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Abstract: At present, the application of artificial intelligence (AI) based on deep learning in the
medical field has become more extensive and suitable for clinical practice compared with traditional
machine learning. The application of traditional machine learning approaches to clinical practice
is very challenging because medical data are usually uncharacteristicc. However, deep learning
methods with self-learning abilities can effectively make use of excellent computing abilities to learn
intricate and abstract features. Thus, they are promising for the classification and detection of lesions
through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep
learning. This study aimed to address the research development of a CAD system based on deep
learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines,
and esophagus. It also summarized the limitations of the current methods and finally presented a
prospect for future research.

Keywords: artificial intelligence; computer-aided diagnosis system; deep learning; esophageal lesion;
gastric lesion; gastrointestinal endoscopy; intestinal lesion

1. Introduction

In recent years, the application of artificial intelligence (Al) based on deep learning in
the medical field has become more extensive and suitable for clinical practice compared
with traditional machine learning. Constructing a computer-aided diagnosis (CAD) system
based on deep learning to assist doctors in diagnosis is of great significance, because
diagnosing lesions in the stomach, intestines, and esophagus is laborious for doctors. In
addition, misdiagnoses can occur based on a subjective judgment.

1.1. Deep Learning

Deep learning is a novel research direction in the field of machine learning. It is based
on the self-learning ability to learn complex and abstract features, rather than on tradi-
tional machine learning with manual features. Initially, deep learning did not attract
much attention from researchers because of hardware limitations; however, it has greatly
developed with the continuous progress of computer processing power. Deep learning
can help learn the internal regularity and representation levels of training data, and the
information obtained is of great help for interpreting the data. Deep learning has led to
many achievements in object detection, image segmentation, and classification applications.
Compared with traditional machine learning algorithms, deep learning approaches are
usually more accurate and robust.

From a technical point of view, deep learning algorithms can make use of a con-
volutional neural network (CNN) to analyze complex information, which is usually an
advantage over manual feature extraction, but it requires learning a great deal of data for
accurate inference and analysis. A representative CNN framework is mainly composed
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of multiple convolutional layers, pooling layers, and fully connected layers, as shown
in Figure 1. Convolutional layers are often used for feature extraction. Pooling layers
downsample the outputs of convolutional layers, reduce the number of parameters, and
speed up calculation. The role of the fully connected layer is to obtain an output by the
nonlinear combination of extracted features. The output of the fully connected layers is
then input into a softmax activation function to get the final results, so as to generate a
prediction of the input data.
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Figure 1. Architecture of a representative convolutional neural network (CNN).

1.2. Diagnosis of Gastrointestinal Endoscopy Based on Deep Learning

With the continuous progress of deep learning technology, a large number of re-
searchers are paying close attention to its possible application in medical research. This is
mainly on account of the characteristics of medical data, which are usually unstructured
texts, images, or videos instead of data with distinct characteristics. For example, the
endoscopic images of a normal esophagus, early esophageal cancer (EC), gastric cancer,
and duodenal ulcer are shown in Figure 2. Therefore, the advancement of deep learning has
an inevitable tendency towards medicine. In a CAD system based on traditional machine
learning algorithms, researchers manually extract data features, such as the lesion size,
edge, and object surface features, based on clinical experience. However, the deep learning
algorithm automatically extracts features and learns to recognize them. Using a deep
learning algorithm rather than a traditional machine learning algorithm can effectively
reduce the loss of feature information, make full use of the feature information for accurate
reference, and reduce doctors’ burdens. In recent years, researchers have presented various
CAD systems following the success of deep learning in image classification and object
detection in medicine. Transfer learning, which transfers information learned in other
domains to the current domain, has also been applied to the CAD model because of the
shortage of medical data, and has achieved excellent performance.

This study is focused on the research progress of the CAD system based on deep
learning to assist doctors in the diagnosis and analysis of gastric, intestinal, and esophageal
lesions. The study also presents a concise discussion on deep learning. The main structure
of the manuscript is as follows. Section 2.1 addresses the methods of the diagnosis of gastric
cancer and Helicobacter pylori (HP) infection. Section 2.2 provides the related algorithms
based on deep learning to classify and detect colon polyps. The deep learning approaches
applied to identify esophageal squamous cell carcinoma (ESCC) and esophageal adenocar-
cinoma (EAC) in the esophagus are presented in Section 2.3. The manuscript concludes
with the summary and the prospect of future research.
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Figure 2. Examples of endoscopic images of normal esophagus, early esophageal cancer (EC), gastric cancer, and duodenal

ulcer: (a) normal esophagus, (b) early EC, (c) gastric cancer, and (d) duodenal ulcer.

2. Developments of Deep Learning Methods in CAD for Gastrointestinal Endoscopy
2.1. Diagnosis of Gastric Cancer and HP Infection

Gastric cancer is one of the most common types of cancer worldwide; the mortality
of gastric cancer is very high. A large number of people die each year from gastric cancer,
and about 70% patients with gastric cancer miss the optimal treatment time because their
lesions are not found in time [1].

The use of pathological sections is a dependable method to diagnose gastric cancer at
present. However, the number of experienced doctors is small, and producing specialized
doctor is a time-consuming process. The application of Al technology based on deep
learning for object detection and classification has gradually become more popular in
the medical field. Ikenoyama et al. [2] compared the diagnostic ability of CNNs with
endoscopists for early-stage gastric cancer. They first used 13,584 endoscopic images
from 2639 lesions of gastric cancer to train a CNN model based on a single-shot multibox
detector (SSD). Then, the performance of this model was compared with 67 endoscopists
using a test dataset. After comparing the experimental results between this model and the
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endoscopists, the proposed CNN model was found to have an obviously higher sensitivity
(58.4%) than the experienced endoscopists (31.9%). Moreover, the diagnostic time of this
model was significantly shorter compared with that of the endoscopists. Although the
performance of the CNN model was not as good as that of the endoscopists in terms
of the positive prediction value (PPV) and specificity, it is hoped that the performance
will expand through continuous improvement in the model. Al technology based on
deep learning can reduce the mortality of patients with gastric cancer, ease the burden
of doctors, free them from repeated work, and offer more dependable information. Its
results can assist doctors in making an accurate diagnosis and can reduce the number of
misdiagnoses and missed diagnosis cases caused by fatigue. It also plays an important role
in alleviating doctor-patient conflicts and balancing medical resources between developed
and underdeveloped areas.

2.1.1. Diagnosis of Gastric Cancer

In a study that included gastric endoscopic images, Hirasawa et al. [3] proposed a
diagnosis system based on deep learning, which was trained by more than 13,000 images
of esophagogastroduodenoscopy (EGD), and then evaluated the diagnostic accuracy of
this system. The system made use of a deep neural network architecture called SSD, and
did not alter its algorithm while using a stochastic gradient descent strategy to fine-tune
all of the CNN layers. A duration of 47 s was required by the system to process 2296 test
images. This high speed needed to recognize and make inferences about objects cannot
be achieved by humans. CNN correctly recognized 71 of 77 gastric cancer lesions with a
sensitivity of 92.2%, and 161 noncancerous lesions were detected as gastric cancer, resulting
in a PPV of 30.6%. Furthermore, 70 of the 71 lesions (98.6%) with a diameter of 6 mm or
more, as well as all invasive cancers, were detected accurately. All missed lesions were
superficially depressed and differentiated-type intramucosal cancers were difficult to sift
out from gastritis, even for experienced endoscopists. Most false-positive lesions were
gastritis with an anomalous mucosal surface or changes in color tone. Their experimental
results revealed that the proposed CNN system for detecting gastric cancer could analyze
a mass of endoscopic images in a short time with a clinically relevant diagnostic ability.
This could be suitable for routine clinical application in order to free endoscopists from
their burdensome work. However, here, the problem of a low PPV was not solved.

To overcome the low PPV of the SSD architecture, Sakai et al. [4] proposed a trans-
ferring CNN model fine-tuned using the detailed texture information of two kinds of
categories—cancer and noncancer. It was capable of showing the proximate locations
of early gastric cancers and achieving balanced accuracy regarding the sensitivity and
specificity. The experimental results showed that the accuracy, sensitivity, and specificity of
their trained model were 87.6%, 80.0%, and 94.8%, respectively, and the correct detection
was possible with a high PPV of 93.4%, thus making up for the defect of the SSD network.
Although the performance of this model was good, the diagnostic results were prone to
errors when the surfaces of the regions were obviously irregular and the target regions
were blurry or deep.

In 2019, Cao et al. [5] developed a mask region-based CNN (Mask R-CNN) method
to realize the detection of gastric cancer and for the segmentation of the cancer core. The
architecture of the Mask R-CNN used in their study is shown in Figure 3. The model
consisted of two parts. In the first part, the whole image was scanned by the basic CNN,
generating feature maps that were fed to the region proposal network to generate a region
of interest (Rol). Then, the second part classified the Rols and produced bounding boxes
and masks. After proper adjustment, optimization, and data augmentation, this approach
could be applied to detect pathological sections of gastric cancer. The experimental results
confirmed that this method gained a test result with an average precision (AP) value of
61.2%. Li et al. [6] used a combination of a system based on CNN and a magnifying
endoscopy with narrow band imaging (M-NBI) with an outstanding accuracy (90.91%),
sensitivity (91.18%), and specificity (90.64%) for diagnosing early gastric cancer. The
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performance of the specificity and accuracy between the CNN system and experts had
little difference; however, the performance of the CNN system was better than those of
the nonexperts. The disadvantage of this system was that the images of advanced cancer,
polypoid lesions, ulcerated lesions, and low-quality images were excluded during the
training process. Hence, this system could not diagnose these diseases, thus limiting its
application. In 2020, Shibata et al. [7] also proposed a method using the Mask R-CNN
for automatically detecting and segmenting gastric cancer lesions in endoscopic images.
They used a residual network (ResNet) as a CNN backbone; the branch mask was made up
of seven convolutional layers of a fully convolutional network (FCN). Using a five-fold
cross-validation as a performance evaluation, the sensitivity of this model was 96.0%. In
the evaluation of the segmentation of the gastric cancer region, the average dice index
was 71%. The proposed method was useful for the detection of gastric cancer and for the
analysis of the invasive region in the gastrointestinal endoscopy.
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Figure 3. Architecture of the method proposed by Cao et al. [5].

Zhang et al. [8] considered that the models trained from CNNs contained millions of
parameters, most of which were likely to cause overfitting in training. To avoid overfitting
and achieve quick convergence, they used a concise model called the gastric precancerous
disease network (GPD Net) to achieve the classification of three categories of GPD, which
were polyp, erosion, and ulcer, respectively. This network introduced fire modules to
take the place of traditional convolutional layers. The fire modules were made up of a
squeezed convolutional layer (which had only 1 x 1 filters) feeding into an expanded
layer (which had both 1 x 1 filters and 3 x 3 filters). The fully connected layers were
taken out to realize the FCN. The size and parameters of the model were reduced by
approximately 10 times, improving the speed of rapid classification. Moreover, they
put forward an innovative fine-tuning method called iterative reinforced learning (IRL)
in order to maintain the classification accuracy when training the network with fewer
parameters. The experimental results showed that compared with the GPD Net without
fire modules, IRL could improve the accuracy by about 9% after six iterations. Finally, the
classification accuracy of GPD Net was 88.9%. Therefore, this model could be used with
fewer parameters in order to recognize the classification of GPD correctly and to reduce
the misdiagnosis rate. The architecture of GPD Net is shown in Figure 4.
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Figure 4. Architecture of the Gastric Precancerous Disease Network (GPD Net) proposed by
Zhang et al. [8].

2.1.2. Diagnosis of HP Infection

In addition, both Uemura et al. and Tahara et al. found a close relationship between
HP infection and gastric cancer [9,10]. Goodwin et al. considered that HP was one of the
main causes of HP infection, which causes chronic gastritis, gastroduodenal ulcer, mucosal
atrophy, and intestinal metaplasia [11]. Nomura et al. concluded that mucosal atrophy
and intestinal metaplasia were known risk factors for gastric cancer [12]. After extensive
research, Tahara et al. proposed that the eradication of HP effectively controlled mucosal
atrophy and intestinal metaplasia [13]. Therefore, it is of great significance to identify
HP infection in order to prevent it from developing further into gastric cancer. Shichijo
et al. [14] pretrained a 22-layer CNN on a dataset of 32,208 images, including both positive
and negative HP (first CNN), and then fine-tuned it. The images were classified on the
basis of eight anatomical positions so as to train another CNN (secondary CNN). The
experimental results proved that the diagnostic ability of the CNN was comparable to
that of some of the experienced endoscopists, and the performance of the secondary CNN
was superior to that of the first CNN. Furthermore, the diagnostic time with the CNN
was considerably shorter than that with the endoscopists. The results showed that this
recognition system had a sufficient sensitivity and specificity to be introduced into clinical
applications; it helped reduce the workload of doctors dramatically.

For establishing an automatic diagnostic system based on deep learning that predicted
the HP infection level using gastrointestinal endoscopic images to improve the accuracy
and speed of endoscopic examination, Itoh et al. [15] created an effective tool using the
CNN that could recognize HP infection. They evaluated the recognition accuracy of the tool
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with 30 test images by calculating the sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC). According to experimental verification, the AUC,
sensitivity, and specificity of their CNN for detecting HP infection were 95.6%, 86.7%, and
86.7%, respectively, demonstrating that the CAD system of HP infection appeared to be
feasible and might facilitate and improve the diagnosis when applied to clinical practice.
In 2018, Nakashima et al. [16] introduced GoogLeNet as a pretrained deep convolutional
neural network (DCNN) model, created using a large number of public images in advance.
They used data augmentation to increase the number of endoscopic images to fine-tune
the GoogLeNet so as to identify the two categories (HP-positive and HP-negative). After
experimental verification, the AUC was 66.0%, 96.0%, and 95.0% for white light imaging
(WLI), blue laser imaging-bright (BLI-bright), and linked color imaging (LCI), respectively,
demonstrating that the developed tool had a better ability to recognize HP infection using
BLI-bright and LCI compared with WLIL. However, the model was not an ideal model
for diagnosing inflammation and other types of gastritis, something the authors hope to
improve in further study. The aforementioned methods are summarized in Table 1.

Table 1. Characteristics of models for the diagnosis of gastric cancer and Helicobacter pylori (HP) infection.

Study Aim Method Performance Train Dataset Test Dataset
Comparison between CNN/Endoscopist: 10,474 early-stage gastric
Ikenoyama et al. pCNN and CNN based on SSD Sensitivity: 58.4%/31.9% cancer images and 3110 209 gastric cancer images
(2021) [2] endoscopists Specificity: 87.3%/97.2% advanced-stage gastric and 2731 normal images
P PPV: 26.0%/46.2% cancer images
Hirasawa et al Sensitivity: 92.2%
’ Detection CNN based on SSD Accuracy: 98.6% 13,584 gastric cancer images 2296 gastric cancer images
(2018) [3] - 30,69
PPV: 30.6%
- Accuracy: 87.6% . . . .
Sakai et ’al. Detection CNN based on Sensitivity: 80.0% 9587 gastric cancer images 4653 gastric cancer images
(2018) [4] GoogLeNet Specificitv: o and 9800 normal images and 4997 normal images
pecificity: 94.8%
Cao et al. Detection + ~ . o 1000 positive samples and 120 positive samples and
(2019) [5] segmentation Mask R-CNN AP:61.2% 250 negative samples 29 negative samples
Accuracy: 9091% 1702 gastric cancer images 170 gastric cancer images
Li et al. (2020) [6] Classification CNN + M-NBI Sensitivity: 91.18% . -
Specificity: o and 386 normal images and 171 normal images
pecificity: 90.64%
Shibata et al. . § Average Dice: 71.0% 533 gastric cancer images . SRS
(2020) [7] Detection Mask R-CNN Sensitivity: 96.0% and 1208 normal images Five-fold cross-validation
Zhane et al 921 images of erosion, 300 images of erosion,
g ’ Classification GPD Net Accuracy: 88.9% 918 images of polyps, and 300 images of polyps, and
(2017) [8] \ :
944 images of ulcer 300 images of ulcer
First CNN based on First/second
Shichijo et al. Classification GoogLeNet AUC: 83.1%/87.7% 32,208 images either positive 11,481 images
(2017) [14] Secondary CNN Sensitivity: 81.9%/88.9% or negative for HP ’ g
based on GoogLeNet Specificity: 83.4%/87.4%
AUC: 95.6%
(Iztgg)et[ la51] Detection ngg)bise‘f\‘?e‘tm Sensitivity: 86.7% 596 images 30 images
& Specificity: 86.7%
Nakashima et al. Classification CNN based on /;EOC‘; (6]§L(i-{l(;r(1‘/v}h§)’ 648 images for each WLI, 60 separate images for
(2018) [16] GoogLeNet i ght), BLI-bright, and LCI WLI, BLI-bright, and LCI

95.0% (LCI)

2.2. Classification and Detection of Colon Polyps

Gastrointestinal endoscopy plays a pivotal role in the diagnosis and treatment of
colorectal cancer (CRC), which is the third leading cause of cancer death in the world [17].

Studies have revealed that most CRCs originate from colon adenomas [18], which
are associated with colorectal polyps. Therefore, finding and removing colorectal polyps
using endoscopic images is the most effective method to prevent CRC. Nevertheless, small
colorectal polyps consist of both adenomatous and nonadenomatous polyps, but the small
nonadenomatous polyps are less likely to differentiate into CRCs [19]. Therefore, it is
significant to avoid the needless removal of colorectal polyps by distinguishing adeno-
matous polyps from nonadenomatous polyps. Although an accurate identification of
adenomatous and nonadenomatous polyps through endoscopic findings is very important
in order to avoid the redundant resection of colorectal polyps, diagnosing small colorectal
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polyps accurately is difficult even for experienced doctors at times [20]. Consequently, it is
necessary to develop a precise and dependable CAD system to discriminate adenomatous
and nonadenomatous polyps in endoscopic images.

The difficulty in detecting colorectal polyps automatically is not only the variation
inside colorectal polyps, but also the small difference between normal mucosa and polyps,
which is the bottleneck of the manual extraction method. In contrast, deep learning
methods can extract more detailed information and features of polyps from endoscopy
images at a pixel level through end-to-end learning. A large number of research outcomes
have demonstrated that the polyp feature information extracted by the deep learning
method is markedly better than that extracted by other hand-crafted extraction methods,
because it can be better suited to the intricate clinical environment and is more suitable for
the automatic detection and classification of colorectal polyps in clinical practice.

Tajbakhsh et al. [21] constructed a novel CAD polyp detection system from endoscopic
videos in 2015. This method did not rely on one or only a subset of polyp characteristics;
rather, it fully used all the obtainable image features containing color, texture, shape,
and temporal information. Initially, geometric features, such as the shape and size of
the polyps, were used to obtain a set of candidate regions of existing polyps. Then, a
combination of CNNs was used to classify the interesting regions. The outputs of the
combined CNN were averaged to acquire a probabilistic map of the presence of polyps in
the frame. The experimental findings demonstrated that this system significantly improved
the performance of detection among the other methods and reduced the number of false
positives. Yu et al. [22] presented an innovative offline and online three-dimensional
(38D) deep learning integrated network. The flowchart of the proposed network is shown
in Figure 5. They leveraged the 3D model to decrease the number of false positives
and further enhanced the discriminant ability of the network for a specific video. A
large number of experiments showed that the 3D model was able to automatically learn
more typical temporal and spatial feature information from colonoscopy videos, and
thus had more significant discriminant ability compared with the previous approaches
using manual features or two-dimensional (2D) CNN. Although the model provided good
diagnostic results in distinguishing hard mimics, it was still difficult to identify some
particularly similar regions. The authors of the model believed that the problem could
be improved by manually annotating these similar regions and putting them into the
training dataset to train the model. Mohammed et al. [23] also came up with a novel deep
learning model called Y-Net that contained two encoder architectures and one decoder
architecture to implement the detection of automatic polyps (Figure 6). The presented
Y-Net method depended on the efficient use of pretrained and un-pretrained models
with a novel sum-skip-concatenation strategy. Each of the encoders was trained by an
encoder-specific learning rate along the decoder. Compared with the early models that
used hand-crafted features or 2D/3D CNN, the presented method was superior to the
pre-existing models in the performance of polyp detection. The model was validated
on the Arizona State University and Mayo Clinic (ASU-Mayo Clinic) polyp database of
Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015 Challenge
for polyp detection, and the performances of the F1-score, F2-score, and precision rate were
85.9%, 85.0%, and 87.4%, respectively. However, still, some failure examples (false-positives
and false-negatives) were detected in the diagnostic results of their model; although the
changes in light and contrast were taken into consideration, no significant improvement
in accuracy was found. In 2020, Haj-Manouchehri et al. [24] used the neural network
to achieve the detection and segmentation of polyps in frames. In the polyp detection
part, they proposed an innovative CNN based on the VGG network, and achieved an
accuracy of 86.0% on the newly collected dataset. In the polyp segmentation part, a valid
post-processing algorithm using an FCN was proposed. They verified the constructed
polyp segmentation model on the ETIS-LARIB database and realized a final F2 score of
82.0%, indicating that the performance of this method was superior to that of the methods
that took part in the subchallenge of MICCALI.



Diagnostics 2021, 11, 694 9of 16
T Test vide clip »  Online 3D Net HfR20lineprobability
map
( ) Online model update
Colonoscopy
videos
Online samples
Fusion
’ Positive —» probability
samples map
Online sample selection l
Extract training samples—»
Detection
| Offline probability result

~—  Offline 3D Net

Negative map

samples

(

Figure 5. Flowchart of the online and offline 3D model proposed by Yu et al. [22].
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Figure 6. Main framework of Y-Net proposed by Mohammed et al. [23].

Training the CNN is difficult because of the tendency of labeled datasets in the
medical domain to be small. Employing a transfer learning method is an alternative
approach, by making full use of the learned information from other domains’ large datasets
to deal with this problem [25]. When a moderate dataset size for the target source is
obtained, fine-tuning of the CNN can be implemented [26]. Nevertheless, if the number
of images of the target source is small, it is also useful to directly transfer CNN features
from the original source without fine-tuning [27]. Therefore, in 2017, Zhang et al. [28]
proposed a new strategy for CRC diagnosis by transferring low-level features learned
from all kinds of nonmedical domains into the current task using a deep CNN. Initially,
the polyp image was identified from the nonpolyp image and was then predicted. The
experimental results indicated that the proposed automated CRC diagnosis strategy had
a similar accuracy in terms of minimal preprocessing procedures compared with visual
inspection by endoscopists and early state-of-the-art approaches, but had a better recall
rate and accuracy. Therefore, the system assisted endoscopists in identifying the omissive
adenomatous polyps for timely resection. The disadvantage of this system was that it
failed to further study the structure of CNN to directly classify polyps (support vector
machine is used), which will also be one of the research directions of the authors of the
system in the future. The aforementioned methods are concluded in Table 2.
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Table 2. Characteristics of models for the classification and detection of colon polyps.

Study Aim Method Performance Train Dataset Test Dataset
Tajbakhsh et al. Detection Three-way image Sensitivity: 20 collected short colonoscopy Zgiéc;lolsc(tle(;:l Cgslﬁﬁ?;;i%y
(2015) [21] presentation + CNN about 75.0% videos (10 positive, 10 negative) pos
10 negative)
Fl-score: 78.6%
. Offline and F2-score: 73.9% ASU-Mayo clinic database ASU-Mayo clinic database
Yuetal. (2017) [22] Detection Online 3D FCN Precision: 88.1% (20 colonoscopy videos) (18 short colonoscopy videos)
Recall rate: 71.0%
Fl1-score: 85.9%
Mohammed et al. Detection Y-Net F2-score: 85.0% ASU-Mayo clinic database ASU-Mayo clinic database
(2018) [23] Precision: 87.4% (20 colonoscopy videos) (18 short colonoscopy videos)
Recall rate: 84.4%
Detection: Two collected colonoscopy 1 collected colonoscopy video
Haj-Manouchehri Detection + CNN based on VGG; (accuracy) 86.0% videos for detection; for detection; CVC-CLINIC
et al. (2020) [24] segmentation FCN + post-processing Segmentation: CVC-CLINIC and ETIS-LARIB and ETIS-LARIB datasets

(F2-score) 82.0%

dataset for segmentation

for segmentation

Zhang et al.
(2017) [28]

Detection +
classification

CNN based on CaffNet

Precision: 87.3%
Recall rate: 87.6%
Accuracy: 85.9%

Source: ImageNet database
and Places205;
Target: PWH database and new
polyp database

50 images for each class
(nonpolyp, hyperplasia, and
adenoma polyps) + 10 images
for each class (hyperplasia,
serrated adenoma, and

adenoma) for 5 trials

2.3. Diagnosis of ESCC and EAC in Esophagus

EC is one of the most common types of malignant cancer and was the sixth leading
cause of cancer death worldwide in 2018 [17]. EC has three histological types: ESCC, EAC,
and undifferentiated carcinoma, among which ESCC is the most common. The CNN-based
diagnostic method has been applied in a few studies to improve the accuracy of esophageal
lesions detected using endoscopy. Diagnostic methods based on CNN have been employed
in a few studies. In 2019, Horie et al. [29] developed a diagnostic system based on deep
learning, which was constructed on a variety of EGD images with a satisfying efficiency
(0.02 s for one image), in order to achieve the detection of EC consisting of squamous cell
carcinoma and adenocarcinoma. This showed that this system was promising for achieving
a real-time diagnosis. This system employed a deep neural network model called SSD,
which was a deep CNN composed of 16 layers or more, without altering its architecture. All
of the layers of the model were fine-tuned using stochastic gradient descent. This strategy
demonstrated that the sensitivity of CNN diagnosis for each case was high. Moreover, all
seven lesions less than 10 mm in size could be detected by this system.

2.3.1. Diagnosis of ESCC

In 2019, Cai et al. [30] proposed an identification system based on images from
conventional endoscopy with standard white light called Deep Neural Network-Computer-
Aided Detection (DNN-CAD) in order to detect inchoate ESCC. They augmented the
training data by 10 times by cropping the images that were collected, so as to improve the
performance of this system. Finally, they annotated 187 white light images of the esophagus
to validate the proposed DNN-CAD system with an accuracy of 91.4%, a sensitivity of
97.8%, and a specificity of 85.4%. Hence, it was concluded that this system achieved an
excellent diagnostic ability to diagnose early-stage ESCC. Furthermore, the system also
output the bounding box of latent cancer lesions, thus sending a reminder to the doctor to
focus on the suspicious lesion. They intended to improve the performance of the system to
identify the histologic characteristics of EC so as to achieve further classification. A year
later, Guo et al. [31] used a deep learning model based on the SegNet framework that
was a deep encoder-decoder network for various categories of pixelwise segmentation.
For both endoscopic images and video datasets, this model showed a better sensitivity
(98.04%) and specificity (95.03%). Obviously, the CAD system appeared to provide capacity
in diagnosing the accurate locations of esophageal precancerous lesions and early-stage
ESCC with appropriate training datasets and skills. However, randomized controlled trials
should be designed to further verify the practical applicability of this model. Ohmori
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et al. [32] also constructed a computer-aided image analysis system based on deep learning
to detect and distinguish ESCC. They used SSD as the basic model and fine-tuned all layers
of the model through the backpropagation algorithm. Their system creatively combined
WLI, narrow band imaging (NBI)/blue laser imaging (BLI), non-magnified endoscopy (non-
ME), and magnified endoscopy (ME) to detect and distinguish ESCC. Their experimental
results showed an excellent performance for detecting ESCC, and had a prominent ability
to differentiate ESCC from noncancerous lesions and normal mucosa. After constant
research, Tokai et al. [33] found that the treatment varied according to the invasion depth of
ESCC. Therefore, the diagnosis of the invasive depth of ESCC is of great significance before
effective treatment. The authors of [33] constructed a CAD system to detect the invasion
depth of ESCC. First, they used SSD as a basic architecture to detect the superficial ESCC
from the endoscopic images. Then, GoogLeNet was used to diagnose the invasion depth
of ESCC. After experimental verification, it was concluded that the Al-diagnostic system
demonstrated a higher diagnostic accuracy for the ESCC invasion depth compared with
that of endoscopists. Therefore, it is very helpful for treating ESCC.

2.3.2. Diagnosis of EAC

ESCC still has the highest incidence. However, EAC incidence has been growing
promptly all over the world in the last few years, and is expected to realize further
growth [34]. Barrett’s esophagus (BE) is a risk factor for the development of EAC. When BE
is related to dysplasia, the risk of EAC increases [35]. However, the ability of endoscopic
surveillance for BE has been disappointing. A CAD system based on deep learning with the
CNN can help endoscopists in detecting Barrett’s dysplasia. Mendel et al. [36] studied the
diagnosis of BE using CNN based on deep ResNet to identify patches in a high-definition
white light endoscopy (HD-WLE) image as cancerous and noncancerous. The image was
first divided into 224 x 224 patches without overlapping and was then categorized into
cancerous and noncancerous based on a specific threshold (). Each patch that had an
output probability was compared with t to decide whether it was a noncancerous region.
The performance of this system was evaluated by leave-one-patient-out cross-validation
and finally realized a sensitivity and specificity of 94.0% and 88.0%, respectively. Compared
with other systems based on the same dataset, the performance of this system was superior
to that of others. Hashimoto et al. [37] designed a CNN model to perform the detection of
early esophageal neoplasia in BE. Their architecture comprised two steps. The first was
a binary classification based on Xception architecture to rapidly flag interesting frames,
and the second step was to find the localization of the lesion through you only look once
(YOLO) v2 on positively recognized frames from the first step. The performance of the
binary classification (dysplasia vs. no dysplasia) method showed a satisfying sensitivity
(96.4%), specificity (94.2%), and accuracy (95.4%) per image on an internal validation
dataset. The localization method also accurately detected a large proportion of lesions
with a mean AP of 75.3%, sensitivity of 95.6%, and positive predictive value of 89.2%.
A major advantage was that the model was quick enough to realize real-time detection
and diagnosis. Fonolla et al. [38] also discovered that a brief but deep model was the
most promising strategy to identify a volumetric laser endomicroscopy (VLE) Rol between
nondysplastic BE (NDBE) and high-grade dysplasia (HGD) because of the unbalanced
property of the dataset. Thus, they chose to use a combination of horizontal flip, motion
blur, and optical grid distortion of three DCNNSs, each of them based on the VGG16 net-
work, in order to find neoplasia using a valid VLE image dataset. On the basis of the
VGG16 network, they appended a global average pooling layer after the final convolutional
layer, which was effective in reducing the number of parameters from 7 x 7 x 512 to
1 x 1 x 512 in the model. The framework of the proposed network is shown in Figure 7.
In the end, their model acquired a specificity of 85%, a sensitivity of 95%, and an AUC of
96% on the test dataset with the multi-frame analysis, which obviously surpassed the early
works. Ghatwary et al. [39] found that a few advanced object detection approaches using
CNN, including region-based CNN (R-CNN), fast R-CNN, faster R-CNN, and SSD, were
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adapted to automatically detect abnormal regions in HD-WLE images of the esophagus.
Therefore, they employed VGG16 as the basic architecture to extract feature information
and to compare the performance among the aforementioned approaches. They conducted
extensive evaluation experiments in terms of different evaluation indicators. The results
revealed that the SSD model outperformed other approaches, with a remarkable outcome
of 96.0% (sensitivity), 92.0% (specificity), and 94.0% (F-measure) when assessed based on
five-fold cross-validation. This research was an important step forward to use deep learn-
ing object detection algorithms to detect abnormalities in esophageal endoscopy images.
The aforementioned methods are summarized in Table 3.

ImageNet pre-
processing

v

Detect balloon line Crop VLE image

- | VLE
Input to DCNN ~ } 3-channel VLE | )
image

y

Output

Figure 7. Framework of the method proposed by Fonolla et al. [38].

Table 3. Characteristics of models for the diagnosis of esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma (EAC) in the esophagus.

Study Aim Method Performance Train Dataset Test Dataset
Sensitivity:
Horie et al. Detection of CNN based 97.0% (ESCC) . .
(2019) [29] ESCC + EAC on SSD 100.0% (EAC) for 8428 EC images 1118 images (EC + normal)
each case
i Accuracy: 91.4%
(zc(ﬁlg‘;t[';‘})'] Detection of ESCC DNN-CAD Sensitivity: 97.8% ni‘gﬁ;ll)ﬁzo abnormal and 1096 187 images
: Specificity: 85.4% phagoscop 8
Dataset A: 1480 images
AUC: 98.9% 2770 images (precancerous and (precancerous + ESCC); B: 5191
(S(;lz(()))e ’E;llj Detection of ESCC %illg]eb?\?:? Sensitivity: 98.04% early-stage ESCC); 3703 images images (noncancerous); C: 27
& Specificity: 95.03% (noncancerous) videos (precancerous + ESCC);
D: 33 videos (noncancerous)
9591 non-ME + 7844 ME images
Performance is good; from superficial ESCCs; 564 R . .
Ohmori et al. . CNN based 100.0% sensitivity by non-ME + 2744 ME images of 255 non-ME WLI mages; 268
Detection of ESCC o N non-ME NBI/BLI images; 204
(2020) [32] on SSD non-ME and 98.0% noncancerous lesions; 1128 ME NBI/BLI images
by ME non-ME + 691 ME images of 8¢
normal esophagus
CNN based on Detection: 95.5%
Tokai et al. Invasion depth SSD (detection), Estimation of depth: . .
(2020) [33] of ESCC GoogLeNet 84.1% (sensitivity) 1751 images of ESCC 291 test images
(estimation) 80.9% (accuracy)
Mendel et al. Diagnosis of EAC CNN based Sensitivity: 94.0% 4157 noncancerous region patches Leave-one-patient-out
(2017) [36] g on ResNet Specificity: 88.0% and 3666 cancerous region patches cross-validation
. o 916 images of BE (high-grade
Hashimoto et al. . Model based on Acc1.1r.a§y..95.4 éo dysplasia/T1 cancer) and 458 test images (225 dysplasia
Detection of EAC Xception and Sensitivity: 96.4% . :
(2020) [37] s o 919 images of BE and 233 non-dysplasia)
YOLO v2 Specificity: 94.2% - .
(nonhigh-grade dysplasia)
N Assemble of 3 AUC: 96.0% — .
F("zr(‘)‘ig;‘ [‘gtg?l' Diagnosis of EAC ~ DCNN based Sensitivity: 95.0% 134 NDBE, 38 HHOD/EAC regions; 99 NDBE and 92 HGD/EAG
: on VGG16 Specificity: 85.0% 8 8
CNN based on SSD is the best: . .
Ghatwary et al. Comparison R-CNN/Fast Sensitivity: 96.0% 50 I?i%iigii\eggig)dbi?c:?ages Leave-one-patient-out
(2019) [39] p R-CNN/Faster Specificity: 92.0% cross-validation

R-CNN/SSD

F-measure: 94.0%

data augmentation
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3. Discussion

Gastrointestinal endoscopy plays a very important role in the diagnosis and treatment
of gastrointestinal diseases. More doctors are needed who can perform accurate diagnosis
and treatment because of the increasing incidence of gastrointestinal diseases in recent
years. A CAD system based on the deep learning algorithm has been explored by a large
number of researchers in order to reduce the burden of doctors and to improve the accuracy
of diagnosing lesions in the stomach, intestines, and esophagus.

This study reviewed the research progress of the CAD system based on deep learning
for assisting doctors with classifying and detecting gastric, intestinal, and esophageal
diseases. As observed in Tables 1-3, many researchers built CAD systems with a good
performance based on the CNN applied to extract feature information using convolution
layers, down-sampled the feature maps by pooling layers, and obtained the output by
nonlinear combination of extracted features through the fully connected layers. On the
one hand, some researchers used the transfer learning method based on a basic network to
train the network with a smaller dataset. The basic CNN models usually included VGG,
GoogLeNet, ResNet, SSD, Mask R-CNN, and so forth. The method of transfer learning to
construct a CAD system could make use of the knowledge acquired by the model with
a large number of training data, so as to effectively alleviate the problem of overfitting
caused by the lack of training data. On the other hand, researchers have improved the
structure of that network, by creatively putting forward novel network structures combined
with pre-processing and post-processing technology. Creatively putting forward a new
network structure is a link between the past and the future. The pre-processing and
post-processing technology can effectively improve the performance of the network. The
two aforementioned strategies can make the model achieve an excellent performance; the
performance of the model using the transfer learning strategy is usually better than that
of the model trained directly with the target dataset. Moreover, in the process of model
training, the model trained with a transfer learning strategy uses less data than the model
trained directly with the target dataset. If prior knowledge can be further applied to the
new network structure, it is expected to improve the performance of the model. Moreover,
by summarizing the aforementioned methods, the imaging model has been found to have
a significant impact on the diagnostic performance of the CAD system. Thus, we believe
that using multimodal images as a mixed input can provide more information, which will
be of great help to improve the diagnostic performance of the CAD system.

Compared with the traditional machine learning methods, CAD systems based on
deep learning can effectively improve diagnosis performance and reduce the rate of mis-
diagnosis and missed diagnosis, while reducing the burden on doctors. It is of great
significance to help doctors carry out a remote diagnosis for improving the level of medical
diagnosis in remote areas. However, it is difficult to understand the inner workings of CAD
systems based on deep learning because the feature activities of each layer are usually com-
plex and abstract to fully understand [40,41], which is also called the black-box problem.
Therefore, the CNN gains a better generalization ability at the expense of its interpretability.
Even if the results are correct, doctors still cannot fully trust the CAD system. As a result,
whether the CAD system can replace doctors in diagnosis is still controversial.

In addition, by summarizing the current research methods, we find that besides the
unique shortcomings of the current model, some common limitations still need to be
resolved. First of all, training an accurate neural network needs a lot of data. However,
it is difficult to obtain and label large amounts of data in the medical field, which makes
the trained model prone to overfitting. Second, most training data come from a single
research center or hospital; hence, the designed model can only perform well on a specific
dataset, but performs poorly on other datasets. Third, most of the current CAD systems
depend on high-quality images to make a diagnosis. The performance of the systems
using low-quality images (such as blurry or low-resolution images) for training cannot be
determined. Fourth, the neural network contains a large number of parameters, and hence
it is time-consuming to diagnose the corresponding diseases. Thus, it is difficult to meet
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the real-time requirements of clinical practice, especially on a 3D model. Fifth, the current
CAD system is usually based on the 2D CNN of 2D images to diagnose gastrointestinal
endoscopic lesions. However, the information provided by 2D images is limited, and
sometimes it cannot fully represent the lesions. In contrast, the 3D CNN model based on
videos or 3D images can make full use of temporal and spatial information. Therefore,
much work still needs to be done on the research of 3D CAD systems. Furthermore, each
of the aforementioned models is only effective for a specific disease and fails to realize
information interaction between diseases, thus limiting the application of the models.
Finally, although researchers have developed a variety of systems, the performance of these
models cannot be uniformly compared because of the different datasets and evaluation
criteria used in each system. Thus, the lack of a unified dataset and common criteria for
verification is also detrimental to the development of CAD systems.

4. Conclusions

In conclusion, a CAD system based on the deep learning method can automatically
extract and recognize features. Using the deep learning method rather than traditional
machine learning can effectively reduce the omission of feature information and make full
use of the feature information to improve the performance of diagnosing lesions in the
stomach, intestines, and esophagus. It can also assist endoscopists through auxiliary advice
and reducing their burden. Moreover, it is of great help to solve the problem of insufficient
medical resources in remote areas by employing an online CAD system.

We think that it is necessary to make improvements in the following aspects in order
to promote the further development of CAD systems. Initially, the dataset for training
needs to be augmented as much as possible and needs to be collected from a wide range
of sources in order to obtain a network model with a better generalization ability. Then,
to deal with the shortage of training data, both weakly supervised learning methods and
transfer learning methods are excellent for avoiding the annotation of a large amount of
data. We intend to use a few-shot learning strategy to achieve excellent diagnostic accuracy
based on a small amount of labeled data in the following research. Third, some image
preprocessing techniques, such as image deblurring and resolution improvement, can be
used to improve the performance of the model when low-quality images are input. We still
need to make further improvements on 3D CAD systems in order to acquire more feature
information, and should implement further speed optimization to achieve real-time clinical
applications while ensuring excellent performance, especially on 3D models. Furthermore,
when something goes wrong in one part of the body, it often sets off alarms elsewhere
because the body is a collaborative group of organs. Therefore, when constructing a CAD
system, we should pay more attention to the transfer of the feature information of different
diseases, try to find the relationship among different diseases, and establish a CAD system
that can diagnose multiple related diseases. More importantly, the trust between CAD
systems and doctors should be built by increasing the interpretability of CNN. Last, but
not least, a unified validation dataset and common criteria are needed to make accurate
comparisons among various CAD systems so as to facilitate further development.
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