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Abstract

Stenotrophomonas maltophilia is a multidrug resistant pathogen associated with high mor-

tality and morbidity in patients having compromised immunity. The efflux systems of S. mal-

tophilia include SmeABC and SmeDEF proteins, which assist in acquisition of multiple-drug-

resistance. In this study, proteome based mapping was utilized to find out the potential drug

targets for S. maltophilia strain k279a. Various tools of computational biology were applied

to remove the human-specific homologous and pathogen-specific paralogous sequences

from the bacterial proteome. The CD-HIT analysis selected 4315 proteins from total prote-

ome count of 4365 proteins. Geptop identified 407 essential proteins, while the BlastP

revealed approximately 85 non-homologous proteins in the human genome. Moreover, met-

abolic pathway and subcellular location analysis were performed for essential bacterial

genes, to describe their role in various cellular processes. Only two essential proteins

(Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase and D-alanine-

D-alanine ligase) as candidate for potent targets were found in proteome of the pathogen, in

order to design new drugs. An online tool, Swiss model was employed to model the 3D

structures of both target proteins. A library of 5000 phytochemicals was docked against

those proteins through the molecular operating environment (MOE). That resulted in to eight

inhibitors for both proteins i.e. enterodiol, aloin, ononin and rhinacanthinF for the Acyl-[acyl-

carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase, and rhazin, alkannin beta,

aloesin and ancistrocladine for the D-alanine-D-alanine ligase. Finally the ADMET was

done through ADMETsar. This study supported the development of natural as well as cost-

effective drugs against S. maltophilia. These inhibitors displayed the effective binding inter-

actions and safe drug profiles. However, further in vivo and in vitro validation experiment

might be performed to check their drug effectiveness, biocompatibility and their role as

effective inhibitors.
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Introduction

Stenotrophomonas maltophilia is an intensive emergent gram-negative bacterium of the

human-ecological origin worldwide. That characteristically impart resistance to different clas-

ses of antibiotics and hefty metals [1, 2]. It is responsible for wide scope infections in clinics

and local area settings including infection of respiratory tract and septicemia which are perva-

sive in nature. Whereas infections of bone, joints, urinary tract as well as meningitis are less

successive [3].

Owing to adaptive behavior of intrinsic resistance of S. maltophilia through horizontal gene

transfer and mutation against anti-microbial utilized beforehand, the medicinal approach is

getting popular nowadays [4]. The resistance emerges fundamentally by modifying the medi-

cation targets, bypassing molecules, efflux pumps, substance alteration, self-prescription,

mutations or by phenotypic variation arising internally or externally by the host [5]. The efflux

systems of S. maltophilia include SmeABC and SmeDEF proteins, which assist in acquisition

of multiple-drug-resistance [4]. Furthermore, that offer an extreme tendency of fighting

against drugs by extraordinary liability outcomes such as trimethoprim/sulfamethoxazole

(TMP/SMX), fluoroquinolones and ceftazidime [6, 7]. Consequently it is of imperative signifi-

cance to identify novel and potent therapeutic targets in S. maltophilia to cope with this multi-

drug-resistant pathogen successfully.

The enormous progress in computational biology and diversified applications of bioinfor-

matics have gained importance in drug designing thereby reducing the cost and time needed

for in vivo screening and testing [8, 9]. The bioinformatics has substantially shortened tradi-

tional lab trials through employment of approaches including identification of drug candi-

dates, structure-based designing of drug molecule, screening of antiviral drugs, comparative

investigations utilizing genome to recognize host specific targets etc. [10, 11]. Currently the

subtractive genomic approach is being focused in order to examine the entire host and prote-

ome of bacterium. This is to recognize the proteins with various therapeutic perspectives solely

present in the pathogenic genome, by excluding the homologous proteins of the host [12].

Numerous investigations have already utilized this approach on the multiple pathogenic

strains and detailed fruitful identification and acknowledgment of novel species-specific thera-

peutic targets [13, 14].

The current study involves applying subtractive proteomics approach on the whole prote-

ome of S. maltophilia. Briefly, the proteins which are fundamental to pathogenic survival were

prioritized via computational tools and databases. It was followed by eliminating host homol-

ogy proteins. Merely pathogenic proteins were retained to minimize the accidental therapeutic

blockage by the host and involved in the metabolism of host. These proteins were further sub-

jected to prediction of their subcellular localization for recognizing membrane protein fol-

lowed by the drug-ability analysis. That led to the identification of two virtually hit

compounds including Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltrans-

ferase and D-alanine-D-alanine ligase as therapeutic targets in S. maltophilia. These proteins

were then docked with phytochemicals, enterodiol, aloin, ononin and rhinacanthinF. That

revealed sound molecular interaction and high docking score as well as binding affinity. The

potent compounds were also evaluated for drug-likeness and toxicity assessment that may

serve as the target for the further optimization of the compounds through experimental study.

Methods

The subtractive genomic approach was employed for analysis of the whole proteome of S. mal-
tophilia (strain k279a) screen immunogenic proteins that may serve as novel drug targets. The

overall flowchart of the study is shown (Fig 1).
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The whole proteome retrieval

First of all the whole proteome of S. maltophilia (strain k279a) was retrieved from Uniprot in

the FASTA format.

Identification of paralogous sequences

The whole proteome of S. maltophilia (strain k279a) was subjected to CD-HIT suite. The

parameters were set to default except for threshold value kept to 60%. CD-HIT suite is widely

employed for comparing and clustering protein and genomic sequences. That is to remove

paralogs or redundant proteins [15].

Identification of essential proteins

The Geptop 2.0 server was used to retrieve essential proteins of S. maltophilia. That server is

used for the detection of essential genes taking into account comparison of the phylogeny and

orthology of provided query protein with datasets of essential genes.

Identification of essential non-homologous proteins

The essential proteins were submitted to Blastpagainst host proteome with a threshold of e-

value 10−4, with the query coverage and identity of more than 70% and 30%, respectively. The

purpose was to identify those proteins which are non-homologous to the host.

Analysis of metabolic pathways

The essential proteins of S. maltophilia were analyzed through KEGG automatic annotation

server. The pathways unique to S. maltophilia (strain k279a) and absent in humans were

selected [19] at KEGG [20].

Fig 1. Overall flow chart of subtractive genomic against S. maltophilia. This shows analysis of whole proteome of S.

maltophilia (strain k279a).

https://doi.org/10.1371/journal.pone.0261111.g001
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Subcellular localization analysis

The target proteins were subjected to the identification of subcellular localization of metabolic

proteins of S. maltophilia by the PSORTb tool to enable identification of these predicted thera-

peutic targets.

Selection of membrane proteins by drug-ability

In order to screen for the uniqueness of putative targets, Drug-Bank 5.1.0 database set to

default limitations was used. Consequently, the proteins with significant hit higher to thresh-

old with pre-treated drug targets displayed common functions. These were proceeded further

for drug-able testing.

Primary and secondary structure analysis of target proteins

The evaluations of primary structure of selected proteins were done through EXPASY. It was

followed by prediction of secondary structure through PSIPRED. That generated outcome

based on feed-forward neural networks [16].

Furthermore, SignalP-5.0 server was used for the prediction of location for signal peptide

and their protein cleavage sites. Subsequently these targets were tested for transmembrane

topology via TMHMM tool. Which relies on Hidden Markov model for the prediction and so

on predicts transmembrane helices and precisely distinguishes soluble from membrane pro-

teins [17].

Structure prediction and validation

An online tool, Swiss-Model was employed to predict the 3D structure of putative proteins.

That tool identifies the template, aligns it with the target sequence, constructs and evaluates

quality of the 3D model [18]. The Chimera Structure Visualization software [19] was used to

visualize and Galaxy WEB server was used to refine the models. The quality of model was eval-

uated using SAVES server which analyzes them on the basis of ERRAT [20], WHATCHECK

[21] and PROCHECK [22].

Compounds library preparation and molecular docking

For docking, the 2D conformation of compounds were downloaded from the PubChem [23]

followed by protonation and energy minimization in MOE software and further added to the

database. These compounds were then docked with putative proteins via the MOE software

[24].

Physiochemical property profiling and toxicity predictions

Molinspiration server was used to analyze the molecular descriptors and drug likeliness prop-

erties of compounds. In fact that gives a prediction based ‘rule of five’ (Ro5) [25]. AdmetSAR

database was used to indicate the pharmacokinetic properties such as ADMET toxicity of the

compounds [26]. ProTox-II webserver used for selected molecules were subjected to various

toxicity screening endpoints models. That is a web server designed to predict the toxicity of

various toxicological endpoints for different chemical compounds [27].

Results

This study was done to recognize the novel drug targets in S. maltophilia. In this study, the

subtractive genomic approach is employed for seeking therapeutic target proteins which are
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indispensable for the bacterial survival but absent in the host. The insight of that approach is

shown (Fig 2).

Selection of paralogous sequences

The proteome of S. maltophilia strain was based on 4365 proteins which were subsequently

subjected to the CD-HIT server that facilitated selection of paralogous sequences. It was fol-

lowed by excluding paralogous sequences showing similarity more than 60% thereby retaining

back to 4315 non paralogous proteins.

Selection of essential proteins

The screening of 4315 non-paralogous proteins using Geptop 2.0 server resulted in 407 essen-

tial proteins. Actually designing of antibacterial compounds relies on docking and hinders

with essential proteins [28].

Selection of non-homologous proteins

The cellular proteins of humans evolved to be homologous with bacteria [29] that necessitate

the therapeutics to be non-homologous to humans to avoid cross-reactivity. Out of 407 pro-

teins subjected to BlastP, 85 revealed as non-homologous.

Metabolic pathway analysis

The analysis of those 85 non homologous proteins appeared to be involved in 33 pathways

explored with KEGG. Among these 33 pathways, 13 were predicted to be particular for the S.

maltophilia and remaining to be common for the S. maltophilia as well as host. Briefly, 27

essential proteins are revealed to participate in 13 pathways (Table 1). Among these 27 proteins

Fig 2. Summary for the detection of novel drug targets in S. maltophilia. This shows protein counts of selected

paralogous sequences, essential proteins, non-homologous proteins and drug target proteins.

https://doi.org/10.1371/journal.pone.0261111.g002
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Table 1. Essential non-homologous proteins involved in 27 unique metabolic pathways.

SrNo. Protein Name (ID) Unique Pathway Common pathway

1 Bifunctional protein (B2FHY5) Sml00541-O-Antigen nucleotide sugar

biosynthesis

Sml00520-Amino sugar and nucleotide sugar

metabolism

Sml01100-Metabolic pathways

2 Ubiquinone/menaquinone biosynthesis C-methyl

transferase (B2FUU6)

sml01110-Biosynthesis of secondary

metabolites

Sml01240 -Biosynthesis of cofactors

Sml00130-Ubiquinone and other terpenoid-

quinone biosynthesis

sml01100 -Metabolic pathways

3 UDP-N-acetyl glucosamine 1-carboxyvinyltransferase

(B2FRX1)

Sml00550-Peptidoglycan biosynthesis sml01100-Metabolic pathways

Sml00520-Amino sugar and nucleotide sugar

metabolism

4 D-alanine—D-alanine ligase (B2FNN9) Sml01502-Vancomycin resistance

Sml00550-Peptidoglycan biosynthesis

Sml00473-D-Alanine metabolism

5 Phosphatidate cytidylyltransferase (B2FIA3) sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml00564-Glycerophospholipid metabolism

6 B2FNL3 sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml01240- Biosynthesis of cofactors

sml00740-Riboflavin metabolism

7 UDP-N-acetylmuramate—L-alanine ligase (B2FNN8) Sml00550-Peptidoglycan biosynthesis Sml00471-D-Glutamine and D-glutamate

metabolism

sml01100-Metabolic pathways

8 UDP-2,3-diacylglucosamine hydrolase (B2FQP4) Sml00540- Lipopolysaccharide biosynthesis sml01100-Metabolic pathways

9 Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine

O-acyltransferase (B2FHN6)

Sml01503- Cationic antimicrobial peptide

(CAMP) resistance.

Sml00540- Lipopolysaccharide biosynthesis

10 2-Dehydro-3-deoxyphosphooctonate aldolase (B2FK85) Sml00540- Lipopolysaccharide biosynthesis sml01100-Metabolic pathways

11 Histidine biosynthesis bifunctional protein (B2FPM1) sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml01230-Biosynthesis of amino acids

sml00340-Histidine metabolism

12 Shikimate kinase (B2FQI7) sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml01230-Biosynthesis of amino acids

sml00400-Phenylalanine, tyrosine and tryptophan

biosynthesis

13 Acetyl-coenzyme A carboxylase (B2FHN1) sml01110-Biosynthesis of secondary

metabolites

Sml00061-Fatty acid biosynthesis

sml01120-Microbial metabolism in diverse

environments

sml01100-Metabolic pathways

sml01200- Carbon metabolism

sml01212-Fatty acid metabolism

sml00640- Propanoate metabolism

sml00620- Pyruvate metabolism

14 Glutamyl-tRNA reductase (B2FQ15) sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml01120-Microbial metabolism in diverse

environments

Sml01240 -Biosynthesis of cofactors

Sml00860- Porphyrin and chlorophyll

metabolism

15 3-Methyl-2-oxobutanoate hydroxymethyltransferase

(B2FL67)

sml01110-Biosynthesis of secondary

metabolites

Sml00770- Pantothenate and CoA biosynthesis

sml01100-Metabolic pathways

Sml01240 -Biosynthesis of cofactors

16 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase

(B2FU83)

sml01110-Biosynthesis of secondary

metabolites

Sml00900- Terpenoid backbone biosynthesis

sml01100-Metabolic pathways

(Continued)
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which were analyzed in KEGG database, 24 proteins were found to participate in common

metabolic pathways and rest of three namely chromosomal replication initiator protein DnaA,

D-alanine-D-alanine ligase and Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-

acyltransferase were observed to participate in the pathogen specific pathways. Hence, contin-

ued further for analysis.

Subcellular localization prediction

The prediction of subcellular location is a quick way to obtain protein as it facilitates the steps

required to purify in the experimental setup. That is done by determining its location i.e.

whether cytoplasmic or membranous. The prediction retrieved via PSORTb revealed those

proteins to be cytoplasmic in nature (Table 2).

Table 1. (Continued)

SrNo. Protein Name (ID) Unique Pathway Common pathway

17 Chorismate synthase (B2FP01) sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml01230-Biosynthesis of amino acids

sml00400-Phenylalanine, tyrosine and tryptophan

biosynthesis

18 Chromosomal replication initiator protein DnaA

(B2FUW1)

Sml02020- Two-component system

19 3-deoxy-manno-octulosonate cytidylyltransferase (B2FK23) Sml00540- Lipopolysaccharide biosynthesis sml01100-Metabolic pathways

20 Tetraacyldisaccharide 4’-kinase (B2FK22) Sml00540- Lipopolysaccharide biosynthesis sml01100-Metabolic pathways

21 Oxygen-dependent coproporphyrinogen-III oxidase

(B2FND0)

sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml00860-Porphyrin and chlorophyll metabolism

Sml01240 -Biosynthesis of cofactors

22 Pantothenate synthetase (B2FL68) sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml00770-Pantothenate and CoA biosynthesis

Sml01240 -Biosynthesis of cofactors

Sml00410- beta-Alanine metabolism

23 Protein translocase subunit SecA (B2FPB2) Sml02024- Quorum sensing Sml03060- Protein export

Sml03070- Bacterial secretion system

24 Acetyl-coenzyme A carboxylase carboxyl transferase

subunit beta (B2FNY8)

sml01110-Biosynthesis of secondary

metabolites

sml01100-Metabolic pathways

sml01120-Microbial metabolism in diverse

environments

sml01212-Fatty acid metabolism

sml00640- Propanoate metabolism

sml00620- Pyruvate metabolism

Sml00061-Fatty acid biosynthesis

sml01200- Carbon metabolism

25 Succinyl-diaminopimelate desuccinylase (B2FIC0) Sml00300- Lysine biosynthesis sml01100-Metabolic pathways

sml01120-Microbial metabolism in diverse

environments

sml01230-Biosynthesis of amino acids

26 4-hydroxy-tetrahydrodipicolinate reductase (B2FQ70) Sml00300- Lysine biosynthesis sml01100-Metabolic pathways

sml01120-Microbial metabolism in diverse

environments

sml01230-Biosynthesis of amino acids

sml01110-Biosynthesis of secondary

metabolites

sml00261- Monobactam biosynthesis

27 Glycerol-3-phosphate dehydrogenase [NAD(P)+]

(B2FHD8)

sml01110-Biosynthesis of secondary

metabolites

Sml00564-Glycerophospholipid metabolism

https://doi.org/10.1371/journal.pone.0261111.t001
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Selection of drug-able proteins

Those 3 putative proteins were subjected to the Drug Bank. Two of them were found to be sig-

nificantly similar to drug entries of the database, either to FDA approved or experimental

drugs. These might act as potential novel drug targets (Table 3).

Structural analysis of target protein

The analysis of primary structure revealed that the D-alanine—D-alanine ligase protein and

Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase harbor the molecu-

lar mass of 21.07 kDaand 28.1 kDa, respectively. Moreover, their isoelectric points were 4.87

and 6.47, grand averages of hydropathic (GRAVY) were 0.004 and -0.100, terminating amino

acid at the N-terminus of protein was lysine and methionine and the instability indices were

30.98 and 18.93, respectively. As these proteins carried isoelectric points below 7 so that is an

indication of positively charged proteins. Moreover, the GRAVY computed values explained

them as hydrophilic and unstable.

Further, the secondary structure of Acyl-[acyl-carrier-protein]—UDP-N acetyl glucos-

amine O-acyltransferase and D-alanine-D-alanine ligase protein showed that they have

27.38% and 32.19% of alpha helices, 24.33% and 18.44% extended, and 48.29% and 49.38% of

random coils, respectively. Both proteins displayed no beta turns.

The signal peptide probability values of Acyl-[acyl-carrier-protein]—UDP-N acetyl glucos-

amine O-acyltransferase and D-alanine-D-alanine ligase were obtained by SignalP. These values

were 0.012 and 0.021, respectively. That was indicating the absence of signal peptide in these pro-

tein targets. The TMHMM showed absence of transmembrane helices in both putative proteins.

The 3D structure prediction and validation

The structures of both proteins Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine

O-acyltransferase and D-alanine-D-alanine ligase were predicted by the Swiss-Model with

Table 2. Sub cellular localization prediction of proteins involved in unique metabolic pathways.

Protein ID (Protein Name) Localization

prediction

Drug-able

B2FNN9 (D-alanine—D-alanine ligase) Cytoplasmic Yes

B2FHN6 (Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-

acyltransferase)

Cytoplasmic Yes

B2FUW1 (Chromosomal replication initiator protein DnaA Cytoplasmic Yes

https://doi.org/10.1371/journal.pone.0261111.t002

Table 3. Drug-able target proteins analysed via DrugBank.

Sr.

No.

Accession

No.

Protein Name DrugBank

ID

Drug Name Category Organism

1 B2FNN9 D-alanine—D-alanine ligase DB07805 3-CHLORO-2,2-DIMETHYL-N-[4

(TRIFLUOROMETHYL)PHENYL]PROPANAMIDE

Experimental

Approved

Staphylococcus aureus
(strainCOL)DB00260

Escherichia coli (strain

K12)

Cycloserine

2 B2FHN6 Acyl-[acyl-carrier-protein]—

UDP-N acetyl glucosamine

O-acyltransferase

DB01694 D-tartaric acid Experimental Helicobacter-pylori
(strain ATCC 700392

/26695)
DB08558 2-HYDROXYMETHYL-6-

OCTYLSULFANYL-TETRAHYDRO-PYRAN-

3,4,5-TRIOL

Experimental

Helicobacter pylori
(strain ATCC 700392 /

26695)

https://doi.org/10.1371/journal.pone.0261111.t003

PLOS ONE Subtractive genomics to identify drug targets against Stenotrophomonas maltophilia

PLOS ONE | https://doi.org/10.1371/journal.pone.0261111 December 15, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0261111.t002
https://doi.org/10.1371/journal.pone.0261111.t003
https://doi.org/10.1371/journal.pone.0261111


confidence level of 100% and coverages were 92% and 98%, respectively. The SAVES analyzed

those models by visualizing through Verify 3D, WHATCHECK, Prove, PROCHECK and

ERRAT. The RAMPAGE server generated the Ramachandran plot for Acyl-[acyl-carrier-pro-

tein]—UDP-N acetyl glucosamine O-acyltransferase. This displayed that 96.9% of residues

were found in the most favored regions, 0.3% of residues in additional allowed regions, 2.8%

of residues in generously allowed region and none in disallowed region. According to the

Ramachandran plot generated for D-alanine-D-alanine ligase, 85.8% of residues were found in

the most favored region, while 13.7% and 13.2% of amino acids resided in additional allowed

regions, and 0.8% and 1.0% of residues are found in generously allowed region and none in

disallowed region (Figs 3 & 4).

Fig 3. Structure of the D-alanine-D-alanine ligase protein. (A) Three dimensional structure of D-alanine-D-alanine

ligase protein. (B) Ramachandran Plot of D-alanine-D-alanine ligase protein.

https://doi.org/10.1371/journal.pone.0261111.g003

Fig 4. Structure of the Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase protein. (A)

Three dimensional structure of Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase protein. (B)

Ramachandran Plot of Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase protein.

https://doi.org/10.1371/journal.pone.0261111.g004
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Molecular docking

The minimum binding energy and scoring function of each docked ligand are shown

(Table 4). The LigX interaction diagrams showed that Acyl-[acyl-carrier-protein]—UDP-N

acetyl glucosamine O-acyltransferase (B2FHN6) interacts with the enterodiol, aloin, ononin

and rhinacanthinF having binding scores -11.36, -17.44, -15.42 and -12.86, respectively. While

D-alanine-D-alanine ligase (B2FNN9) interacted with ligands including rhazin, alkannin beta,

aloesin and ancistrocladine having the docking scores -12.58, -12.57, -14.39 and -14.41, respec-

tively. All these compounds exhibited RMSD below 3 which is an indication of the sound

interaction. The 2D and 3D interaction diagrams are displayed (Figs 5 & 6).

ADMET/Drug scans results

The drug likeliness of compounds was predicted through the Molinspiration server, based on

the Ro5. The selected candidates indicate zero violations to Lipinski’s Ro5 and showed accept-

able drug-like properties (Table 5). All candidate compounds were assessed for the pharmaco-

kinetic properties through the AdmetSAR server for drug likeliness (Table 6).

Table 4. The table displays the docking score and RMSD value for the compounds.

PubChem ID Compound Name S-score RMSD_Refine

115089 Enterodiol -11.36 3.0

14989 Aloin -17.44 1.7

442813 Ononin -15.42 2.5

10411189 RhinacanthinF -12.86 1.4

21160714 Rhazin -12.58 2.4

442720 Alkannin beta, beta-dimethylacrylate -12.57 1.4

160190 Aloesin -14.39 2.6

https://doi.org/10.1371/journal.pone.0261111.t004

Fig 5. 2D and 3D interaction diagram of Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-

acyltransferase protein. The structure shows complex with Enterodiol.

https://doi.org/10.1371/journal.pone.0261111.g005
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Toxicity assessment

The rat oral acute toxicity (LD50) as mg/kg, toxicity classes (I–VI) predicted with accuracy in

percent, the prediction of hepatotoxicity and cytotoxicity with their probability are indicated

(Table 7).

Among these compounds, enterodiol, ononin and rhinacanthinF exhibited the highest tox-

icity. Those belong to the class V i.e. prescribed as harmful when swallowed

(2000< LD50� 5000) with accuracy of 69.26%, 64.71% and 68.7%, respectively. While ono-

nin predicted to have class III (50< LD50� 300) prescribed as toxic if swallowed with accu-

racy of 68.07%. Moreover, other compounds like alkannin beta, aloesin and ancistrocladine

belonging to class IV i.e prescribed as harmful after swallowing (300 < LD50� 2000) with

accuracy of 72.9%, 67.38% and 69.26%, respectively. While the compound Rhazin was pre-

dicted to have class III (50< LD50� 300) prescribed as toxic if swallowed with accuracy of

68.07%. All these compounds were predicted to show hepatotoxicity and cytotoxicity inactive

with probability values are shown (Figs 7 & 8).

Fig 6. 2D and 3D interaction diagram of D-alanine-D-alanine ligase protein. The structure shows complex with

Rhazin.

https://doi.org/10.1371/journal.pone.0261111.g006

Table 5. Results of inhibitors examined for Lipinski rule.

PubChem ID Compound Name Molecular Weight Number of HBA Number of HBD MlogP

115089 Enterodiol 302.37 4 4 2.10

14989 Aloin 418.40 7 3 0.89

442813 Ononin 430 9 4 0.65

10411189 RhinacanthinF 444.44 9 0 2.52

21160714 Rhazin 352.43 4 2 2.57

442720 Alkannin beta, beta-dimethylacrylate 370.40 6 2 3.67

160190 Aloesin 394.38 9 5 -0.55

161741 Ancistrocladine 407.51 5 2 5.14

https://doi.org/10.1371/journal.pone.0261111.t005

PLOS ONE Subtractive genomics to identify drug targets against Stenotrophomonas maltophilia

PLOS ONE | https://doi.org/10.1371/journal.pone.0261111 December 15, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0261111.g006
https://doi.org/10.1371/journal.pone.0261111.t005
https://doi.org/10.1371/journal.pone.0261111


Discussion

Stenotrophomonas maltophilia (strain k279a) is a multidrug-resistant (MDR) bacterium. There

is currently no effective vaccine for that but frequent and thorough hand washing can prevent

person-to-person transmission [1]. Recent advances in the disciplines of bioinformatics as well

as computational biology have created a variety of approaches to drug designing and in silico
analysis, reducing the time and expenses associated with trial and error of ions devoted to

drug development [30].

The whole proteome of S. maltophilia (strain k279a) contained 4365 proteins, was analyzed

through CD-HIT that eliminated all the redundant proteins and provided a group of 4315

non-redundant proteins. For the survival of bacteria, essential genes are necessary [31]. Essen-

tial genes are preferred targets for vaccine development and antibacterial drugs [32]. Thus 407

essential genes were screened from non-redundant proteins. These genes could be homolo-

gous to human [33]. Thus, targeting such genes may interfere with human metabolism and

might be fatal. The possibility of cross-reactivity as well as adverse events might be reduced by

Table 6. ADMET properties for compounds as predicted by admetSAR server.

Compounds Enterodiol Aloin Ononin RhinacanthinF Rhazin Alkannin beta, beta-

dimethylacrylate

Aloesin Ancistrocladine

Absorption

Blood Brain Barrier + - - - + - - -

Human Intestinal

Absorption

+ + - + + + + +

Metabolism

P-glycoprotein substrate - - - - + - - +

CYP1A2 Inhibitor No No No Yes Yes Yes No No

CYP 450 2C9 Inhibitor No No No Yes No Yes No No

CYP 450 2D9 Inhibitor No No No No No No No Yes

CYP 450 2C19 Inhibitor Yes No No Yes No Yes No No

CYP 450 3A4 Inhibitor No No No Yes No No Yes Yes

Distribution

Subcellular Localization Mitocho-

ndria

Mitocho-

ndria

Mitochon-

dria

Mitochon-dria Mitochon-

dria

Mitochon-dria Mitochon-

dria

Mitochon-dria

Toxicity

AMES Toxicity No No No No No No No No

https://doi.org/10.1371/journal.pone.0261111.t006

Table 7. Prediction of class and accuracy, organ toxicity, oral acute toxicity and genetic toxicity endpoints of candidate compounds.

Sr.

No

Compound name Oral LD50 value

(mg/Kg)

Predicted toxicity

class

Prediction accuracy

(%)

Hepato-

toxicity

Proba-

bility

Cytotoxicity Proba-

bility

1 Enterodiol 2950 V 69.26% Inactive 0.80 Inactive 0.93

2 Aloin 221 III 68.07% Inactive 0.85 Inactive 0.83

3 Ononin 3100 V 64.71% Inactive 0.83 Inactive 0.58

4 RhinacanthinF 4000 V 68.07% inactive 0.83 Inactive 0.95

5 Rhazin 300 III 68.07% Inactive 0.85 Inactive 0.69

6 Alkannin beta, beta-

dimethylacrylate

1000 IV 72.9% Inactive 0.54 Inactive 0.88

7 Aloesin 832 IV 67.38% Inactive 0.80 Inactive 0.78

8 Ancistrocladine 450 IV 69.26% inactive 0.64 Inactive 0.51

https://doi.org/10.1371/journal.pone.0261111.t007
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the selection of non-homologous proteins that are not found in Homo sapiens [34]. To avoid

such undesirable circumstances and toxicity, we screened 85 non-homologous proteins. It

might be the best strategy to target and develop inhibitors against non-homologous sequences

for the production of new drugs [35].

Fig 7. Graphical representation of predicted dose value distribution for Acyl-[acyl-carrier-protein]—UDP-N

acetyl glucosamine O-acyltransferase protein. In this graph, x-axis represents distribution of dose value and y-axis

represents fraction of compounds.

https://doi.org/10.1371/journal.pone.0261111.g007

Fig 8. Graphical representation of predicted dose value distribution for D-alanine-D-alanine ligase. In this graph,

x-axis represents distribution of dose value and y-axis represents fraction of compounds.

https://doi.org/10.1371/journal.pone.0261111.g008
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Only two proteins Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransfer-

ase and D-alanine-D-alanine ligase were involved in a unique metabolic pathway. Different

tools were applied to determine the sequence and structural features as well as functions and

localization of that protein. Both proteins were found to be cytoplasmic as predicted by

PSORTb [36]. A proper identification of the potential drug targets and inhibitors is crucial for

the treatment of this disease due to their emerging multidrug resistance (MDR) patterns. In

this study, a systematic subtractive approach was implemented for the identification of novel

therapeutic targets of S. maltophilia through genome-wide metabolic pathway analysis of the

essential genes and proteins. ADMET analyses were also made for the identification of poten-

tial inhibitors as well. Then, we found unique proteins as novel targets. Therapeutic targets

and its inhibitors might give some breakthrough to treat Stenotrophomonas maltophilia effi-

ciently in in vitro [37].

An online tool, Swiss-model was employed to model the 3D structure of Acyl-[acyl-carrier-

protein]—UDP-N acetyl glucosamine O-acyltransferase and D-alanine-D-alanine ligase pro-

teins [38]. The prediction of 3D structures provided the great aid in studying protein func-

tions, dynamics, ligand interactions and other protein components [39]. Analysis of the

Ramachandran plot showed that most residues were present in the acceptable as well as

favored areas and few residues in the disallowed regions [40]. The ERRAT quality factor and z-

score proved that structures of the Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-

acyltransferase and D-alanine-D-alanine ligase protein were of good quality.

Molecular docking was performed to find out the compounds exhibiting the best residue

interaction with the target protein [26]. Out of 5000 docked molecules, eight (8) top molecules

for both proteins: enterodiol, aloin, ononin, rhinacanthinF, rhazin, alkannin beta, aloesin and

ancistrocladine were selected based on low score i.e. rmsd < 3 and different interacting resi-

dues. Based on "Lipinski’s Rule of Five" molecular profile and drug probability of these eight

compounds were assessed. Those compounds were then tested for penetration of the blood-

brain barrier (BBB), Human intestinal absorption (HIA) as well as AMES monitoring. Predict-

ing the ADMET properties is a significant indicator of the behavior, toxicity level and fate of

the drug candidate in the human body [41]. It provides a likelihood of the candidate’s ability

to enter the intestinal absorption, metabolism, blood-brain barrier, subcellular localization

and most significantly the level of harm that it can cause to the body [42]. The superfamily

cytochrome P450 consists of isoforms such as CYP2A6, CYP1A2, CYP2C9, CYP2D6,

CYP2C19, CYP3A4 and CYP2E1 which are involved in drug metabolism as well as hepatic

clearance. So, inhibiting the cytochrome P450 isoforms can result in drug-drug interaction

that hinders the metabolism of concomitant drugs that cause its accumulation to toxic levels

[43]. Admet SAR showed that drugs exhibit localization in mitochondria. The compound

localized in mitochondria show no toxicity. The ADMET profile of those compounds indi-

cated that they have no adverse effects on absorption [44].

Various toxicity modules were subjected to the eight compounds obtained after the virtual

screening [42]. Toxicity evaluation results revealed that none of the compounds was found to

be cytotoxic, hepatotoxic as well as mutagenic [43].

Conclusions

The subtractive genomics approach in our study has indicated two proteins of S. maltophilia as

novel drug targets. The probability of cross reactivity seem to be ruled out between drugs and

host proteins because there was no similarity between the proteome and ‘anti-targets’. Thus

development of the putative target against S. maltophilia might be significantly effective for the

eradication of otherwise resulting disease.
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