEGF
release. Indeed, these mediators were found to have increased in retinal exudative dis-
eases, including erythropoietin (EPO) [22], angiopoietins 1 and 2 (Ang-1 and Ang-2), along
with the Tie2 receptor [12] and platelet-derived growth factor (PDGF) [23]. VEGF is the
chief cause of exudative and neovascular phenomena; its increased level is also behind
the formation of drusen in age-related macular degeneration (AMD), understood as ex-
tremely complex debris consisting of cholesterol, apolipoproteins, oxidated lipoproteins,
glycoproteins, crystallins, components of the extracellular matrix and serum albumin [24].
Neovascularization and exudation processes are also mediated by the dysregulation of
the VEGF/pigment epithelium-derived factor (PEDF) ratio. PEDF is a major inhibitor of
angiogenesis [25] and it is more fully expressed in the peripheral RPE than in macular
RPE [26], thus providing the basis of an explanation as to why neovascularizations and
macular edema mainly occur in the macular region.

5. Anti-VEGF Molecules

Anti-VEGF are antibody molecules developed to bind VEGF and avoid the interaction
with its receptors.

5.1. Bevacizumab

Bevacizumab (Avastin®, Hoffmann-La Roche, Basel, Switzerland) is a fully humanized
IgG1 molecule binding VEGF-A isoforms. This antibody of 148 kDa was developed for
cancer therapy [27] and it is currently employed as intravitreal “off-label” treatment for
retinal diseases [28]. Bevacizumab’s mechanisms of function are quite simple; as a pure
anti-VEGF antibody, its main effect is to block the neovascular stimulus and VEGF-induced
vascular permeability [29]. Furthermore, bevacizumab interacts with HIF-1, reducing its
stimulating effect on VEGF production [30]. Although several studies have described
bevacizumab as an efficient and cost-effective treatment for retinal diseases [31–33], its
usage is partially limited by its “off-label” classification.

5.2. Pegaptanib

Pegaptanib (Macugen, Eyetech/Pfizer, New York, NY, USA) was the first drug to
obtain FDA approval for intravitreal administration. It is a pegylated-aptamer that binds
preferentially to the heparin-binding domain of VEGF165 isoform [34]. Although proving
to be efficient in inhibiting the neovascularization process [35], its molecular features
strongly limit its capacity to block VEGF-related pathways, thus making it a subsidiary
therapeutic choice.

5.3. Ranibizumab

Ranibizumab (Lucentis®, Novartis Pharmaceuticals, Ottawa, ON, Canada) is a recom-
binant humanized immunoglobulin G1κ isotype monoclonal antibody fragment (Fab) of
48 kDa binding VEGF-A isoforms and avoiding the interaction with VEGFR1 and VEGFR2.
The lack of fragment crystallizable (Fc) domain and small molecule size might expand its
affinity for more isoforms of VEGF-A (VEGF165, VEGF121, and VEGF110) and increase
the diffusion of the molecule within the retina and choroid [36,37]. Furthermore, since
ranibizumab shows only one binding site for VEGF, two molecules of ranibizumab bind
to one VEGF dimer [38], with the ranibizumab/VEGF-A complex having a higher stabil-
ity energy than bevacizumab [39] and greater molecular affinity than bevacizumab and
aflibercept [40].

5.4. Aflibercept

Aflibercept (Eylea®, BAYER Pharma AG, Leverkusen, Germany) is a dimeric glyco-
protein of 115 kDa, also known as VEGF Trap, a molecule obtained from the fusion of the
first three Ig domains of VEGFR1 and the Fc region of human IgG1 [41]. These biochemical
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properties ensure aflibercept has a high affinity for VEGF-A isoforms and PIGF, as well
as a relative affinity for VEGF-B. Ziv-aflibercept (Zaltrap; Sanofi-Aventis and Regeneron
Pharmaceuticals, Inc, Tarrytown, NY, USA), a molecule differing from aflibercept only in
its excipients and higher osmolarity, displays an almost identical biochemical profile [42].
In particular, if compared to the vitreous, aflibercept is iso-osmolar, whereas Ziv-aflibercept
is hyperosmolar [42]. Although Ziv-aflibercept has been associated with promising effects
in macular diseases, its usage is still off-label [43].

5.5. Conbercept

Conbercept (Chengdu Kanghong Biotech Company, Sichuan, China) is currently
the third most popular molecule belonging to VEGF Trap family. It consists of a full
human DNA sequence of 143 kDa, characterized by the fusion of extracellular domain
2 of VEGFR1 and extracellular domains 3 and 4 of VEGFR2 with the Fc portion of human
IgG1 [44,45]. The pharmacokinetic profile of conbercept is quite similar to aflibercept’s;
the main difference regards the presence of a portion dedicated to VEGFR2, which was
developed to potentially increase the efficacy and stability of conbercept and to produce
relative affinity for VEGF-C [44,45].

5.6. Brolucizumab

Brolucizumab (Beovu®, Novartis Pharmaceuticals, Ottawa, ON, Canada) is a single-
chain antibody fragment of 26 kDa, characterized by the absence of the Fc portion and
specifically developed to minimize molecule size and to improve the affinity for VEGF-
A isoforms, compared with the other molecules [46,47]. Brolucizumab has been recently
approved for use in neovascular age-related macular degeneration, showing non-inferiority
and higher penetrance within the retina and the choroid compared with the other anti-
VEGF molecules [48,49].

5.7. Abicipar-Pegol

Abicipar-pegol (Allergan, Inc., Dublin, Ireland) belongs to the family of designed
ankyrin repeat proteins (DARPins) molecules, a class of molecules that can mimic antibod-
ies and show a high affinity for the VEGF target [50]. More specifically, Abicipar-pegol
is a recombinant protein of 34 kDa coupled to a polyethylene glycol fraction binding all
VEGF-A isoforms [51]. Its affinity for VEGF-A turned out to be comparable to aflibercept’s
but remarkably greater than bevacizumab’s and ranibizumab’s [52].

5.8. Faricimab

Faricimab (Hoffmann-La Roche, Basel, Switzerland) is the second molecule belonging
to the DARPin class. The feature of this 150 kDa molecule is that it has two different targets;
indeed, it can simultaneously and independently bind and neutralize both VEGF-A and
Ang-2, the latter enabling interference with the Ang-1/Tie2 pathway to occur [53]. As
mentioned above, the Ang-1/Tie2 pathway is a major pathogenic factor in the development
of neovascularization and exudation. Bearing this in mind, Faricimab offers an interesting
multitargets approach.

5.9. Clinical Remarks on Anti-VEGF

There is a general consensus regarding the efficacy and safety of anti-VEGF intravit-
real injections in macular exudative and neovascular diseases (Figure 1) [54–58]. Owing
to their relatively simple management and good tolerance, bevacizumab, ranibizumab
and aflibercept are often used as a first line strategy. The main disadvantages regard the
contraindication for patients at high cardiovascular risk and the large number of injections
required, thus placing a considerable burden on public health systems. Brolucizumab
recently obtained FDA approval for use in neovascular age-related macular degenera-
tion [59] and Faricimab is due to obtain similar approval [60,61]; both drugs are currently
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being tested for other retinal diseases. All the other cited molecules are currently under
investigation through multicenter clinical trials.
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eration. The onset of the neovascularization is characterized by evident changes of the fundus autofluorescence signal
(A). Structural OCT describes a completely altered macular profile, with the presence of wide subretinal and intraretinal
exudation (B). After the loading dose of three-monthly intravitreal injections of anti-VEGF, it is possible to observe an
improvement of the fundus autofluorescence profile (C), together with the complete regression of the exudation detected by
structural OCT (D).

6. The Role of Inflammation in the Human Retina

All retinal diseases are characterized by pro-inflammatory alterations, differing accord-
ing to the specific pathogenic features. A comprehensive discussion of all the etiopatholog-
ical features typical of retinal inflammation would be extremely involved and beyond the
scope of the present review. For this reason, we intend to provide just a few useful gobbets
to better understand the therapeutic role of corticosteroids in retinal diseases.

Inflammation may derive from progressive accumulation of pathologic debris, such
as in the first stages of age-related macular degeneration; in these cases, pro-inflammatory
mediators are stimulated by progressive and chronic increases of oxidative stress and
cytotoxicity produced by these accumulations [24]. Furthermore, the progressive degener-
ation of retinal cells may stimulate complement activation and lead to the accumulation
of microglia and inflammatory cells, and the onset and progression of pro-inflammatory
phenomena [62]. At the same time, some retinal diseases reveal major pro-inflammatory
sources. Inflammation is a key component of diabetes mellitus and diabetic retinopathy;
progressive metabolic dysfunctions leading to increasing levels of advanced glycation end
products and free radicals causes a chronic pro-inflammatory status, with progressive in-
creases of pro-inflammatory cytokines, chemokines, and other inflammatory mediators, the
accumulation of inflammatory cells and increases in the vascular permeability [63,64]. High
pro-inflammatory mediator release is also a major phenomenon found in another frequent
retinal disorder, namely retinal vein occlusion, where increasing levels of pro-inflammatory
cytokines, interleukins and other factors have been encountered [65]. Inflammation is
the key mechanism in uveitis [66] and is also involved in the pathogenesis of retinal
dystrophies [67].
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7. Corticosteroids

Intravitreal corticosteroids are employed to address the pro-inflammatory cascade
characterizing several retinal diseases. Owing to their low water solubility, sustained-
release delivery systems are needed to guarantee the therapeutic effect within the eye.

7.1. Triamcinolone Acetonide

Triamcinolone acetonide is a more efficient, salt form of triamcinolone, with a molec-
ular weight of 434.5 g/mol. It displays a high affinity for cytosolic glucocorticoid recep-
tors [68]. By interfering with the inflammatory cascade, triamcinolone acetonide can induce
the regression of the exudation typical of both inflammatory and non-inflammatory retinal
diseases. It can be administered through the following routes: peribulbar, sub-tenon, sub-
conjunctival, intravitreal, retrobulbar and suprachoroidal [69]. Triamcinolone acetonide
mainly acts by reducing the expression of endothelial adhesion molecules [70], while
also exhibiting a moderate anti-vascular effect by inhibiting the basic fibroblast growth
factor [71]. However, the fact that it was not specifically developed for use in the eye,
combined with a high instance of toxicity phenomena [72], makes triamcinolone acetonide
a secondary choice.

7.2. Dexamethasone

DEX implant (Ozurdex®, Allergan, Inc., Irvine, CA, USA) is an eye-specific intravitreal
formulation developed to provide up to four months of treatment duration. DEX, which
has a molecular weight of 392.5 g/mol, is a synthetic adrenal corticosteroid that displays a
high affinity for nuclear glucocorticoid receptors and interferes with NF-kB activation and
apoptosis [73]. The intravitreal concentration reaches its peak after 60 days, although DEX
release from the soluble implant is not constant over the entire window of duration [74].
DEX exerts pleiotropic effects on pro-inflammatory mediators, acting as a powerful anti-
inflammatory drug and as a VEGF inhibitor [74].

7.3. Fluocinolone Acetonide

FAc implant (Iluvien®, Alimera Sciences, Inc., Alpharetta, GA, USA) is the most recent
corticosteroid to be approved for the management of diabetic macular edema [75]. FAc,
whose molecular weight is 452.5 g/mol, is the acetonide salt form of fluocinolone and
acts to bind cytosolic glucocorticoid receptors and subsequently translocated within the
nucleus [76]. FAc performs its main anti-inflammatory action by inhibiting the synthesis of
prostaglandins and leukotrienes, while also acting as a vasoconstrictor by inhibiting nitric
oxide production [76]. In addition to the 0.19 mg non-biodegradable 25-gauge implant
(Iluvien®, Alimera Sciences, Inc., Alpharetta, GA, USA), a 0.59 mg non-biodegradable pars
plana sutured implant (Retisert, Bausch & Lomb, Bridgewater, NJ, USA) is also available.
Iluvien® technology ensures a daily release of 0.2 µg at a constant rate over three years; FAc
concentration is at its highest during the first months after the implant and tends to decrease
gradually until it reaches stability at around the sixth month, maintained thereafter until
the end of the treatment [77,78]. FAc implantation is currently under investigation as a
possible option for the long-term management of uveitis [79].

7.4. Clinical Remarks on Corticosteroids

Intravitreal implants of corticosteroids are valid therapeutic options for the manage-
ment of retinal diseases involving chronic inflammation (Figure 2) [80–82]. These drugs
are often considered as a second choice in retinal vascular diseases, unlike in the case of
uveitis, where corticosteroids are a primary choice. Among the main disadvantages of em-
ploying intravitreal corticosteroids are the fast progression of cataract and the high risk of
intraocular pressure (IOP) increases and glaucoma. The etiology of steroid-induced cataract
is extremely complex and involves corticosteroids interference at different levels of lens
homeostasis, including altered gene transcription, protein degeneration and changes to lens
epithelial cell metabolism [83]. Although representing a vision threatening complication,
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it can be easily managed through cataract surgery. Of these corticosteroids-related com-
plications, the most damaging is the increase in IOP. The pathogenesis of steroid-induced
glaucoma is multifactorial and only partially understood. It includes reduced activity of
the trabecular meshwork and the accumulation of extracellular debris, leading to reduced
aqueous humor outflow and the development of a genetic predisposition [84–86]. The
impact of IOP increases in clinical practice is high, since at least 20–30% of cases treated
by intravitreal corticosteroids require IOP-lowering medications, and at least 4% of cases
undergo IOP-lowering surgery. For these reasons, intravitreal corticosteroid treatment
requires careful patient selection and monitoring, although it remains a useful option.
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8. Emerging Therapies for Exudative Retinal Diseases

In this section, we provided a short description regarding the molecules currently
under investigation in multicenter clinical trials. A comprehensive scenario regarding the
present and future intravitreal drugs for exudative retinal diseases, with particular regards
to exudative AMD, are reported in Figure 3.

8.1. AKST4290

AKST4290 (Alkahest, San Carlos, CA, USA) is the inhibitor of the natural receptor for
eotaxin C-C chemokine receptor type 3 (CCR3), a molecule proving to be highly expressed
in choroidal neovascularization [87]. This molecule is under investigation as an oral
formulation (400 mg), combined with intravitreal anti-VEGF injections, in AKST4290–201
(NCT03558061) and AKST4290–202 (NCT03558074) phase 2a clinical trials.

8.2. Carotuximab

Carotuximab (DE-122) (SANTEN, Osaka, Japan; TRACON Pharmaceuticals, San Diego,
CA, USA) is an antibody directed against endoglin, and was developed on the basis of
evidence showing endoglin to be actively involved in angiogenesis [88]. It has been found
that a hypoxic status may stimulate the production of endoglin, which is also enhanced
in actively proliferating endothelial cells. A mouse model of neovascularization has
provided promising results regarding the use of anti-endoglin in combination with anti-
VEGF injections [89]. DE-122 is under investigation in a phase 2a randomized controlled
trial (NCT03211234).
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Several molecules are currently under investigation through multicenter clinical trials, targeting these cofactors of the 
neovascular process, including complement system inhibitors (ICON-1), integrins inhibitors (risuteganib, THR-687, SF-
0166, volociximab, JSM-6427), tyrosine kinase inhibitors (PAN-0806, sunitinib), CCR3 inhibitors (AKST4290) and endoglin 
inhibitors (carotuximab, DE-122). 

8.1. AKST4290 
AKST4290 (Alkahest, San Carlos, CA, USA) is the inhibitor of the natural receptor for 

eotaxin C-C chemokine receptor type 3 (CCR3), a molecule proving to be highly expressed 
in choroidal neovascularization [87]. This molecule is under investigation as an oral 
formulation (400 mg), combined with intravitreal anti-VEGF injections, in AKST4290–201 
(NCT03558061) and AKST4290–202 (NCT03558074) phase 2a clinical trials. 

8.2. Carotuximab 
Carotuximab (DE-122) (SANTEN, Osaka, Japan; TRACON Pharmaceuticals, San 

Diego, CA, USA) is an antibody directed against endoglin, and was developed on the basis 
of evidence showing endoglin to be actively involved in angiogenesis [88]. It has been 
found that a hypoxic status may stimulate the production of endoglin, which is also 
enhanced in actively proliferating endothelial cells. A mouse model of neovascularization 
has provided promising results regarding the use of anti-endoglin in combination with 
anti-VEGF injections [89]. DE-122 is under investigation in a phase 2a randomized 
controlled trial (NCT03211234). 

Figure 3. Summary diagram showing present and experimental molecular targets and corresponding intravitreal drugs
for exudative age-related macular degeneration (AMD). The upregulation of vascular endothelial grow factor (VEGF)
family expression, made by VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F and PGF, is responsible for the onset
and progression of macular neovascularization and fluid production in exudative AMD. All VEGF molecule subtypes
bind to different types of VEGF tyrosine kinase trans-membrane receptors. VEGF family production and release is further
stimulated by increased levels of angiotensin 1-2 (Ang-1-Ang-2)/Tie2 pathway, insulin-like growth factor 1 (IGF-1) and
hypoxia inducible factor-1 (HIF-1) (green arrows). Furthermore, a natural VEGF inhibitor is represented by PEDF (red arrow),
resulting dysregulated in exudative AMD. Currently, approved anti-VEGF molecules include bevacizumab, pegaptanib,
ranibizumab, aflibercept and brolucizumab. Although most of current anti-VEGF drugs mainly bind VEGF-A isoforms
(red arrows), bevacizumab shows mild affinity also for HIF-1, while aflibercept also binds PGF. Anti-VEGF molecules
under investigation include faricimab (VEGF-A isoforms + Ang-1-Ang-2/Tie2 pathway), conbercept (VEGF-A + VEGF-B
+ VEGF-C isoforms), abicipar-pegol (VEGF-A isoforms), KSI-301 (VEGF-A isoforms) and OPT-302 (VEGF-C + VEGF-D
isoforms). Exudative AMD is also characterized by upregulation of complement system, integrins, tyrosine kinase, eotaxin
C-C chemokine receptor type 3 (CCR3) and endoglin, which contribute to the increased production and release of VEGF
family and often are themselves stimulated by the increased level of VEGF isoforms (orange arrows). Several molecules
are currently under investigation through multicenter clinical trials, targeting these cofactors of the neovascular process,
including complement system inhibitors (ICON-1), integrins inhibitors (risuteganib, THR-687, SF-0166, volociximab, JSM-
6427), tyrosine kinase inhibitors (PAN-0806, sunitinib), CCR3 inhibitors (AKST4290) and endoglin inhibitors (carotuximab,
DE-122).

8.3. Complement Inhibitors

The complement system is made up of an extremely complex network of molecules
that play a fundamental role in innate immunity and in the activation of the inflammatory
cascade. The role of the complement system has been widely demonstrated in both
exudative and dry retinal diseases; complement activation is a major factor in enhancing
pro-inflammatory mechanisms and in the onset and progression of cell death [90–92]. For
these reasons, complement inhibitors are currently under investigation for both forms of
retinal diseases, through the development of different molecules acting at multiple levels
in the complement system’s activation cascade. The evidence regarding the efficacy of
complement inhibitor drugs is not conclusive as yet, and there are many ongoing clinical
trials designed to demonstrate the rationale for employing these molecules in wet and dry
retinal diseases [93–95].
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8.4. ICON-1

ICON-1 (Iconic Therapeutics, San Francisco, CA, USA) is an anti-tissue factor immuno-
conjugate protein produced by linking recombinant modified factor VIIIa protein with the
Fc portion of a human IgG1. This molecule has been developed to counter the overexpres-
sion of anti-tissue factor by choroidal neovascularization. It has been separately tested in
neovascular age-related macular degeneration patients, in combination with ranibizumab
(EMERGE phase 2 clinical trial) [96] and with aflibercept (DECO phase 2 clinical trial)
(NCT03452527), showing further improvement of neovascularization regression, compared
with anti-VEGF injections alone.

8.5. Integrins Inhibitors

Integrins are a major class of cell adhesion receptors for extracellular matrix molecules.
They are heavily involved in retinal development, as well as being major regulatory factors
in cell adhesion, migration, proliferation, invasion and apoptosis [97,98]. These features
make the molecules promising targets for several retinal diseases. Many integrin inhibitor
molecules are currently under investigation, including Risuteganib (Luminate, Allegro
Ophthalmics, CA, USA), THR-687 (Oxurion, Leuven, Belgium), SF-0166 (SciFluor Life
Sciences, Boston, MA, USA), Volociximab (Ophthotech Corporation, New York, NY, USA,
Now Iveric Bio, New York, NY, USA) and JSM-6427 (Takeda Pharmaceutical Company,
Tokyo, Japan) [98].

8.6. KSI-301

KSI-301 (KODIAK sciences, Palo Alto, CA, USA), is a new generation antibody biopoly-
mer conjugate resulting from the combination of humanized anti-VEGF monoclonal an-
tibody and a phosphorylcholine-based polymer, which has been developed to increase
the duration of anti-VEGF action. This molecule is under investigation in a phase 1b trial
(NCT03790852), showing promising results in neovascular age-related macular degenera-
tion, diabetic macular edema and retinal vein occlusion, and in a DAZZLE Phase 2 trial
(NCT04049266) involving only neovascular age-related macular degeneration patients.

8.7. OPT-302

OPT-302 is a VEGF-C/D inhibitor, under investigation in a Phase 2b clinical trial
(NCT03345082).

9. Tyrosine Kinase Inhibitors

Tyrosine kinase inhibitors are important factors involved in the pathogenesis of ex-
udative retinal diseases, and act as promoters of hypoxia-induced VEGF-A and PDGF
molecular cascades [99]. PAN-90806 (PanOptica, Mount Arlington, NJ, USA) is a topical
drop formulation of is a tyrosine kinase inhibitor, under investigation in a Phase 1/2
clinical trial (NCT03479372). Sunitinib maleate is an intravitreal tyrosine kinase inhibitor
formulation [100], under investigation through ADAGIO Phase 1/2a (NCT03249740) and
ALTISSIMO Phase 2b (NCT03953079) clinical trials.

Squalamine

Squalamine is an aminosterol antibiotic extracted from the shark Squalus acanthias
and is known to have antiangiogenic and antitumoral properties [101]. Animal models
have provided evidence of improvements in the stages of retinopathy and in neovascular-
izations [102,103]. Squalamine is also available in topical eyedrop form, to be administered
alone or in combination with intravitreal anti-VEGF, providing promising preliminary
results [104].

10. Retinal Drugs for Non-Exudative Diseases

Unlike exudative retinal diseases, non-exudative retinal diseases lack any approved
treatment, to date. These disorders, caused by multifactorial etiopathogenesis, including
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environmental and genetic factors, mainly involve the progressive degeneration of retinal
cells, with onset of retinal atrophy. Most non-exudative retinal diseases start with the
degeneration of the retinal pigment epithelium-photoreceptor complex; outer retinal im-
pairment and atrophy is followed by damage to the inner retinal cells, with irremediable
loss of retinal function [105–107].

Treatment for non-exudative retinal diseases is based on nutraceutics, which employs
a combination of different natural substances known to slow down degenerative pro-
cesses. Although several molecules are under investigation, most of the evidence concerns
formulations developed for dry age-related macular degeneration by Age-Related Eye
Disease Studies 1 and 2 (AREDS1 and AREDS2) [108]. The AREDS1 formulation contained
vitamin C (500 mg), vitamin E (273 mg/473 IU), beta-carotene (15 mg), zinc (80 mg), and
copper (2 mg) [109], whereas the AREDS2 formulation differed in the removal of beta-
carotene and addition of lutein/zeaxanthin and omega-3 long-chain polyunsaturated fatty
acid [110]. Vitamins and ions are important antioxidants and promote enzymatic functions.
Lutein/zeaxanthin produce many effects, including removing reactive oxygen species
and protecting against photooxidative stress. Omega-3 long-chain polyunsaturated fatty
acids are key cell membrane components and are involved in many metabolic pathways.
These nutraceutical supplements have been associated with a slowing in the progression of
geographic atrophy and a reduced probability of experiencing advances in the stages of age-
related macular degeneration. Different formulations of vitamins, polyunsaturated fatty
acids, minerals and other compounds have been proposed for inherited retinal dystrophies,
supported by modest evidence regarding their clinical efficacy [111].

In this section, we provide a brief survey of the most promising molecules
under investigation.

10.1. Complement Inhibitors

Complement inhibitors [112] have already been discussed as a potential new treat-
ment for exudative retinal diseases. In the context of dry retinal diseases, their role
should cover the inhibition of the molecular mechanisms leading to cell degeneration
and apoptosis. Current complement inhibitor drugs under investigation include Lampal-
izumab (NCT01229215), Zimura (ARC-1905) (NCT02686658), APL-4 (POT-4/AL-78898A)
(NCT03525613-NCT03525600), CLG561 (NCT02515942) and LFG316 (NCT01527500).

10.2. Brimonidine

Brimonidine is a selective α2 adrenergic (α2A) receptor agonist used as intraocular
pressure-lowering medication in glaucoma. Previous evidence suggested this molecule plays
a neuroprotective role through as yet poorly understood mechanisms [113,114]. This molecule
is under investigation in a Brimonidine Intravitreal Implant in Geographic Atrophy Secondary
to Age-related Macular Degeneration (BEACON) phase 2 study (NCT02087085).

11. Integrin Inhibitors

The rationale for the use of integrin inhibitors in dry retinal diseases is similar to
those described above for exudative diseases. Risuteganib (Alg-1001) (NCT03626636) is
currently under investigation for non-exudative age-related macular degeneration. This
molecule has been found to be associated with reduced oxidative stress and improved
retinal homeostasis.

H+/K+ ATPase Proton Pump Inhibitors

Soraprazan reversibly binds proton pump hydrogen-potassium adenosine triphos-
phatase (H+/K+ ATPase) and was originally developed to treat gastro-esophageal reflux
disease. Recent evidence suggests Soraprazan can help remove retinal lipofuscin accumu-
lations, slowing the onset and progression of outer retinal atrophy. Soraprazan is currently
under investigation in Stargardt retinal dystrophy [115].
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12. Conclusions

This review has provided a general rundown of the state of the art regarding pharma-
cological treatment for exudative and dry retinal diseases and a summary of intriguing
new prospects. Retinal diseases represent the final step in an extremely complex cascade of
events involving several mediators and molecules. While the clinical course of exudative
retinal diseases changed radically after the introduction of intravitreal drugs, the man-
agement of dry retinal diseases is still short of therapeutic bullets. The molecules under
investigation for both kinds of diseases offer some very interesting prospects, as a result of
a better understanding of the pathogenic mechanisms leading to the onset and progression
of retinal impairment. These molecules focus their activity on a wider range of therapeutic
targets. With this in mind, future studies should concentrate more closely on multitarget
approaches and on treatments of longer duration, as they represent current challenges and
the best chance of achieving important breakthroughs in improving the outcome of retinal
diseases, not to mention optimizing the use of public health system resources.
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