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A B S T R A C T

Automatic and rapid screening of COVID-19 from the radiological (X-ray or CT scan) images

has become an urgent need in the current pandemic situation of SARS-CoV-2 worldwide.

However, accurate and reliable screening of patients is challenging due to the discrepancy

between the radiological images of COVID-19 and other viral pneumonia. So, in this paper,

we design a new stacked convolutional neural network model for the automatic diagnosis

of COVID-19 disease from the chest X-ray and CT images. In the proposed approach, differ-

ent sub-models have been obtained from the VGG19 and the Xception models during the

training. Thereafter, obtained sub-models are stacked together using softmax classifier.

The proposed stacked CNN model combines the discriminating power of the different

CNN’s sub-models and detects COVID-19 from the radiological images. In addition, we col-

lect CT images to build a CT image dataset and also generate an X-ray images dataset by

combining X-ray images from the three publicly available data repositories. The proposed

stacked CNN model achieves a sensitivity of 97.62% for the multi-class classification of X-

ray images into COVID-19, Normal and Pneumonia Classes and 98.31% sensitivity for bin-

ary classification of CT images into COVID-19 and no-Finding classes. Our proposed

approach shows superiority over the existing methods for the detection of the COVID-19

cases from the X-ray radiological images.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic has

put the livelihoods and health of the massive population in a

critical position. It has led to a disturbance in the public life of
the world population. The severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) belongs to the family of coron-

avirus, which gets transmitted to the people based on the

infection in the form of direct contact or fomites. The primary

symptoms of coronavirus infection are fever, cough, and
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fatigue. In several cases, coronavirus causes severe respira-

tory problems like Pneumonia, lung disorders, and kidney

malfunction. The virus has serious consequences as its serial

interval is 5 to 7.5 days, and the reproduction rate is 2 to 3 [1]

people. The coronavirus infection can incite SARS (Severe

Acute Respiratory Syndrome), which might unfold serious

health impacts. This pandemic has brought new challenges

to the medical world. People are not getting wards, ventila-

tors, and even there is a shortage of doctors and nurses in

hospitals. It also affected the diagnosis and treatment of non-

communicable diseases [2]. A critical step to fight against the

COVID-19 is to identify the infected people so that they get

immediate treatment and isolate them to control the further

spread of the infection.

The COVID-19 panic has increased due to the unavailabil-

ity of fast and accurate diagnosis systems to test the infected

people. According to the World Health Organization, the diag-

nosis of COVID-19 cases must be confirmed by the reverse

transcription-polymerase chain reaction (RT-PCR) [3]. While

RT-PCR has become a standard tool for confirmation of

COVID-19, but it is a very time-consuming, laborious, and

manual process, and there is a limitation of availability of

diagnostic kits. The availability of COVID-19 testing kits is

limited as compared to the increasing amount of infected

people; hence there is a need to rely on different diagnosis

methodologies.

The coronavirus targets the epithelial cells that affect

patient’s respiratory tract, which can be analyzed by the radi-

ological images of a patient’s lungs. Some early studies also

show that patients present anomalies in chest X-ray and CT

scan images, which are the typical characteristics of COVID-

19 infected patients [4–6]. Hence, the development of the

computer-aided diagnosis system for the automatic analysis

of radiological images (CT scan or X-ray) can be very helpful

in identifying infected patients at a faster rate [7].

Recently, deep learning-based computer aided diagnosis

(CAD) systems have shown great success in the automated

detection of COVID-19 disease using chest X-ray images.

Wang et al. [8] have proposed a COVID-Net model based on

the projection-expansion-projection design pattern for

COVID-19 cases detection from the X-ray images. Ucar et al.

[9] proposed a SqueezeNet convolutional neural network

(CNN) model with Bayesian optimization for the classification

of chest X-ray images into normal, pneumonia and COVID-19

classes. Jain et al.[10] have applied pre-trained deep networks

in two stages. In the first stage, the ResNet50 model is used to

classify the X-ray images into viral-induced pneumonia,

bacterial-induced pneumonia, and normal cases. Further, in

the second stage, they have detected COVID-19 cases from

positive viral-induced pneumonia cases. Similarly, Apos-

tolopoulos et al. [11] have evaluated the performances of

state-of-the-art pre-trained CNNs on the chest X-ray images

for COVID-19 detection, and they have achieved the best per-

formance with VGG19 and MobileNet-v2 models. Joshi et al.

[12] have used YOLO-v3 based-architecture to detect the

COVID-19 from the X-ray images, in which they have used

DarkNet-53 as a backbone network. They have developed

their method for X-ray image classification in binary class

as well as in multi-classes.
In this study, a new stacked convolutional neural network

has been designed for the automatic diagnosis of COVID-19

disease from the chest X-ray and CT scan images. The contri-

bution of this work are as following:

� The proposed stacked generalization approach hypothe-

sises that different CNN sub-models learn different non-

linear discriminative features and different levels of

semantic image representation. Thus, a new powerful

model can be developed by incorporating the best predic-

tion from the different CNN sub-models. Therefore, in

the proposed method, different sub-models are ensemble

together by using Softmax classifier to build a reliable

and accurate model for COVID-19 detection.

� We fine-tune VGG19 and Xceptionmodels on the X-ray and

CT images. Thereafter, different sub-models have been

obtained from the Xception and VGG19 models during

the training to develop a stacked ensemble model.

� We investigate the performance of six pre-trained CNN

models for the detection of COVID-19 from the chest X-

ray images.

� We also investigate and compare the performances of var-

ious classifiers to build a stacked ensemble model with dif-

ferent classifiers.

� We collect CT images of COVID-19 patients to build a CT

images dataset and also generate a dataset of chest X-ray

images with the combination and modification of three

publicly available datasets [13–15].

The organization of this paper as follows: Section 2 pre-

sents the related work. Section 3 describes the proposed

stacked CNN model. Section 4 describes the COVID19CXr

and COVID19CTs datasets, details the experimental results

and performance comparison. Finally, the conclusion is

drawn in Section 5.

2. Related work

Over the past 40 years, many computer-aided systems have

been developed for the diagnosis of lung diseases [16], and

these systems have shown promising results for automatic

detecting lung abnormality from the radiological images

[17,18]. Recently, automatic CAD of COVID-19 using radiolog-

ical images has drawn a lot of attention of researchers, and

as a result, several approaches have been introduced in the

literature. They have published a series of research articles

[19,20] demonstrating the CAD systems for the detection of

COVID-19 using radiological images. Xu et al. [21] have stud-

ied various CNN models technically and proposed a model

with the combination of 2D and 3D CNN models for the clas-

sification of the CT images into COVID-19, Influenza viral

pneumonia, or no-infection. Their approach achieved a sensi-

tivity of 98.2% and specificity of 92.2%. Shah et al. [22] have

developed a CTnet-10 model to classify CT scans images into
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COVID-19 and non-COVID-19 classes. They have also tested

the different pre-trained CNN networks, such as DenseNet-

169, VGG-16, ResNet-50, Inception-V3, and VGG-19, for

COVID-19 detection. They reported the best accuracy of

94.52% with the VGG19 model. Similarly, Kassania et al. [23]

have used several CNN models for feature extraction from

the CT and X-ray images, and various machine learning clas-

sifiers have been applied on the extracted feature for classify-

ing them into COVID-19 and healthy classes. They reported

the best classification accuracy of 99% with DenseNet121

features and Bagging tree classifier.

An attention-based deep 3D multiple instance learning-

based approach has been proposed by Han et al. [24] for auto-

matic screening of COVID-19 from the CT images. Their algo-

rithm achieved an accuracy of 97.9%. Afshar et al. [25]

developed a capsule network-based framework for the classifi-

cation of the X-ray images into Normal, bacterial, Non-COVID,

and COVID-19 cases. The authors reported accuracy of 95.7%

and sensitivity of 90%. Ardakani et al. [26] have presented the

application of deep learning in COVID-19 detection using CT

images, in which they have tested the performances of ten

pre-trained CNN models. Their experiment results showed

that ResNet101 achieved the best AUC of 0.99 among all pre-

trained networks. Benmalek et al. [7] have compared the per-

formances of CT scans and X-ray images for COVID-19 disease

detection using different pre-trained CNN models, namely

Resnet-18, Inception-V3, and MobileNet-V2. They have

reported the best sensitivity of 98.6% for CT scans with

ResNet-18 and the best sensitivity of 92.3% for X-ray images

with Inception-V3. Mishra et al. [27] have developed an algo-

rithm based on VGG16 and ResNet50 architectures, using the

transfer learning for COVID-19 detection from the CT scans.

Their proposed approach achieved an accuracy of 99% for bin-

ary classification with both VGG16 and ResNet50 models and

accuracyof 88.52%formulti-class classificationwithResNet50.

Similarly, Narin et al. [28] have applied ResNet50,

Inception-V3 and Inception-ResNet-V2 using transfer learn-

ing for classification of the X-ray images into Normal and

COVID-19 classes. This method has achieved good perfor-

mance with an accuracy of 98% for ResNet50. However, the

number of X-ray images is only 100, which is very less for

developing deep learning models. Oh et al. [29] have proposed

a patch-based approach to train the ResNet18 model using

image patches that have been extracted from the chest

X-ray images. For decision making, they used the majority

voting strategy, which resulted in an accuracy of 88.9%. An

objected detection based DarkCovidNet model has been pro-

posed by Ozturk et al. [30] for automatic detection of

COVID-19 cases from the X-ray images. They have reported

an accuracy of 98.08% for binary classification of X-ray images

into COVID-19 and no-findings. For the multi-class classifica-

tion of X-ray images into no-findings, COVID-19, and pneu-

monia, their approach achieved an accuracy of 87.02%.

Pereira et al. [31] have proposed a hierarchical classification

approach, in which they extracted deep features by

Inception-V3 and tested texture descriptors. They investi-

gated early and late fusion techniques for combining the

strength of descriptors and classifiers. Their hierarchical clas-

sification approach achieved an F1-Score of 0.89 for the

COVID-19 identification in the X-ray images. Sethy et al. [32]
extracted deep features of X-ray images from the pre-

trained CNN, and support vector machine (SVM) has been

applied to the extracted features to classify X-ray images.

The authors achieved an accuracy of 95.38% using ResNet50

with the SVM classifier.

Similarly,Minaeeetal. [33] alsoproposedamethodbasedon

transfer learning, in which they have fine-tuned four pre-

trained networks on the COVID-19 chest X-ray images. They

reporteda sensitivity rateof 98%.Castiglioni et al. [34]havepro-

posedensemble-basedmodel inwhich theyhaveensemble ten

pre-trained CNNs. Their proposed approach achieved a sensi-

tivity of 80%. Abraham et al. [35] have used multiple pre-

trained CNNs with CFS technique to extract the features from

the X-ray images, and authors have applied Bayesnet classifier

on the extracted features to detect COVID-19. Their proposed

approach achieved an accuracy of 91.16% for the classification

ofX-ray images intoCOVID-19 andnon-COVIDclasses. Panwar

et al. [36] haveproposed a deep learning-basednCOVnetmodel

to detect the COVID-19 cases from theX-ray images. They have

reported a classification accuracy of 88.10%. Nigam et al. [37]

have developed a Coronavirus diagnostic system using pre-

trained CNN architectures, namely VGG16, DenseNet121,

Xception, NASNet, and EfficientNet-B7. Authors reported an

accuracy of 93.48% with EfficientNet-B7 for the chest X-ray

image classification into COVID, normal, and other classes.

Ashour et al. [38] have proposed a ensemble-based bag-of-

features (BoF) model for classifying chest X-ray images into

normal andCOVID-19 classes. They haveused the gridmethod

for determining key points and speeded up robust features

(SURF) for feature extraction from the image. Their proposed

model achieved a classification accuracy of 98.6%.
3. Methodology

The convolution neural network is the driving concept of

deep learning algorithms in computer vision, which led to

outstanding performance in most of the pattern recognition

tasks such as image classification [39–42], object localization,

segmentation, and detection [43–45]. It has also shown its

superiority in the medical image analysis for image classifica-

tion and segmentation problems [46–49], especially in lung-

related diseases such as lung nodule detection [50], pneumo-

nia detection [51], and pulmonary tuberculosis [52]. CNN

automatically learns a low to the high level of useful feature

representations and integrates feature extraction and classifi-

cation stages in a single pipeline, which is trainable in an end-

to-end manner without requiring any manual design and

expert human intervention.

In this work, we have developed a deep learning-based

stacked convolutional neural network for the rapid screening

of COVID-19 patients using X-ray images. This study is a con-

tinuation and extension of the considerations presented in

the preprint [53] publication from the Internet. The proposed

COVID-19 detection method includes three modules, as

shown in Fig. 1. In the first module, a pre-trained VGG19 [39]

and Xception [54] models are fine-tuned on radiological

images for the diagnosis of COVID-19 disease. In the second

module, five CNN’s sub-models are obtained during the train-

ing of Xception and VGG19 models. The outputs of CNN’s



Fig. 1 – Block diagram of proposed Stacked CNN model.
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sub-models are stacked together by applying softmax classi-

fier for building a new final model for diagnosis of COVID-19

disease from CT and X-ray images. A detailed description of

the proposed approach is given in the following section:

3.1. Xception Model and Training

The Xception (Extreme Inception) model [54] is a state-of-the-

art CNN architecture for image classification, developed by
Google. It achieved outstanding results for image classifica-

tion, and it has outperformed the Inception-V3 on both Ima-

geNet ILSVRC and JFT datasets. Xception model is the 1st

runner-up in ILSVRC 2015 competition. The architecture of

Xception CNN consists a linear stack of depthwise separable

convolution layer (a depthwise convolution followed by a

pointwise convolution) with residual connections.

Top layer (Fully-connected layer and Softmax layer) of pre-

trained Xception model is replaced with the new top layer for
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fine-tuning it on the radiological images. Xception model has

been trained on the chest X-ray and CT images in a super-

vised manner. The cross-entropy loss function is used to cal-

culate the training error and which is minimized using the

RMSprop optimizer [55]. The cross-entropy loss function is

mathematically represented in Eqn. (1).

JðT;PÞ ¼ �
XC

i¼1

ti log pi

� � ð1Þ

where ti and pi are the target value and predicted probability

respectively, for each class /in C.

In the experiment, the hyper-parameter values are set as

follows: learning rate to 0.0001, the batch size to 16, and drop-

out probability to 0.15. We experimentally find that these are

the best suitable values of hyper-parameters for network

training.

3.2. VGG19 Model and Training

The VGG19 is a pre-trained network that is trained on the

ImageNet dataset, which achieved state-of-the-art perfor-

mance on ILSVRC Challenge 2014. It also achieves outstand-

ing performance on other image recognition datasets.

Hence, we have also used VGG19 along with Xception model

for generating sub-models.

To fine-tune the VGG19 on X-ray images, the top layers

(Fully-connected layer and Softmax layer) of the VGG19 net-

work are removed. We added new layers such as two Convo-

lutional layers with ReLU activation, a Global Average

Pooling layer, a Fully-connected layer, and a Softmax layer

at the top of the VGG19 network. We have used same hyper-

parameter values as have used for in the training of Xcep-

tion model.

3.3. Stacked Convolutional Neural Network

Stacked generalization [56] is an ensemble approach in which

a newmodel learns how to incorporate the best predictions of

multiple existing models. The proposed approach hypothe-

sized that different CNN’s sub-models learn non-linear dis-

criminative features and semantic image representation

from the images at different levels. Thus a stacked ensemble

CNN model will be generalized and highly accurate. This sec-

tion describes the proposed stacked convolutional neural net-

work. The pseudo-code of the sub-models generation process

is given in Algorithm 1. In this process, the COVID19CXr data-

set is divided into a training set, validation set, and test set.

The Xception and VGG19 are trained on chest X-ray images

of the training set for the 3192 iterations. During training of

VGG19, we have extracted the first sub-model#1 after 1596 iter-

ations and second sub-model#2 after completion of the train-

ing. Similarly, during fine-tuning of Xception, we have

extracted sub-model#3 after 1064 iterations, sub-model#4 after

2128 iterations, and sub-model#5 at last. To deal with the class

imbalance problem, we have assigned class weights while

training of the networks. In this process, class weight in ratio
of 20:1:1 is assigned to COVID-19, Pneumonia, and Normal

class, respectively.
Algorithm1: Sub-model Generation process

Input: X-ray images of the chest
Output: sub-models
1: Divide the dataset into a training set, validation set,
and test set.
2: Apply data augmentation on the training set.
3: Train VGG19 and Xception, and generate sub-
models:
Initialisation: class_weight = [0:20, 1:1, 2:1]
4: for i ¼ 1 to N do
5: Train(VGG19, train_img, img_label, class_weight)
6: if (i ¼¼ l1) then
7: sub-model#1 = save(VGG19)
8: end if
9: end for
10: sub-model#2 = save(VGG19)
11:for i ¼ 1 to M do
12: Train(Xception, train_img, img_label,
class_weight)
13: if (i ¼¼ l2) then
14: sub-model#3 = save(Xception)
15: else
16: if (i ¼¼ l3) then
17: sub-model#4 = save(Xception)
18: end if
19: end if
20: end for
21: sub-model#5 = save(Xception)
22: return sub-models

*Where N and M represent the total number of iterations for
training VGG19 and Xception, respectively, and l1,l2 and l3
are the constant.
The performance of the sub-models varies across complex

CAD systems, and it is reasonable to combine the strengths of

sub-models, which might result in increased overall accuracy.

Hence, we combined the sub-models predictions by applying

softmax classifier [57] to build a highly accurate and reliable

generalized model. The pseudo-code of the process of creat-

ing stacked CNN is presented in Algorithm 2.
Algorithm2: Stacked Convolutional Neural network
and X-ray image Classification

Input: Validation set, test set, and sub-models
Output: Classification results
1: Sub-models stacking:
2: for i ¼ 1 to lengthðvalidation setÞ do
3: for j ¼ 1 to 5 do
4: ½P1ji; P2ji; P3ji� = sub-model#(j).predict(valida
tion_img[i])
5: end for
6: P = concatenation(½P1ji; P2ji; P3ji�
7: end for
8: Training of softmax classifier on feature vector P
9: stacked_model = Train(P, validation_label)
10: Classification of the images
11: pred_label = classify(stacked_model, test_img)
12: return pred label
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shown following:
The mathematical definition of the softmax classifier is as

HðyijĥjÞ ¼
eĥ

j

Xc

i¼0

eĥ
j
c

ð2Þ

where ĥ ¼ w0x0 þw1x1 þw2x2 þ . . .þwcxc ¼
Xc

j¼0

WjXj ð3Þ

where yi denotes the associated label of image xi, c denotes

number of classes, W denotes weight matrix and HðyijĥjÞ is

estimated probability for each class i (where

i 2 f0 : COVID� 19; 1 : Normal; 2 : PneumoniagÞ of an image xi.

Next, to train the softmax classifier HðyijĥjÞ a dataset has

been paprared. We have prepared dataset by providing X-ray

images from the validation set to the each of the sub-

models, and collected output class scores (predictions). In this

case, each sub-model j is output three class scores S0ji; S1ji,

and S2ji corresponding to each class (COVID-19, Normal, and

Pneumonia classes) for the image x. We have concatenated

the output class scores of these five sub-models that results

the feature vector S of size 15 ð5� 3Þ. Thus, for the M X-ray

images of the validation set, we have created a dataset of

the size of ðM� 15Þ for the training of the softmax classifier.

After training of the stacked model, on new input image xi

from the test set, to make a prediction, pick the class i that

maximizes HðyijĥjÞ.

4. Experiments

This section presents the details of the dataset, evaluation

metrics, experiment results, and performance comparison.

4.1. Datasets

In order to evaluate the performance of the proposed Stacked

CNNmodel, we have build two datasets. The detailed descrip-

tion of the datasets are discussed in the following section:

4.1.1. COVID19CXr Dataset
We have generated first dataset of X-ray images, with the

combination and modification of three publicly available

datasets [13–15], which is referred to as COVID19CXr. The

COVID19CXr dataset includes 3040 chest X-ray images of

1930 patients. Out of 3040 images, 546 images of 332 patients

belong to a COVID-19 class, 1139 images of 1015 patients

belong to a Normal class and 1355 images of 583 patients

belong to a Pneumonia class. COVID-19 images are obtained

from the two publicly available repositories: 1) ‘‘Figure-1

COVID-19 Chest X-ray Dataset Initiative” [13] and 2) ‘‘COVID-19

Image Data Collection” [14]. Pneumonia and Normal cases chest

X-ray images are included from the ‘‘Mendeley data” [15]. Fig. 2

shows the sample chest X-ray images of COVID-19, Normal

and Pneumonia classes from the COVID19CXr dataset.

For the performance assessment of the proposed method,

we have used a 5-fold cross-validation strategy, where the

dataset has divided into a training, a validation, and a test

set, in the ratio of approximately 70:10:20, respectively, at

the patient label. To make sure the proposed model
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generalizes to unseen patients, we guarantee that patients

used to build the test set have not been used for the training

and validation sets. The same strategy has been repeated five

times to obtain the different folds. Table 1 gives details of the

distribution of images in the training set, validation set, and

test set corresponding to each fold. The training set andvalida-

tion set areusedwhile training thenetwork, andahold-out test

set is used for the performance assessment of the proposed

model.

4.1.2. COVID19CTs Dataset
We have built our second dataset by collecting Computed

tomography (CT) images of the COVID-19 patients from the

Noble Diagnostic Centre at Bhopal, India. We referred to it

as the COVID19CTs dataset. The COVID19CTs dataset consists

of 4645 chest CT scan images of 65 patients, including 30

females and 35 males. Patients included in the dataset are

from the age group of 12 to 94, with an average age of

46 years. COVID19CTs dataset includes 2249 images of 36

patients of positive COVID-19 cases. 2396 images of 29

patients of healthy (no-Findings) cases. Out of 36 COVID-19

patients, 9 patients have COVID-19 related one lung (unilat-

eral) acute respiratory distress syndrome (ARDS), and 27

patients have COVID-19 related bilateral ARDS. Sample CT

images of COVID19CTs dataset are represented in Fig. 3.

Obtained images size are varies from 515� 512 to 630� 512.

Hence, we have resized all the images to 224� 224.

For the performance assessment of the proposed model,

we have divided the dataset at patient label into a training

set, validation set, and test set in the ratio of 70:10:20.

Class-wise images and patient distribution corresponding to

the training set, validation set, and test set is given in Table 2.

4.2. Evaluation Metrics

To assess the performance of the proposed method, we have

used sensitivity, specificity, accuracy, positive prediction

value (PPV), F1-score, G-mean [58] and area under the ROC

curve (AUC) as evaluation metrics. The mathematical defini-

tion for the evaluation metrics is given below (in Eqn. (4),

Eqn. (5), Eqn. (6), Eqn. (7), Eqn. (8), and Eqn. (9) respectively):

Accuracy ¼ ðTPþ TNÞ
ðTPþ TNþ FPþ FNÞ ð4Þ

PPV ¼ TP
ðTPþ FPÞ ð5Þ

Sensitivity ¼ TP
ðTPþ FNÞ ð6Þ

Specificity ¼ TN
ðTNþ FPÞ ð7Þ

F1� Score ¼ 2TP
ð2TPþ FPþ FNÞ ð8Þ

G�mean ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SensitivityCOVID19 � SensitivityNormal � SensitivityPneumonia

3

q

ð9Þ



Fig. 2 – Sample X-ray images of Chest from the COVID19CXr dataset; where image in (a) COVID-19, (b) NORMAL,

(c) PNEUMONIA.

Table 1 – Images distribution in the training set, validation set and test set, corresponding to folds of COVID19CXr dataset.

Fold (s) Data set (s) COVID-19 Normal Pneumonia Total

Train Set 382 798 948 2128
Validation set 55 113 136 304

Fold1 Test Set 109 228 271 608
Train Set 381 799 951 2131
Validation set 54 113 135 302

Fold2 Test Set 111 227 269 607
Train Set 382 798 950 2130
Validation set 55 113 134 302

Fold3 Test Set 109 228 271 608
Train Set 380 797 945 2122
Validation set 56 114 136 306

Fold4 Test Set 110 228 274 612
Train Set 382 798 952 2132
Validation set 56 113 136 305

Fold5 Test Set 108 228 267 603
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Where true positive (TP), true negative (TN), false posi-

tive (FP), and false negative (FN) are the parameters of

the confusion matrix. The present study deals with a
multi-class problem; therefore, to get the overall

metric score of the method, the mean of each metric is

calculated.



Fig. 3 – Sample CT images of different patients from the COVID19CTs dataset.; where images in (a) COVID-19 and in (b) no-

Findings.

Table 2 – Images distribution in the training set, validation
set and test set of the COVID19CTs dataset.

Set (s) Class (s) Number of
Patients

Number of
images

Training COVID-19 24 1478
no-Findings 19 1606

Validation COVID-19 4 281
no-Findings 4 280

Test COVID-19 7 490
no-Findings 7 510

Total 65 4645
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4.3. Results and Discussion

In order to evaluate the performance of the proposed stacked

CNN, a set of experiments have been conducted. In the first

experiment, data augmentation techniques such as flip, rota-

tion, shear, zoom, and shift have been applied on a training

set of the both datasets. Thereafter, the augmented training

set is utilized for the training of the Xception model and

VGG19 model. In the second experiment, the stacked CNN

model is trained on the validation set. Finally, evaluation

results are produced on the test set. The same set of experi-

ments has been repeated five number of times for each fold.

The following sections represent the experimental results

and performance comparison.

4.3.1. Discrimination power of stacked CNN model on
COVID19CXr Dataset
Table 3 presents the diagnostic performance of stacked

CNN. The proposed model shows good discrimination abil-
ity for the diagnosis of the COVID-19 from the chest X-ray

images. The proposed model achieved mean sensitivity of

97.62%, the specificity of 98.52%, PPV of 97.36%, accuracy

of 97.27%, and G-mean of 97.59% to classify the COVID-19,

Normal and Pneumonia X-ray images. The proposed

method achieved good sensitivity; therefore, the chances

of miss classification of the COVID-19 positive cases are

very small.

For a deeper exploration of the performances of the pro-

posed method, the confusion matrix and receiver operating

characteristic (ROC) curve corresponding to each fold are

evaluated and are shown in Fig. 4 and Fig. 5, respectively.

It can be observed from the confusion matrix that the pro-

posed model produces very little false negatives and false

positives, specifically for the COVID-19 cases compared to

other cases of the COVID19CXr dataset. For COVID-19 cases,

it is essential to minimize the wrong diagnosis. On the other

hand, the ROC curve shows the stability of the proposed

stacked CNN model, and the present model achieved a mean

AUC of 0.998 for COVID-19 class and a mean AUC of 0.996 for

all categories.

Furthermore, we have investigated the computation time

(or prediction time) of the proposed model. The proposed

stacked CNN model requires, on average, 0.029 s of computa-

tion time to detect the disease from the image on the system

with 16 GB GPU (NVIDIA Tesla P100). On the other hand, it

requires, on average, 3.66 s to detect the disease from the

image on the system with 16 GB CPU (Intel(R) Core(TM) i5-

3470). The average computation time has been computed

based on the total time required to make the prediction of

612 images of the test set. Based on the prediction time, the

developed stacked CNNmodel is observed to be computation-

ally efficient.



Table 3 – Diagnosis performance of stacked CNN model on COVID19CXr dataset.

Fold (s) Sensitivity (in %) Specificity (in %) G-mean (in %) Accuracy (in %) PPV (in %) F1-score AUC

Fold1 98.96 99.37 98.95 98.85 99.02 0.989 1.00
Fold2 98.13 98.74 98.12 97.69 97.91 0.980 0.996
Fold3 98.28 99.07 98.27 98.19 98.13 0.982 0.995
Fold4 95.30 96.93 95.21 94.44 94.75 0.950 0.994
Fold5 97.42 98.51 97.42 97.18 97.01 0.972 0.996
Mean 97.62�1.26 98.52�0.85 97.59�1.29 97.27�1.52 97.36�1.46 0.975�0.01 0.996�0.002

Fig. 4 – Confusion matrix for the stacked CNN model on the different folds.
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4.3.2. Performance of stacked CNN model on COVID19CTs
Dataset
The performance of the Stacked CNN model on the COV-

ID19CTs dataset is represented in Table 4. It can be observed
from Table 4 that the proposed model achieved a sensitivity

of 98.31% and classification accuracy of 98.30% for the CT

images classification into COVID-19 and no-Findings classes.

Fig. 6 shows performance of proposed method in-terms of



Fig. 5 – ROC curve for stacked CNN model on the different folds.
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the confusion matrix and ROC curve. The proposed method

produces very few false positives and false negatives and it

achieves AUC of 0.999.

4.3.3. Performance comparison
Table 5 shows the performance comparison of the proposed

model, and pre-trained CNN models, namely ResNet50 [40],

Inception-V3 [59], Xception [54], DenseNet-121 [60], MobileNet

[61], and VGG19 on the COVID19CXr dataset. It is observed

from Table 5 that the proposed stacked CNN model achieves

the best G-mean of 97.59% compared to pre-trained CNNs.

The proposed model improves the G-mean by

0:72% � 17:26%. In terms of sensitivity, specificity, and PPV

the proposed model also shows performance improvement

by 0:70% � 16:65%;0:40% � 8:12%, and 0:65% � 14:59%, respec-
tively. While comparing performances of the VGG19 and

Xception with pre-trained networks, it is observed that

VGG19 and Xception have shows superiority over the pre-

trained networks in terms of G-mean and sensitivity. Table 6

represents the performance of the individual sub-models and

the proposed stacked CNN model for each fold. Our stacked

ensemble CNN model has incorporated the best prediction

of sub-models and achieved better performance than all the

sub-models for each fold. Furthermore, we have also investi-

gated and compared the performance of various classifiers to

build a stacked ensemble model with different classifiers.

Therefore, four classifiers, such as support vector machine

(SVM) [62], decision tree (DT)[63], neural network (NN), and

K-Nearest Neighbor (KNN) [64], have been applied to the out-

put of sub-models and obtained different stacked model.



Table 4 – Diagnosis performance of stacked CNN model on COVID19CTs dataset.

Sensitivity (in %) Specificity (in %) G-mean (in %) Accuracy (in %) PPV (in %) F1-score AUC

98.31 98.31 98.30 98.30 98.30 0.98 0.999

Fig. 6 – Confusion matrix and ROC curve for the stacked CNN model on the COVID19CTs dataset.

Table 5 – Performance comparison of different methods.

Method(s) Sensitivity (%) Specificity (%) G-mean (%) PPV (%) F1-score AUC

ResNet50 80.97�2.47 90.40�0.91 80.33�2.97 82.77�2.18 0.81�0.02 0.93�0.008
Inception-V3 88.98�2.49 94.08�1.64 88.72�2.74 90.49�2.82 0.89�0.03 0.98�0.010
DenseNet-121 88.52�1.67 93.97�0.96 88.18�1.94 90.64�2.15 0.89�0.01 0.97�0.005
MobileNet 88.67�3.20 94.43�1.75 88.36�3.47 91.75�2.44 0.90�0.03 0.98�0.008
VGG19 94.83�0.93 97.10�0.54 94.80�1.12 95.02�1.34 0.95�0.01 0.99�0.005
Xception 96.92�1.48 98.12�0.94 96.87�1.53 96.71�1.57 0.97�0.02 0.99�0.005
Proposed 97.62 �1.26 98.52 � 0.85 97.59�1.29 97.36�1.46 0.975�.01 0.996�0.002

Table 6 – Performance evaluation of the sub-models (in terms of G-mean (%)).

Model (s) Fold1 Fold2 Fold3 Fold4 Fold5

VGG19 Sub-model1 90.30 93.80 94.22 91.83 94.87
Sub-model2 95.84 96.41 96.82 93.87 97.44

Xception Sub-model3 97.28 97.70 95.16 93.40 95.58
Sub-model4 97.31 97.74 96.36 93.65 96.31
Sub-model5 98.70 97.76 97.05 94.12 96.70

Proposed Model 98.95 98.12 98.27 95.21 97.42

Table 7 – Performance comparison of different classifiers (in terms of G-mean (%)).

Fold (s) SVM NN DT KNN Proposed

Fold1 98.33 98.93 99.3 98.66 98.95
Fold2 97.97 96.81 96.89 97.52 98.12
Fold3 96.97 97.1 95.53 97.22 98.27
Fold4 93.99 92.76 93.28 94.15 95.21
Fold5 96.68 95.29 94.34 96.69 97.42
Mean 96.79�1.53 96.18�2.06 95.87�2.10 96.85�1.50 97.59�1.29

The best result among classifiers for each fold is shown in bold.
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Table 8 – Performance comparison with existing methods

Author (s) Method Dataset/Subjects Classification Task Results

Jain et al. [10] Image pre-processing, Data
augmentation, ResNet50,

ResNet101

250 COVID-19, 350 viral
pneumonia

Binary: COVID-19, viral
pneumonia

97.77% (Acc) 97.14% (Rec) 97.14% (Prec)

Kassania et al. [23] Deep features, Various classifiers 137 COVID-19, 137 healthy Binary: COVID-19, Healthy 99% (Acc)
Narin et al. [28] Pre-Train CNNs 50 COVID-19, 50 Normal Binary: COVID-19, Normal 97% (Acc)
Sethy et al. [32] Deep feature, SVM 25 COVID-19+, 25 COVID-19- Binary: COVID-19+, COVID-19- 95.38% (Acc)
Minaee et al. [33] Pre-trained CNN 184 COVID-19, 5000 Non-COVID Binary: COVID-19, Non-COVID 98% (Sens) 90% (Sp)
Castiglioni et al. [34] Ensemble model Pre-trained

CNNs
250 COVID-19, 250 non-

COVID-19
Binary: COVID-19, Non-

COVID-19
80% (Sens) 81% (Sp)

Abraham et al. [35] Multi-CNN Features, CFS,
Bayesnet

453 COVID-19, 497 non-COVID Binary: COVID-19, non-COVID 91.16% (Acc) 0.963 (AUC)

Panwar et al. [36] nCOVnet, VGG16 142 COVID-19, 142 Normal Binary: COVID-19, Normal 88.10% (Acc) 0.881 (AUC)
Ashour et al. [38] Ensemble-based BoF, Grid

method, SURF
200 COVID-19, 200 Normal Binary: COVID-19, Normal 98.6% (Acc)

Oh et al. [29] ResNet18 191 Normal, 54 Bacterial, 57
Tuberculosis, 20 Viral, 180

COVID-19

Multiclass: Normal, Bacterial,
Tuberculosis, Viral, COVID-19

88.9% (Acc)

Pereira et al. [31] Deep features, Texture features,
Fusion techniques

200 Normal, 22 SARS, 20 MERS,
180 COVID-19, 20 Varicella, 22

Pneumocystis,
24 Streptococcus

Multiclass: Normal, SARS,
COVID-19, MERS, Varicella,

Pneumocystis, Streptococcus

0.89 (F1-score)

Apostolopoulos et al. [11] Pre-trained CNN 224 COVID-19, 504 Normal, 714
Pneumonia

Binary: COVID-19, Pneumonia 96.78% (Acc)
Multiclass: COVID-19, Normal,

Pneumonia
94.72% (Acc)

Joshi et al. [12] DarkNet-53 194 COVID-19, 583 Normal, 2265
Pneumonia

Binary: COVID, Non-COVID 99.81% (Acc)
Multiclass: COVID, normal,

pneumonia
97.11% (Acc) 0.951 (F1-score)

Ozturk et al. [30] DarkCovidNet 127 COVID-19, 500 no-findings,
500 Pneumonia

Binary: COVID-19, No-findings 98.08% (Acc)
Multiclass: COVID-19, No-

findings, Pneumonia
87.02% (Acc)

Benmalak et al. [7] InceptionV3, ResNet-18,
MobileNetV3

1530 Normal, 1778 COVID-19,
1718 Viral pneumonia

Multiclass: Normal, COVID-19,
Viral pneumonia

93.4% (Prec), 92.3% (Sens), 92.8% (F1-Score)

Wang et al. [8] COVID-Net 183 COVID-19, 8066 Normal, 5538
non-COVID19

Multiclass: COVID-19, Normal,
Non-COVID19

92.6% (Acc)

Ucar et al. [9] SqueezeNet CNN 1583 Normal, 4290 Pneumonia,
76 COVID-19

Multiclass: Normal, Pneumonia,
COVID-19

95.7% (Acc), 90% (Sens)

Nigam et al. [37] Pre-trained CNNs 6000 Normal, 5634 COVID-19,
5000 others

Multiclass: Normal, COVID, other 93.48% (Acc)

Proposed Method Stacked CNN: VGG19, Xception,
Softmax classifier

COVID19CXr: 546 COVID-19,
1139 Normal, 1355 Pneumonia

Multiclass: COVID-19, Normal,
Pneumonia

97.27% (Acc), 97.62% (Sens), 0.975 (F1-Score)

COVID19CTs: 2249 COVID-19,
2396 no-Findings

Binary: COVID-19, no-Findings 98.30% (Acc), 98.31% (Sens),

0.98 (F1-Score)

‘‘Acc”: Accuracy, ‘‘Sens”: Sensitivity, ‘‘Sp”: Specificity,‘‘Rec”: Recall, ‘‘Prec”: Precision,‘‘AUC”: Area under the ROC curve.
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Their performances are represented in Table 7. As observed

from Table 7, performances of the stacked model with differ-

ent classifiers being quite similar, and among them, our pro-

posed model (stacked with Softmax classifier) giving a little

better results.

A variety of deep learning-based studies have already been

proposed recently for the diagnosis of COVID-19 disease from

the chest X-ray images. The performance comparison of the

proposed method with some of the related studies is shown

in Table 8. Since COVID-19 is a new pandemic and a limited

number of COVID-19 X-ray images are available publicly for

developing CAD systems for COVID-19 detection.

Studies in [32,28] have just developed their deep learning

models on the dataset of a very small size, which consists

of 50 and 100 images, respectively. Other studies in Table 8

have used less than 250 COVID-19 images for developing their

methods, except the studies in [7,35,37]. In this study, a total

of 3040 X-ray images have been used to develop the stacked

CNN model, including 546 COVID-19 images, which is the rel-

atively larger number of COVID-19 images among most of the

studies presented in Table 8, except the studies in [7,37].

We can see in Table 8 that the studies in [10,23,28,32–36,38]

have evaluated for binary classification task, studies in [7–

9,29,31,37] have evaluated for multi-class classification task

and studies in [11,12,30] have evaluated for binary as well as

multi-class classification tasks. For the binary classification

of X-ray images, the method proposed by Joshi et al. [12]

has outperformed the existing methods. On the other hand,

for the multi-class classification task, the proposed stacked

CNN model shows superiority over the existing methods.

Some of the salient features of stacked CNN can be sum-

marized as:

� The proposed method is based on the stacked generaliza-

tion of CNN’s sub-models, which minimizes the variance

of predictions and reduces generalization error. As a result,

stacked CNN yields higher diagnosis accuracy in the both

CT and X-ray images.

� The proposed stacked CNNmodel produces very little false

positives (type 1) and false negatives (type 2) error, which

confirms that the stacked CNN is reliable for clinical use.

� The proposed model is developed based on less complex

networks, which is computationally efficient, and shows

its stability on a small dataset.

� The stacked CNN model requires, on average, 0.029 s of

computation time to detect the disease from an image.

Therefore, this model could be utilized for rapid screening

of the COVID-19 disease.

5. Conclusion

In this paper, we introduced a new stacked convolutional neu-

ral network for the automatic diagnosis of the COVID19 from

the chest X-ray and CT images. In the proposedmethod, CNN’s
sub-models have been obtained from the pre-trained Xception

and the VGG19 models. The proposed stacked CNN model

ensemble the sub-models using Softmax classifier, for deriving

a powerful model for image classification than individual sub-

models. The stacked CNNmodel is able to learn the image dis-

criminative features and retrieved the diverse information

present in the radiological images of the chest. It achieves a

classification accuracy of 97.27% on the chest X-ray images

of the COVID19CXr dataset and 98.30% on the CT scan images

of the COVID19CTs dataset. Our proposed approach shows its

superiority over the existing methods for the diagnosis of the

COVID-19 from the X-ray images.

Our experiments results show the effectiveness of the

stacked CNN for the classification of COVID-19, Normal, and

Pneumonia X-ray images. More importantly, the proposed

model outperforms the pre-trained CNNs, including

ResNet50, Inception-V3, Xception, DenseNet, and MobileNet,

for the classification of chest X-ray images. In the future, we

would like to explore the stacked CNN model for the further

classification of X-ray images into bacterial pneumonia,

non-COVID-19-viral pneumonia, COVID-19-viral pneumonia,

and normal lung classes.
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