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Abstract

Background: The world’s oceans are home to a diverse array of microbial life whose metabolic activity helps to
drive the earth’s biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities,
providing a system-scale perspective of microbial community interactions. However, while metagenome
sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between
environments or over time, this does not investigate the relative changes in the production or consumption of
different metabolites.

Results: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables
exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-
series study in the Western English Channel demonstrated considerable correlations between predicted relative
metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with
observed seasonal changes in bacterial population structure.

Conclusions: The PRMT method was successfully applied to metagenomic data to explore the Western English
Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked
organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation
to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and
Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or
transcriptomic datasets.

Background
Marine biomes dominate the planet’s surface and single-
celled microorganisms are responsible for up to 98% of
the ocean’s primary productivity [1]; understanding the
nutrient and carbon cycles of the world’s oceans has key
applications for understanding global ecology. The extre-
mely diverse marine microbial communities mediate the
largest active pool of near-surface carbon on the planet [2]
and are a dominant force in the planet’s biogeochemical
cycles [3]. The L4 Station of the Western Channel Obser-
vatory (WCO), an oceanographic time-series and marine
biodiversity reference site in the Western English Channel

http://www.westernchannelobservatory.org.uk, provides a
unique opportunity to study a coastal marine microbial
ecosystem. Environmental parameter data from the WCO
have been continuously monitored for over a century.
More recently, microbial metagenomic data collected
from this site have shown that the abundance and relative
composition of genes and taxa change over time, demon-
strating seasonal structure and predictable community
responses to environmental parameters [4-7].
The seasonal structure in the community composition

of both taxa and genes has potential repercussions for
the seasonal succession in metabolic potential, which will
drive the range and relative abundance of metabolites
produced and consumed by a community. Metagenomic
analyses explore the functional potential of an ecosystem
by describing the changes in the abundance of genes
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annotated with unique enzyme functions. Here we pro-
pose a methodology that alters this paradigm, by describ-
ing the metagenome in terms of the relative change in
the production or consumption of specific metabolites.
Instead of exploring gene-space using an environmental
metagenomic analysis, this study explores derived meta-
bolite-space, inferred from the metagenome. The pre-
dicted environmental metabolome is the set of all
detected unique enzyme functions encoded in a metagen-
ome and all of the metabolites implied by those activities.
This network of predicted metabolic reactions represents
the theoretical metabolic potential of an environmental
metabolome and provides a novel means through which
metagenomic observations of seasonal and/or biogeo-
graphic trends in microbial communities can be utilized
to explore community-wide metabolic dynamics.
Understanding the metabolomic interactions in any

marine microbial community is a daunting task. Classi-
cal metabolomic techniques such as NMR or GC-MS
[8-11], while powerful, provide measurements for just a
fraction of the metabolites predicted to be present in a
metabolome. As it is not possible to easily measure
every metabolite in an environment, it is important to
determine the most pertinent parameters, those that will
allow investigators to generate testable biological
hypotheses. Currently, methods are available to extract a
wide variety of environmental features from metage-
nomic sequence data [12-14]. Metagenomics can be
used to determine the taxonomic and functional diver-
sity of a microbial community via automated pipelines
[15] to curated protein databases such as RefSeq [16],
KEGG [17], KEGGnoggs [18], SEED [19], PFAM [20] or
TIGRfam [21], and linking environmental conditions
with specific metabolic activities inferred from metage-
nomic data [22].
Here, we propose a novel computational method, Pre-

dicted Relative Metabolic Turnover (PRMT), which
enables comparative analyses of environmental metabo-
lomes predicted from metagenomic data. To support
the methodology with specific biological observations,
PRMT was applied to a metagenomic dataset from the
time-series study of the bacterial environmental metabo-
lome in the Western English Channel [4]. The PRMT
approach also correctly predicted considerable correla-
tions between environmental metabolite concentrations
and PRMT metabolomic predictions. It also correctly
predicting seasonal variations in the bacterial commu-
nity primary productivity, and generated specific, testa-
ble biological hypotheses for organic phosphate
utilization by Gammaproteobactaria, Plantcomycetes,
and Betaproteobacteria; chitin degradation by Actinomy-
cetes; and potential small molecule biosynthesis path-
ways for Lentisphaerae, Chlamydiae, and Crenarchaeota.

Materials and methods
Data used for validation of methodology
Metagenomic sequencing data was acquired from a recent
study examining the seasonal structure of functional
potential in the Western English Channel [4]. Specific data
points for use in this study came from day/night pairs of
samples taken on January 28, April 27, and August 27
2008. All data collected on the same day were averaged;
previous analyses of these data have shown that the meta-
genomic functional gene profile is statistically identical
between day and night in each of these samples [4]. All
metagenomic data were annotated with MG-RAST [15]
using parameters previously described [4]. Specifically,
nucleic acid sequences were excluded if annotated as
rRNA, and all subsequent reads were annotated against
the SEED database using MG-RAST (e-value < 1 × 10-3;
minimum length of alignment of 50 bp; minimum
sequence nucleotide identity of 50%; [15]) to produce an
abundance matrix of functional genes and protein-derived
predicted taxonomies across the DNA samples. Short read
data are available through the European Nucleotide
Archive (ENA) short read archive under ERP000118
http://www.ebi.ac.uk/ena/data/view/ERP000118. All data
are available on the CAMERA website under ‘Western
Channel Observatory Microbial Metagenomic Study’
http://camera.calit2.net. MG-RAST annotations of meta-
genomic data were collected under IDs 4445064.3,
444077.3, 4445065.3, 4445066.3, 4445068.3, 4444083.3,
4445069.3, and 4445070 http://metagenomics.anl.gov/. All
submissions conform to the minimum information stan-
dards (MIxS) of the Genomic Standards Consortium [23].

PRMT analysis approach
PRMT scores predict the change in turnover of metabo-
lites (defined as the potential for consumption or produc-
tion) in an environmental metabolome, given the relative
abundance of genes for unique enzyme functions
detected in different metagenomes. In this manuscript,
we use the term “unique enzyme function” to describe a
specific annotation applied to an enzyme, i.e. “Phospho-
transferases with an alcohol group as acceptor”. We use
“enzyme reactions” to refer to metabolite transformations
catalyzed by an enzyme function, i.e “ATP + D-Glycerate
↔ ADP + 3-Phospho-D-glycerate”. A unique enzyme
function may catalyze more than one enzyme reaction
and an enzyme reaction may be catalyzed by more than
one unique enzyme function. A metabolite is a molecular
compound that is a reactant or product in an enzyme
reaction. In PRMT, a metabolite is never the protein pro-
duct of a gene in the metagenome.
This method makes a number of assumptions. First, as

with many metagenomic analyses, it assumes that rela-
tive abundance of genes for a unique enzyme function
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in metagenomic sequence is proportionate to relative
abundance of expressed functional proteins. Second,
PRMT assumes the rate of a reaction is proportionate
to the amount of enzyme, and not to the concentrations
of reactant or product. Finally, PRMT assumes that the
marine metabolome can be modeled as a well-mixed
reaction, disregarding compartmentalization of metabo-
lites and activities within individual bacteria. All unique
enzyme functions annotated to a set of metagenomes
are compared to reference databases of enzyme reac-
tions to infer the set of metabolites present. Below we
describe the three main steps to calculating PRMT
scores (Figure 1):
(1) Generate Environmental Metabolome Matrix

(EMM). A network, constructed from annotated unique
enzyme functions, enzyme reactions and inferred meta-
bolites, is used to generate the predicted environmental
metabolome; this network is expressed as a connectivity
matrix, the Environmental Metabolomic Matrix (EMM;
Figure 1). The resulting EMM matrix has dimensions
n x m, where n is the number of predicted metabolites
in the environmental metabolome and m is the number
of unique enzyme functions detected in the set of ana-
lyzed metagenomes. The set of Kyoto Encyclopedia of
Genes and Genomes (KEGG) [17] metabolic reactions
was used to represent the set of possible enzyme reac-
tions in an environmental metabolome and Enzyme
Commission (EC) number annotations for enzyme activ-
ity from MG-RAST annotations of metagenomic
sequences were used to assign unique enzyme functions
to the predicted proteins encoded in a metagenome.
KEGG reactions used were selected exclusively from
KEGG ‘Metabolism’ pathways. KEGG pathway maps
that are not directly related to specific metabolic

activities in microorganisms (e.g. Human Diseases, Drug
Development, etc.) were not used in generation of meta-
bolomes. A complete list of the 156 KEGG pathways
used in construction of EMM is provided as supplemen-
tary data [Additional file 1, Table S1]. As is common in
network analysis of biochemical systems [24], the KEGG
metabolites water, di- and tri-phosphonucleotides, and
all ubiquitous cofactors were excluded from the list of
possible reactants as non-specific to particular reactions
and metabolic processes. If a reaction is identified as
reversible in the KEGG database, then both forward and
reverse reactions are included in the EMM. If a particu-
lar metabolite transformation is attributed to more than
one enzyme activity, then each transformation reaction
is incorporated into the EMM. The stoichiometry of
each reaction was not considered as the quantity of
metabolites was not considered, just the relative turn-
over of each.
(2) Generate normalized Enzyme Activity Counts

(EACs). For each unique enzyme function in each meta-
genome in the EMM, an Enzyme Activity Count (EAC)
is determined by the following equation:

EACi = log2(Nseq,i)

EACi is the Enzyme Activity Count for enzymatic
function i, and Nseq,i is the number of sequence reads in
the metagenome annotated with a unique enzyme func-
tion i. Collected EACs for a set of metagenomes are
normalized (nEAC) by quantiles [25]. Quantile normali-
zation is a technique for making distributions from mul-
tiple datasets identical in statistical properties. To
quantile-normalize the sets of EACs, the EACs are
sorted largest to smallest. A reference distribution is
made from the sorted lists such that the highest value in
all cases becomes the mean of the highest values, the
second highest value becomes the mean of the second
highest values, and so on. For each set of EACs, nEAC
is generated by assigning the distributions of the refer-
ence distribution to the observed EAC distribution. The
set of nEACs for a metagenome is expressed as a vector
of length n, where n is the total number of unique
enzyme functions found in the set of metagenomes.
(3) Calculate PRMT-scores. A PRMT-score is calcu-

lated for each metabolite in the EMM in a metagenome
using the following equation:

−→c x,y = M(−→g x − −→g y)

−→c x,y is a vector of PRMT-scores of length m, where m
is the number of metabolic compounds in the EMM.
−→g x and −→g y are vectors of normalized enzyme gene
counts (nEAC) of length n, where n is the number of
unique enzyme functions annotated to metagenomic
sequences, and x and y refer to different metagenome

Figure 1 Example of generating an EMM from metagenomic
data. This figure is an example of generating a simple EMM with
hypothetical data. Letters a-f represent unique enzyme functions
identified in the annotation of a hypothetical set of metagenomes.
In (A), the set of all enzyme reactions for enzyme functions a-f
between compounds C1-C5 from a database of possible reactions is
listed. In (B), a metabolome is constructed from the reactions
identified in A. (C) Shows the connectivity matrix of the network in
B. (D) Is the complete EMM for metagenomic annotated enzyme
functions a-f, normalizing values in C such that the sum of all inputs
to a compound is 1 and the sum of all outputs from a compound
is -1.
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datasets. M is the EMM, a matrix of dimensions m x n.
Changes in nEAC for a reversible interaction do not
change calculated PRMT-scores for metabolites. For
analysis of the L4 WCO environmental metabolome, the
reference nEAC was the average of EAC’s across all
samples from January, April, and August.

Interpretation of PRMT scores
PRMT-scores are unit-less values that represent the
change of the turnover of a metabolite in a predicted
metabolome relative to a reference metabolome. A
PRMT-score is calculated for every metabolite in the
EMM for a metagenome. The value and sign (positive or
negative) of a PRMT-score provides information about a
metabolite’s relative turnover. Although a thorough inter-
pretation of a PRMT-score requires that it be considered
in the greater context of the complete network, it can be
broadly interpreted as follows: A positive PRMT score
predicts increased metabolic turnover and relatively
greater consumption of a metabolite. A negative PRMT-
score predicts decreased turnover and relatively greater
accumulation of a metabolite. It is important to note that
PRMT-scores do not predict net production or consump-
tion of a metabolite.

Correlations between PRMT-scores and environmental
parameters
Numerous methods were considered for exploring the
correlative relationships between calculated PRMT scores
and measured environmental variables. The non-para-
metric Spearman’s rank correlation was rejected because
the resulting coefficients were considered too granular to
produce appropriate interpretation of dataset with only 3
time points. Specifically, Spearman’s rank correlation
returned only 6 possible values of rho for all comparisons
in this dataset. Hence, while Spearman’s rank may well be
suited to correlation coefficient calculation from a dataset
with more time points, it was inappropriate for the current
study. However, as the PRMT scores generated an
approximately normal distribution, it was considered abso-
lutely valid to utilize a parametric test for correlation,
namely Pearson’s Correlation Coefficient (PCC). The spe-
cific biological parameters considered were environmental
metabolites ([4], Table 1, chlorophyll A, Total Organic
Nitrogen (TON), Total Organic Carbon (TOC), NO2
+NO3, Ammonia, and Soluble Reactive Phosphate (SRP)),
bacterial phyla percent abundances [[7], Table S2] (only
the 23 bacterial phyla and class present at a percent abun-
dance of at least 1% of the total community abundance
were used in this analysis.), and number of sequences in
metagenomic data annotated to SEED hierarchy I subsys-
tem relative abundances ([[4], Figure Seven A]).
To enable correlation with PRMT scores, the environ-

mental parameters, bacterial phyla percent abundances,

and SEED subsystem relative abundances were con-
verted to measures of log relative abundance. Log rela-
tive abundance of a parameter was calculated using the
following equation:

Relative Abundance (x) = log2(x/X̄)

x is a measured experimental parameter and X is the
average for the parameter across all samples.
PCCs were calculated between four different combina-

tions, namely; all measured environmental metabolites
and metagenomic reads annotated to SEED subsystems;
environmental metabolites and bacterial phyla; environ-
mental metabolites and PRMT-scores; and PRMT-scores
and bacterial phyla. It was considered that statistical sig-
nificance could not be reliably assigned due to the small
number of samples used in the analysis (3 seasonal time
points). This was of particular concern given the meth-
od’s reliance on a multiple-test based procedure. In
order to address these concerns, and to provide an
informal confidence estimate with which to judge each
individual PCC, 10,000 randomized re-samplings of the
initial data were used to generate a distribution of PCC-
scores. Observed PCC-scores that were in the top or
bottom 5th percentile of randomized re-sampled were
considered to be a strong correlation.
A graphical representation of observed correlations

was performed using ‘Cytoscape’ [51] to generate a net-
work in which experimental measurements are repre-
sented as nodes and strong correlations between relative
abundance of measurements were represented as edges.

Results and Discussion
Correlation networks between environmental parameters,
bacterial phyla, and SEED subsystems
To demonstrate why PRMT demonstrates a significant
advance on existing metagenomic analytical tools, e.g.
exploring changes in the relative abundance of predicted
gene functions, it was necessary to perform correlative

Table 1 Correlations of calculated PRMT scores with
relative abundance of selected environmental parameter
measurements

Parameter PRMT metabolite PCC

Chlorophyll A Chlorophyll A -0.98

Total Organic Nitrogen alpha-Amino acid -0.99

Total Organic Carbon Starch -0.98

NO2+NO3 Nitrite -0.98

NH3 NH3 -0.81

Soluble Reactive Phosphorus Orthophosphate -0.93

Parameters are relative concentrations of biological measurements from
Western English Channel L4 station and PRMT-metabolites are those predicted
metabolites that are representative of measured parameters. PCC-scores
between measured parameters and PRMT-scores are highlighted in bold if a
strong correlation (i.e. in the top or bottom 5th percentile of randomized
resamples) was observed.
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network analysis of the relationships between the rela-
tive abundance of taxa, annotated genes and measured
environmental parameters (Figure 2). Although there
may be other environmental causal factors at play, this
figure identifies correlations between changes in meta-
bolic functions and environmental conditions or bacter-
ial relative abundance. The most abundant taxa in this
ecosystem, Alphaproteobacteria, had a strong positive
correlation (in the 5th percentile of randomized resam-
ples) with the relative abundance of metagenomic reads
annotated to SEED subsystems ‘carbohydrate metabo-
lism’ and ‘cell division’. Additionally, ‘cell division’ had a
strong positive correlation with the relative abundance
of TON. This suggests a relationship between TON
availability and the growth of Alphaproteobacterial

populations. Additionally, there is a strong positive cor-
relation between the Roseobacteriales order of class
Alphaproteobacteria and the availability of TON; both
peak in the summer. The second most abundant phy-
lum, Bacteroidetes, had a strong positive correlation
with the SEED subsystem ‘Phosphorus metabolism’,
which, as with TON and Alphaproteobacteria, could
implicate Phosphorus as a limiting nutrient for Bacteroi-
detes. Interestingly, less abundant taxa were more fre-
quently characterized by strong negative correlations
with measurements of nutrients in their environment.
The relative abundances of taxa Chlamydiae, Crenarch-
aeota, and Epsilonpreoteobacteria demonstrated a strong
negative correlation with TON; Deferribacteres and
Fusobacteria had a strong negative correlation with NO2

Figure 2 Strong correlations between environmental metabolites, metabolic subsystems, and bacterial population structure. This
network is a graphical representation of strong (i.e. in the top or bottom 5th percentile of randomized resamples) correlations between relative
abundance of measured environmental metabolites (diamonds), relative abundance of metagenomic reads annotated to metagenomic SEED
subsystems (hexagons), and relative abundance of bacterial taxa (circles) across seasonal variation for the Western English Channel L4 station.
Strong positive correlations are represented by solid lines and strong negative correlations by dashed lines.
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+NO3; the phylum Actinobacteria had a strong negative
correlation with ammonia. Conversely, rare phyla more
frequently had strong positive correlations with SEED
subsystems, e.g. ‘Cofactors’, ‘vitamins’, ‘prosthetic groups,
and pigments’, ‘Clustering based subsystems’, ‘Virulence’,
and ‘Motility and chemotaxis’; further exploration of
these may yield additional avenues of discovery.
A strong negative correlation was observed between

the relative abundance of the SEED subsystem ‘Photo-
synthesis metabolism’ and the concentration of chloro-
phyll A. This is similar to previous observations [4] that
indicate the relative abundance of genes with homology
to components of the cyanobacterial photosynthesis
pathway peak in winter, while chlorophyll A concentra-
tions, which relate to Eukaryotic phytoplankton abun-
dance, peak in summer. There is also a strong negative
correlation between the relative change in concentration
of SRP and the SEED subsystem for ‘Phosphate metabo-
lism’. This suggests that when there are more genes for
phosphate metabolism there is a greater predicted likeli-
hood for SRP consumption. As a caveat for all of these
relationships, correlation does not prove causality; they
do however, identify relationships that invite further
investigation.
The analysis of the relationships between phyla, envir-

onmental parameters, and functional genes indicates
that changes in taxonomic diversity affect environmental
metabolomic functional potential. To complement this
gene-centric perspective, we present a metabolite-centric
tool, PRMT, which infers metabolic activity from unique
enzyme functions.

The Environmental Metabolomic Matrix from the Western
English Channel
The predicted L4 Western English Channel metabolome
consists of 2281 predicted metabolites and 4152 enzyme
reactions for 990 unique enzyme activities (Figure 3). In
the EMM, 70% of enzyme reactions are reversible. The
largest connected subnetwork in the network has 1257
metabolites and 3197 enzyme reactions. The second lar-
gest subnetwork contains 30 predicted metabolites and
51 enzymatic reactions. There are 194 subnetworks that
consist of only two metabolites each. Approximately 63%
of the enzyme activities in the KEGG global metabolism
map (KEGG map01100) are present in the predicted
environmental metabolome. Individual unique enzyme
activities in map01100 were represented an average of
128 counts per metagenomic dataset. An average of 81%
of total unique enzyme counts in each metagenome
could be mapped to KEGG pathway map01100. The
representation of core metabolic pathways in annotated
metagenomes is especially evident within specific sub-
groups; for example energy metabolism is well repre-
sented, with 95% of citrate cycle (map00020), 80% of

glycolysis/gluconeogenesis (map00010), and 92% of
photosynthesis metabolism (map 00195) enzyme activ-
ities detected. Cell membrane metabolism is detected as
present in the predicted environmental metabolome,
with 72% of fatty acid metabolism (map00071) and 65%
of fatty acid biosynthesis (map00061). For the DNA
metabolism, 65% of pyrimidine metabolism (map00240)
and 67% of purine metabolism (map00230) are detected.
For protein metabolism, 79% of glycine, serine, threonine
metabolism (map00260), 89% of valine, leucine, and iso-
leucine biosynthesis (map00290), and 90% of phenylala-
nine, tyrosine, and tryptophan biosynthesis (map00400)
enzyme activities are represented. For a bacteria-domi-
nated system, 100% coverage of core metabolic KEGG
pathways is not anticipated, as the database also contains
plant and animal specific reactions.
Figure was generated using Cytoscape v2.6.1 [51]. The

network and calculated PRMT-scores in this figure is
available for download as Additional file 2, figure S1.

PRMT scores calculated from the Western English Channel
EMM
PRMT scores were calculated for each predicted metabo-
lite in the EMM at each of three seasonal time points
(January 28, April 27, and August 27, 2008). Correlations
between PRMT-scores and relative abundance of envir-
onmental parameters were generated (Table 1). The
complete set of PRMT-scores is available as supplemen-
tal data (Additional file 3, Table S2). A strong negative
correlation between PRMT scores and relative changes in
the concentration of an environmental parameter
demonstrates that the metabolomic capacity for synthesis
of a parameter increased when the parameter is at a rela-
tively higher concentration. Conversely, a strong positive
correlation occurs if metabolomic capacity for the con-
sumption of a metabolite increases when the environ-
mental parameter is at a relatively higher concentration.
Only three of the six correlations were considered strong
(i.e. in the top or bottom 5th percentile of randomized
resamples). However, using a calculation for the cumula-
tive normal distribution (CND), given the distribution of
correlations between relative abundances of environmen-
tal parameters and all calculated PRMT-scores, the prob-
ability that all six PCC-scores would be between -1 and
-0.8 was < 1 × 10-256 (lowest is -0.81; Table 1). This prob-
ability indicates that, even though some individual corre-
lations are not strong (based on the given criteria), it is
extremely unlikely that all six correlations could all be
between -1 and -0.8 by chance, assuming a normal distri-
bution of correlation coefficients.
Correlations between PRMT-scores and the relative

abundances of bacterial phyla can be used to generate
hypotheses regarding the potential of different taxonomic
groups to produce specific metabolites in subnetworks in
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the EMM. For example, Actinobacteria play an important
environmental role in the decomposition of cellulose
[26]. The relative abundance of Actinobacteria had a
strong negative correlation with PRMT-scores for the
predicted metabolite cellulose. This strong negative cor-
relation indicates that when the Actinobacteria are rela-
tively more abundant, the predicted tendency for
cellulose to be consumed in the environmental metabo-
lome increases. In another example, the Planctomycetes
was the only phyla whose change in relative abundance
demonstrated a strong positive correlation with PRMT-
scores for L-Glutamate. This was expected, as the cell
wall scaffolds of most Plancotomycetes are made up of
glycoproteins rich in glutamate instead of murein, as is
common for other bacterial taxa [27]. Of greater interest
than investigating the predicted metabolome for indivi-
dual metabolites is to seek connected metabolic subnet-
works in the EMM that have strong correlations with
changes in relative abundance of specific taxa. Connected
subnetworks imply not just single metabolites, but partial
or complete biochemical pathways. These connected sub-
networks were generated by identifying all edges in the
network that connect pairs of metabolite nodes where
both nodes’ PRMT-scores significantly correlate with the
relative abundance of a specific bacterial phylum (Figure
3). The largest connected subnetwork for interactions
that correlated with specific phyla was comprised of 28
metabolites and 70 enzyme reactions, and was comprised
of metabolic interactions associated with the metabolism

of phosphonoacetate. PRMT-scores for metabolites in
this largest subnetwork strongly correlated with relative
abundances of Planctomycetes and Gammaproteobac-
teria. In the set of connected subnetworks were 5 small
subnetworks of 5 or 6 nodes, each with PRMT-scores
that exclusively correlated to the relative abundance of
Lentisphaerae. Predicted metabolites in these subnet-
works were associated with flavanoids and anthocyanins.
Flavonoids have been observed to have antimicrobial
effects on marine microorganisms [28] and flavonoid bio-
synthesis can be hypothesized to either have defense-
related functions in Lentispharae or else other marine
microorganisms possess the capacity to synthesize flavo-
noids in response to increased relative abundances of
Lentispharae. Biosynthesis of terpanoids from the precur-
sor Farnesyl pyrophosphate correlated strongly, not only
with the relative abundances of Crenarchaeota and Chla-
mydiae, but also with the relative change in concentra-
tion of TOC. Terpenoids are a functionally diverse set of
molecules whose synthesis by marine bacteria has been
previously reported [29,30].

Specific Examples of PRMT Analysis: primary production,
phosphonate metabolism, and chitin catabolism
Primary Production: The chemical equation for average
photosynthesis [31] provides a framework for analysis of
PRMT-scores in the context of primary production:

106 CO2 + 16 HNO3 + H3PO4 + 122 H2O → C106H263O110N16P + 138 O2

Figure 3 L4 Environmental Metabolome. In the figure, edges represent enzyme functions identified in annotated metagenomes. Nodes are
predicted metabolites, inferred by the reactions catalyzed by detected enzyme functions. Nodes are highlighted if calculated PRMT scores for
seasonal metagenomes correlate strongly (i.e. in the top or bottom 5th percentile of randomized resamples) with relative abundance of
measured environmental parameters (Red for Total Organic Carbon, blue for Total Organic Nitrogen, and gold for Soluble Reactive Phosphorus).
Edges are highlighted in one of 23 colors if they connect nodes that correlate with relative abundance of a bacterial phylum.
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We used PRMT-scores for the metabolite ‘alpha-amino
acids’ to represent biomass in the above chemical equa-
tion. ‘Alpha-amino acids’ is a useful proxy for biomass as
the single largest fraction of the dry-weight of prokaryote
cells is protein [32]. The PRMT-scores for relevant meta-
bolites in this equation indicate that, as expected, when
CO2, SRP, and NO3 are consumed, more biomass (alpha-
amino acids) is synthesized (Figure 4).
The PRMT scores for CO2 were most positive in

August (indicating consumption) and most negative in
January (indicating synthesis) (Figure 4). Also, PRMT
scores indicated increased production of alpha amino
acids (biomass) in summer, and active consumption in
the winter (Figure 4). This matches expectations, as
both bacterial and eukaryotic cellular biomasses are
higher in summer [7]. When compared to investigating
the abundance of sequences with homology to photo-
synthetic genes, which predict that the photosynthetic
apparatus is more abundant in winter [4], PRMT scores
reveal another level of potentially more useful informa-
tion about the productivity of the ecosystem. While gen-
erated from the same data, consideration of sequence
abundances and PRMT scores provide two unique per-
spectives. The largest PRMT-score shift in primary pro-
duction was observed for nitrate. PRMT-scores for
nitrite correlated strongly with the observed relative
abundance of chlorophyll A. PRMT-scores for ortho-
phosphate and alpha-amino acid all had strong correla-
tions with PRMT-scores for CO2. As previously noted
(Table 1), relative abundance of biological measure-
ments of chlorophyll A had a strong correlation with
PRMT-scores for chlorophyll A, linking the molecular

components for photosynthesis with the PRMT-
predicted capacity to synthesize the mechanism of
photosynthesis.
One key limiting metabolite for primary productivity-

derived biomass is iron [33,34]. Increased concentrations
of Fe2+ correlates with increased primary productivity in
ocean microbial populations [35-37]. The PRMT-scores
for Fe2+ demonstrated a strong positive correlation with
PRMT-scores for alpha amino-acids, the EMM proxy
for biomass, as well as the relative abundance of mea-
sured TON. PRMT analysis identified a sound positive
correlation between Fe2+ and production of bacterial
biomass.
Phosphonoacetate metabolism: Soluble Reactive Phos-

phorus (SRP) is considered to be a limited nutrient in
marine ecosystems, although this is probably not the case
in the Western English Channel [38]. However, it was
interesting that PRMT scores for inorganic phosphate
(orthophosphate) were strongly negatively correlated
(PCC -0.93) with changes in the relative concentration
SRP (Table 1). One reason for this discrepancy is that
SRP is comprised of both inorganic and organic phos-
phate compounds. One group of organic phosphate com-
pounds, the phosphonates, were considered recalcitrant
to biological life for many years, but recent evidence
from the Western English Channel suggests that they are
used by a wide variety of bacteria and constitute a large
fraction of the available phosphorus pool [38]. Currently,
it is not technically feasible to measure specific phospho-
nate concentrations in marine systems, and this makes
computational approaches like PRMT potentially valu-
able for investigating their relative turnover. Strikingly,
92% of the enzyme activities in the phosphonate and
phosphinate metabolism KEGG pathway (map00440)
were represented in the predicted EMM, indicating that
the metabolic capacity to utilize phosphonates was pre-
sent in the metagenomes.
The PRMT-scores for phosphonate compound, 3-

Phosphonopyruvate, had strong correlations with PRMT-
scores for CO2, and with biological measurements of
chlorophyll A, suggesting a potential relationship
between phosphonopyruvate metabolism and primary
production. This is not totally unexpected, as phospho-
nopyruvate is a key intermediate step in the biosynthesis
of all known natural phosphonates [39]. Another phos-
phonate of potential interest is phosphonoacetate, as the
presence of phosphonoacetate as a natural product has
been suspected but not confirmed [40]. Measured phos-
phonoacetate was strongly correlated with relative abun-
dances of Planctomycetes, Gamaproteobacteria, and
Betaproteobacteria. This insight into metabolic pathways
associated with a metabolite difficult to measure in the
environment led to a study to screen for a phosphonoa-
cetate-oxidising activity in marine microorganisms; such

Figure 4 PRMT-scores for photosynthesis pathway. PRMT-scores
for metabolites along the photosynthesis pathway are grouped by
time point of metagenomic sample. In this figure, the marine
biomass in equation for average photosynthesis is represented by
PRMT-score for alpha-amino acids. A positive PRMT-scores indicate a
predicted increase in relative catabolism, and negative PRMT-scores
indicate a predicted increase in synthesis of a metabolite.
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an activity has recently been identified in cell-extracts of
Roseovarius nubinhibens, and is now being characterized
[unpublished data].
Chitin catabolism: The highly insoluble, nitrogen-con-

taining compound chitin is the most abundant polymer
in the ocean [41-43]. Yet, it is so rapidly degraded to
fructose-6-phosphate, acetate, and ammonia that traces
of chitin are only found in marine sediments [44]. Mar-
ine bacteria were primarily responsible for this rapid
turnover, and chitin catabolism in marine microorgan-
isms has been well studied [45-48]. Therefore, PRMT
analysis was used to test the hypothesis that chitin
degradation is a likely source of ammonia in the Wes-
tern English Channel. Chitin is degraded via the follow-
ing pathway (KEGG amino sugar and nucleotide sugar
metabolism pathway (map00520)):

Chitin → Chitobiose → GlcNAc → GlcN → GlcN - 6P → Fructose - 6P + Acetate + NH3

These reactions were all represented in the Western
English Channel metagenomes. In the KEGG metabolic
pathways, Fructose-6P metabolism leads to KEGG path-
ways for Glycolysis/gluconeogenesis (map00010) and
Fructose and mannose metabolism (map00051), where
both acetate and ammonia are generated.
When considering PRMT-scores for the metabolites on

the pathway for chitin degradation (Figure 5), a pattern for
chitin catabolism was evident. Relative turnover of chitin
was highest in April, concurrent with the spring bloom of
chitin-synthesizing diatoms in the Western English Chan-
nel [49]. Increased turnover of chitin in spring leads to a
predicted relative increase in the synthesis of chitobiose
and increased consumption of GlcNac, ultimately yielding
increased relative synthesis of chitin’s breakdown pro-
ducts, Fructose-6P, acetate, and ammonia. Relative abun-
dance of measured concentrations of ammonia had a
strong negative correlation with PRMT-scores for
GlcNAc. This indicates that when the environmental capa-
city for the consumption of GlcNAc was increased, the

relative synthesis of ammonia was also increased. This was
consistent with the reactants and products in the chemical
equation for Figure 5. The PRMT-scores for GlcNAc had
a strong positive correlation with the relative abundance
of the Actinobacteria, members of which are involved in
decomposition of organic materials such as chitin [50].
The PRMT-scores predicted an increase in the turnover of
chitin, concurrent with spring diatom bloom and with
increase in relative abundance of bacterial Phyla predicted
to possess the capacity for chitin degradation. These
PRMT scores and taxonomic correlations support the
hypothesis that measured environmental concentrations of
ammonia can be linked to bacteria catabolism of available
large environmental pools of chitin.

Conclusions
We have presented a novel computational approach, Pre-
dictive Relative Metabolic Turnover (PRMT), for making
predictions of the relative change in the production or
consumption of a metabolite by a microbial community.
The set of all PRMT-scores for all the metabolites pre-
dicted to be present in an environmental metabolome pro-
vides a system-scale representation of the environmental
metabolome derived from metagenomic sequence analysis
that changes in response to fluctuations in the structure of
its bacterial community. The approach was supported by
comparing predicted relative turnover of metabolites to
relative abundance of the biological measurements for
those same metabolites. PRMT also provided the expected
relationships between CO2, Iron, orthophosphate, nitrate,
and chlorophyll with marine primary production. Specific,
testable, biological hypotheses regarding the utilization of
organic phosphorus and chitin were made, some of which
are currently being actively investigated. The predictions
made by PRMT are consistent with the hypothesis that
bacterial population diversity is linked to the metabolic
capacity of the community. While we have restricted our
analysis to the metagenome, PRMT calculations are
equally applicable to metatranscriptomic data. Ongoing
environmental monitoring projects such as the Global
Ocean Survey, TARA Oceans, Hawaiian Ocean Time Ser-
ies, Bermudan Ocean Time Series, the Long Term Ecolo-
gical Research sites, NEON, and the extended application
of the Earth Microbiome Project http://www.earthmicro-
biome.org are generating vast amounts of metagenomic
and experimental metadata that can readily be investigated
by further PRMT analyses.

Additional material

Additional file 1: Table S1. This file contains a list of all enzymatic
reactions in the predicted environmental metabolome for the Western
L4 Station. Each line in the tab-separated file is a metabolic reaction in
the format: Reactant, unique enzymatic function, product.

Figure 5 PRMT-scores for chitin catabolism subnetwork. PRMT-
scores for metabolites along the chitin catabolism pathway are
grouped by time point of metagenomic sample. Positive PRMT-
scores indicate a predicted increase in relative catabolism, and
negative PRMT-scores indicate a predicted increase in synthesis of a
metabolite.
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Additional file 2: Figure S1. The network and calculated PRMT-scores.

Additional file 3: Table S2. This file contains all calculated PRMT-scores,
all PCC-scores between PRMT and relative abundances of Taxa, and
between PRMT and relative abundances of measured environmental
metabolites for the Western English Channel L4 Station environmental
metabolome.
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