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Oxytocin neurones of the rat supraoptic nucleus are osmoresponsive and, with all other things

being equal, they fire at a mean rate that is proportional to the plasma sodium concentration.

However, individual spike times are governed by highly stochastic events, namely the random

occurrences of excitatory synaptic inputs, the probability of which is increased by increasing

extracellular osmotic pressure. Accordingly, interspike intervals (ISIs) are very irregular. In the

present study, we show, by statistical analyses of firing patterns in oxytocin neurones, that

the mean firing rate as measured in bins of a few seconds is more regular than expected from

the variability of ISIs. This is consistent with an intrinsic activity-dependent negative-feedback

mechanism. To test this, we compared observed neuronal firing patterns with firing patterns

generated by a leaky integrate-and-fire model neurone, modified to exhibit activity-dependent

mechanisms known to be present in oxytocin neurones. The presence of a prolonged afterhyper-

polarisation (AHP) was critical for the ability to mimic the observed regularisation of mean firing

rate, although we also had to add a depolarising afterpotential (DAP; sometimes called an after-

depolarisation) to the model to match the observed ISI distributions. We tested this model by

comparing its behaviour with the behaviour of oxytocin neurones exposed to apamin, a blocker

of the medium AHP. Good fits indicate that the medium AHP actively contributes to the firing

patterns of oxytocin neurones during non-bursting activity, and that oxytocin neurones gener-

ally express a DAP, even though this is usually masked by superposition of a larger AHP.
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Neurones code information as patterns of action potential (spike)

activity. These patterns reflect an interaction between the afferent

input activity and their intrinsic membrane properties. Spike activity

influences these intrinsic membrane properties, and hence can alter

how a neurone responds to its inputs. In addition, the inputs may

be modulated by the activity of the neurone, both as a result of

retrograde modulation of afferent activity and as a consequence of

recurrent neuronal circuits. Such changes occur over different time

scales and by different mechanisms and, as a result, different neu-

ronal types process information differently (1).

The rat supraoptic nucleus contains only magnocellular neurose-

cretory neurones; all of these neurones project to the posterior

pituitary gland where they secrete the hormones vasopressin and

oxytocin into the systemic circulation. The homogeneity of this

nucleus and the ability to relate neuronal behaviour to physiological

function has made this an important ‘model system’ in neuro-

science, and these neurones have been studied very extensively by

electrophysiological approaches in vivo and in vitro (2–5).

Oxytocin neurones in the rat supraoptic nucleus discharge under

the influence of randomly arriving excitatory and inhibitory post-

synaptic potentials (EPSPs and IPSPs) (3,6,7). Each spike is followed

by a hyperpolarising afterpotential (HAP; sometimes called a fast

afterhyperpolarisation). It appears that the major contributor to the

HAP is activation of IC (8), a Ca
2+- and voltage-dependent K+ current

carried by a large conductance (BK) channel that can be blocked by

charybodotoxin. The HAP makes the neurone relatively inexcitable for

30–50 ms after a spike, and its effects on spike timing can be mim-

icked in a modified leaky integrate-and-fire model of a neurone by

assuming that a spike instantaneously raises the spike threshold, and

also that this change decays exponentially (9). This simple model can

match, very accurately, the distribution of interspike intervals (ISIs)

observed in magnocellular oxytocin neurones in vivo.



However, the ISI distribution holds no information about spike

patterning that results from serial interdependence of ISIs. For oxy-

tocin neurones, any given ISI is almost independent of the length

of the preceding ISI, although this is not true for longer trains:

there is an inverse relationship between the length of a train of

6–10 ISIs and the length of the next ISI, and this relationship can-

not be explained by the HAP, which only lasts for approximately

50 ms (10). However, the HAP is not the only activity-dependent

conductance change that affects neurone excitability. When

strongly activated to fire repeated spikes, oxytocin neurones display

a deep and prolonged hyperpolarisation called the afterhyperpolari-

sation (AHP). This is the result of the summation of small,

prolonged hyperpolarisations that accompany each spike (11–15)

resulting from activation of Ca2+-activated K+ currents. The AHP

has at least two components that differ in their duration: a ‘med-

ium AHP’ carried by small conductance (SK) channels, which can be

blocked by apamin, and a ‘slow AHP’, carried by intermediate con-

ductance (IK) channels, which can be blocked by muscarine (16).

There is also an activity-dependent depolarising afterpotential

(DAP) that has at least two components: a ‘fast DAP’, carried by

Ca2+ activated nonspecific cation channels (17), and a ‘slow DAP’.

Two different Ca2+ activated mechanisms have been proposed for

the slow DAP: an additional nonspecific cation channel (18) and

the switching off of a hyperpolarising K+ leak current (19). The

DAP, by raising post-spike excitability, encourages bursting, and is

mostly associated with vasopressin neurones, but is also found in

at least some oxytocin neurones (17,20). The fast DAP and the

medium AHP have similar time courses and tend to mask one

another in recorded membrane potential. They can be more easily

detected when the other is blocked pharmacologically (17).

With spike interval analysis and model fitting, we infer the pres-

ence of afterpotentials from activity-dependent changes in

excitability. We use ‘generalised’ AHPs or DAPs with parameters

determined by the detected excitability effects, rather than being

derived from a specific ionic current. The detected and fitted AHP

or DAP may correspond to a specific current, or may represent the

compound action of multiple ionic currents. For example, every

spike is followed by a relative refractory period that lasts approxi-

mately 50 ms; this we term the HAP, although the HAP has been

proposed to have at least two components: a BK channel and an

A-type K+ channel (8).

The AHP is thought to be important for ‘shaping’ the intense

bursts of spike activity that oxytocin neurones display during the

milk-ejection reflex. The milk-ejection reflex is a dramatic and excep-

tional event. An oxytocin neurone firing typically at just a few spikes/

s will suddenly discharge approximately 100 spikes in 2–3 s, with a

peak discharge rate of up to 100 spikes/s achieved within approxi-

mately 100 ms of the burst onset (21). These bursts are followed by a

longer period of relative quiescence. This post-burst quiescence is

too long to be accounted for by the AHP alone, and we have pro-

posed that it reflects a suppression of afferent input induced by

burst-evoked release of endocannabinoids (21). The AHP itself is likely

to be responsible for the ‘shape’ of the milk-ejection burst and the

manner in which it slows down after the peak of excitation (21). An

AHP also plays a role in shaping the prolonged bursts in phasic firing

vasopressin neurones (22). In the bursts, an initial peak of rapid spik-

ing drops to a sustained plateau, determined by the competing

actions of a slow DAP that sustains the burst and the AHP.

In the present study however, we focus on the more subtle effect

of the AHP during the more common nonbursting activity observed

in oxytocin neurones. We have previously shown that, by adding an

AHP to the model, we can account fully for the serial dependence of

ISIs in spontaneous activity (10). From this, we can infer that the AHP

restrains the firing rate of oxytocin neurones even at low firing rates,

although any other consequences for the information processing

properties of oxytocin neurones remain unexplored. In addition, at

least some oxytocin neurones (approximately 20%) display a fast DAP

with a time course intermediate between the HAP and the AHP (17),

and the physiological significance of this is also largely unexplored.

Here, we show that, when averaged over intervals of 5 s or longer,

the spontaneous firing activity of oxytocin neurones in the rat is sur-

prisingly stable. The spike counts are much more regular than

expected from the irregularity of firing observed in short intervals,

suggesting that the intrinsic membrane properties of oxytocin neu-

rones preserve a memory of past activity by which activity is

‘smoothed out’. Here, we explored whether the AHP accounts for this

behaviour, using statistical analyses and computational modelling, as

well as by using data from experimental studies in which the medium

AHP was blocked pharmacologically using apamin (23). We go on to

discuss the possible physiological significance of a mechanism that

stabilises the firing rate on a timescale of 5 s and longer.

Materials and methods

We analysed extracellular recordings of the spike activity of single neurones

in the supraoptic nucleus of adult virgin female rats using a large library of

recordings made over many years. The selected recordings were from adult

rats anaesthetised with urethane (ethyl carbamate, 1.3 g/kg body weight

i.p.) in which the supraoptic nucleus and neural stalk were exposed by ven-

tral surgery, and a femoral vein was cannulated for i.v injection of cholecys-

tokinin (CCK) (24–27). All of the selected neurones had been antidromically

identified as projecting to the neural stalk to identify them as magnocellular

neurosecretory neurones, and had been further identified as oxytocin neu-

rones by their excitatory response to i.v. injections of CCK. Full details of

experimental procedures have been reported previously (27). Further data on

the effects of apamin on the firing patterns of supraoptic neurones were

obtained from published studies in female rats under urethane anaesthesia,

in which apamin was delivered by retrodialysis to the supraoptic nucleus

during recordings from single, identified oxytocin neurones (23).

If spikes were generated independently of the previous incidence of

spikes, then the spike trains would constitute ‘Poisson’ processes and exhibit

certain well-established statistical features. Spikes are not independent of

past activity for any neurone; most obviously, oxytocin neurones possess a

prominent HAP that imposes a long relative refractory period after spikes.

Nevertheless, we state here what is expected of a Poisson process, aiming

to judge how far and in what way, the statistics of spike trains deviate from

randomness.

(1) Inter-event distributions. For a Poisson process, the probability of an

event occurring at any particular time is independent of the time of the

preceding event. This implies that the inter-event histogram (the ISI dis-

tribution) can be described by a single negative exponential, and that

the calculated hazard function (described below) is constant over time

since the last spike.

© 2015 The Authors. Journal of Neuroendocrinology published by
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(2) Data that arise as a random process should show invariant statistical

characteristics when these data are shuffled randomly.

(3) Index of dispersion. The variance of the event frequency (r2) is equal

to the mean of the event frequency (l). If spike timings are purely ran-

dom, the ‘index of dispersion’, r2/l, should therefore equal 1, should

be independent of l in a sample of data where l varies, and should

be independent of bin-width.

(4) Coefficient of variation (CV). The mean of the inter-event interval (l) is
equal to the SD (r), so the ‘coefficient of variation’, r/l, should equal

1 if spike timings are random.

After excluding neurones from our library with a spontaneous firing rate

too low to meaningfully calculate measures of variability, and neurones

without at least 400 s of stationary activity, we selected stationary periods

of activity recorded from 76 oxytocin neurones. By ‘stationary activity’, we

do not mean wholly regular activity because fluctuations in activity such as

periodic bursting are features of activity that are often themselves gener-

ated in an activity-dependent way. Instead, we mean activity that, in the

period concerned, shows no clear progressive trend (in the first few minutes

of a recording, neurones may either speed up or slow down before reaching

a steady firing rate) and no singular abrupt changes (e.g. as sometimes

occur in conjunction with a change in spike amplitude that indicates a

movement of the neurone relative to the electrode). We imported event data

(spike timings resolved to 0.1 ms) from SPIKE2 (28) files into EXCEL (Microsoft

Corp., Redmond, WA, USA) worksheets and, from these, calculated firing rate

in different bin widths (from 0.5 s to 20 s) and calculated the mean index

of dispersion as the variance/mean rate for a given bin width. We converted

the sequences of spike times into sequences of ISIs, randomly shuffled these

using EXCEL, and converted them to a new sequence of event timings, from

which we calculated the values for index of dispersion for shuffled data. We

constructed ISI distributions (in 5-ms bins) and calculated the coefficient of

variation of ISIs as the SD/mean. We constructed hazard functions from the

ISI data in 5-ms bins as described previously (29) according to the formula

(hazard in bin [t, t + 5]) = (number of ISIs in bin [t, t + 5])/(number of ISIs

of length > t). A hazard function plots how the excitability of a neurone

evolves after a spike has fired and it reflects the superimposed effects of

Ca2+- and voltage-dependent currents that are triggered by a spike, and the

perturbations of afferent input that result from that spike. To measure log

interval entropy, we used INTERLAB software (30–32).

Model neurones

To model the behaviour of the oxytocin neurones, we used an integrate-

and-fire based spiking model described previously (10) and as refined further

(22) to model vasopressin neurones. The model uses a 1-ms step size and is

implemented using modelling software developed in C++ with the open

source wxWidgets graphical interface library (33). Simulations were run for

1000–100 000 s of simulated activity. Briefly, the model simulates the firing

response to Poisson randomly timed, exponentially decaying, inputs, repre-

senting EPSPs and IPSPs at mean rates Ire and Iri. Iri is defined as a propor-

tion of Ire given by Iratio and all of the results here use Iratio = 1 so that

input rate is controlled using just Ire. We assumed that EPSPs and IPSPs

have equal and opposite magnitude (fixed at 2 mV) and a half-life (ksyn)
fixed at 3.5 ms. The model variable Vsyn represents the summed EPSPs and

IPSPs.

The other model variables represent a set of spike triggered influences on

membrane excitability: the HAP, the DAP and the AHP. Following a spike,

the HAP, DAP and AHP variables are incremented by fixed values kHAP, kDAP
and kAHP, and decay exponentially with half-lives kHAP, kDAP and kAHP. By
contrast to the classic integrate-and-fire model, there is no post-spike reset

of the variables, allowing the DAP and AHP in particular, with their longer

half-lives, to accumulate across multiple spike intervals.

All the model variables are summed with the resting potential (Vrest, fixed

at �56 mV) to generate the membrane potential V:

V ¼ Vrest þ Vsyn � HAP� AHPþ DAP

When V exceeds the spike threshold (Vthresh, fixed at �50 mV), the neurone

fires a spike and the ISI is recorded. The large magnitude fast decaying HAP

simulates the post-spike refractory period. The DAP and AHP have more

subtle but longer lasting effects that are more activity dependent. The DAP

is new to the oxytocin model but follows the form of the fast DAP used in

the vasopressin spiking model (22).

Parameter fitting

The model was fitted to recorded data by generating a matching number of

spike intervals and adjusting parameters to match the firing rate, ISI distri-

bution and index of dispersion. Initially, spikes were generated using the

default parameters in Table 1, and parameters Ire and kHAP were adjusted to

match the firing rate and ISI distribution. The AHP parameters were then

adjusted to match the index of dispersion range while maintaining the

match to the ISI distribution and firing rate. A similar process was used

when adding the DAP. The parameter sensitivity of the AHP and DAP half-

lives was tested by attempting to fit with smaller and larger values

(kAHP = 50, 1000 and kDAP = 50, 600), compensated by adjusting the

respective AHP and DAP magnitude parameters, kAHP and kDAP. These tests

confirmed that values in the range presented in the Tables 2 and 3 are nec-

essary to produce good fits to the data.

Results

In initial exploratory analyses, we analysed three long recordings

(Fig. 1A) made in urethane-anaesthetised male rats in which activity

had been slowly increased by i.v. infusions of hypertonic saline (1

or 2 M NaCl at 26–52 ll/min for 30–80 min) (9). As described pre-

viously for oxytocin neurones from male rats (29), these neurones

displayed ISI distributions that were skewed with very few ISIs

shorter than the mode, a long tail that was well fit by a single

Table 1. Default Parameters Used for the Oxytocin Neurone Model.

Name Description Value Units

Ire Excitatory input rate 300 Hz

Iratio Inhibitory input ratio 1 –

eh EPSP amplitude 2 mV

ih IPSP amplitude �2 mV

ksyn PSP half-life 3.5 ms

kHAP HAP amplitude per spike 30 mV

kHAP HAP half life 7.5 ms

kDAP DAP amplitude per spike 0 mV

kDAP DAP half life 150 ms

kAHP AHP amplitude per spike 0.2 mV

kAHP AHP half life 350 ms

Vrest Resting potential �56 mV

Vthresh Spike threshold potential �50 mV

Adapted from MacGregor & Leng (17). EPSP, excitatory post-synaptic poten-

tial; IPSP, inhibitory post-synaptic potential; PSP, post-synaptic potential;

HAP, hyperpolarising afterpotential; DAP, depolarising afterpotential; AHP,

afterhyperpolarisation.

© 2015 The Authors. Journal of Neuroendocrinology published by
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negative exponential (Fig. 1B) and a hazard function that rose

monotonically over 30–80 ms to a plateau level of excitability

(Fig. 1C). We have previously shown that these ISI distributions clo-

sely matched those produced by a leaky integrate-and-fire neurone

model incorporating an exponentially decaying post-spike refrac-

toriness, corresponding to a HAP (9). Successive ISIs were relatively

independent, although relatively long ISIs (> 150 ms) tended to be

followed by ISIs that were shorter than average (Fig. 1D). However,

there was a strong inverse linear relationship between the length

of an ISI and the sum of the preceding 10 ISIs (Fig. 1E). These are

typical features of oxytocin neurones that we have previously

attributed to the effects of the AHP (10).

We examined the regularity of spike activity by looking at the

spike rate distribution during periods of stationary activity. For each

of the three neurones, the distribution of spike counts in 10-s bins

was symmetrical around the mean, and narrower than the distribu-

tion of spike counts for the same set of ISIs after random shuffling

to eliminate any order effects (Fig. 1F): this discrepancy indicates

that that the counts in 10-s bins are more regular than would be

expected from the variability of ISIs. We explored this further by

calculating the index of dispersion in 0.5-s bins and in 10-s bins

every 50-s during the infusion of hypertonic saline that increased

the firing rate linearly (Fig. 2A): at all firing rates, the index of dis-

persion in 10-s bins was much lower than in 0.5-s bins indicating

timescale dependent regularity. By contrast, after randomly shuf-

fling ISIs, the index of dispersion of reconstructed spike counts was

higher than in the original data, and was independent of bin width

(Fig. 2B).

We studied the relationship between index of dispersion and two

other measures of ISI variability: the coefficient of variation and

the log interval entropy. For the neurone shown in Fig. 2, the log

interval entropy was strongly linearly correlated with firing rate

(Fig. 2C) and with the CV (Fig. 2D). The CV was also strongly corre-

lated with the index of dispersion as measured in 0.5-s bins

(Fig. 2E) but relatively weakly correlated with the index of dispersion

measured in larger bins (not shown). These relationships held for

oxytocin neurones generally; in a sample of 26 oxytocin neurones,

log interval entropy was inversely correlated with mean firing rate

(r2 = 0.46; best fit y = �0.06x + 7.6) and positively correlated with

the CV (r2 = 0.84; best fit y = 1.8x + 5.9). From this, we concluded

that, for oxytocin neurones, the CV and log interval entropy are

equivalent measures of interval variability.

To test the generality of the inferences drawn from this initial

exploratory analysis, we analysed 76 oxytocin neurones from virgin

female rats (24–26). These had firing rates of between 1.3 and 8.9

spikes/s (mean � SD: 3.9 � 1.8 spikes/s) and the ISI distributions

were skewed with modes between 17.5 ms and 112.5 ms

(mean � SD: 61 � 17) ms). To obtain an ‘average’ distribution, his-

tograms were normalised to the total number of events and aver-

aged. The resulting ‘consensus’ distribution (Fig. 3A) has a mode at

50 ms and a tail that is also well fitted by a single exponential with

a time constant of 250 ms (r2 = 0.995 for the fit to ISIs from 50

to 500 ms). The mean hazard function (Fig. 3B) shows a constant

hazard after a post-spike interval of approximately 50 ms. Thus, for

most neurones, the ISI distributions and hazard functions con-

formed closely to the description that we reported previously for a

sample of 23 oxytocin neurones from male rats (29). However,

within this larger sample of 76 neurones, heterogeneity was

apparent, and nine of the neurones had hazard functions with a

Table 2. Model Parameters to Match to the Three Different Neurones

Shown in Fig. 5.

A1, A2 B1, B2 C1, C2 C3, C4 C5, C6

Mean rate (spikes/s)

Model neurone 12.90 3.79 7.40 7.30 7.37

Real neurone 12.93 3.73 7.38 7.38 7.38

Parameters

Ire 752 255 352 540 470

kHAP 5.4 9.3 4.9 2 4.7

kAHP 0.17 0 0 0.46 0.62

kAHP 350 – – 350 350

kDAP 0 0 0 0 0.6

kDAP – – – – 215

Parameters not given here were fixed for all neurones as in Table 1.

Table 3. Parameters of Models Matched to Data From Neurones Exposed to Apamin.

Interval

Neurone 1 Neurone 2 Neurone 3 Neurone 4 Neurone 5

Bsl Ap1 Ap2 Bsl Ap1 Ap2 Bsl Ap1 Ap2 Bsl Ap1 Ap2 Bsl Ap1 Ap2

FR M 7.37 7.40 8.00 3.75 4.24 3.68 2.86 2.73 2.17 6.55 8.01 10.24 6.12 5.24 4.57

FR 7.38 7.46 7.91 3.73 4.28 3.61 2.80 2.46 1.87 6.50 8.01 10.20 6.10 5.25 4.89

Ire 470 365 350 255 295 245 245 210 190 470 454 414 610 430 315

kHAP 4.7 7.5 6.0 6.0 11.3

kAHP 0.62 0.40 0.30 0.42 0.54 0.36 0.94 0.78 0.73 1.39 1.15 0.93 1.13 0.95 0.77

kAHP 350 350 500 300 495

kDAP 0.6 0.37 1.1 1.53 1.22

kDAP 215 350 350 200 295

Three periods of data were matched: baseline (Bsl), apamin 1 (Ap1) and apamin 2 (Ap2). FR, recorded firing rate; FR M, modelled firing rate. Parameters not

given here were fixed as in Table 1.

© 2015 The Authors. Journal of Neuroendocrinology published by
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Fig. 1. (A) Mean firing rate of an oxytocin neurone (in 100-s bins) recorded from the supraoptic nucleus of a urethane-anesthetised rat (27). The neurone

was antidromically identified as projecting to the posterior pituitary and identified as an oxytocin neurone by the transient excitation in response to i.v. injec-

tion of cholecystokinin (CCK) (red arrow). The neurone was then recorded throughout an i.v infusion of hypertonic saline (blue bar), which increased its firing

rate linearly from an initial rate of 2.9 spikes/s to 12.9 spikes/s in this period. (B) Interspike interval (ISI) distribution of this neurone for the 3000-s period of

stable high frequency activity (38798 ISIs) indicated by the blue shaded area in Fig. 1(A). The distribution is typical of oxytocin neurones, displaying a mode at

approximately 30 ms and relatively few ISIs shorter than this mode, reflecting a strong post spike relative refractoriness characteristic of a prolonged hyperpo-

larising afterpotential (HAP). The ISI distribution after the mode (blue symbols) is well fit by a negative exponential (black dotted line, equation of best fit

given). This suggests that, after the HAP, spikes arrive apparently randomly. (C) The corresponding hazard function, confirming that the hazard of a spike

occurring is independent of the time since the last spike after the end of the period of relative refractoriness. (D) The relationship between each ISI and the

preceding ISI, calculated from the same data. Each point plotted is the average of 2000 ISIs, sorted by the length of the preceding ISI. This shows that the

length of an ISI is essentially independent of the length of the previous ISI unless the preceding ISI is relatively long (> 150 ms), when there is a weak inverse

relationship. By contrast, (E) shows the strong linear relationship between each ISI and the sum of the preceding 10 ISIs. Bars are the SEM (n = 2000). (F) The

distribution of spike counts in 10-s intervals for original data (green symbols) and for randomly shuffled data (orange symbols). The distribution is narrower

for the raw data than for the shuffled data.
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conspicuous peak of post spike excitability very like that described

previously as typical of magnocellular vasopressin neurones (29),

and which apparently reflects a pronounced DAP. These nine neu-

rones had all shown a clear excitation in the 5 min after i.v. injec-

tion of CCK (mean change 1.3 � 0.4 spikes/s) that was similar to

the responses of the remainder of the sample (mean change

1.1 � 0.2 spikes/s).

To calculate the index of dispersion values for the 76 neurones,

we analysed 10-min periods of apparently stationary activity

recorded before testing with CCK (Fig. 4) and calculated the values

of the index for 0.5-s and 10-s bin sizes (Fig. 4A). At a bin width

of 0.5 s, the index of dispersion was strongly correlated with the

coefficient of variation of ISIs (Fig. 4D). Values of the index of dis-

persion in 10-s bins were generally lower than in 0.5-s bins

(Fig. 4B), which is consistent with a greater regularity in 10-s bins

than expected from the regularity observed in 0.5-s bins. There was

only a weak correlation between the index of dispersion in 0.5-s

bins and that in 10-s bins (Fig. 4C), suggesting heterogeneity

between neurones in the mechanisms underlying this increased

regularity.
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Model simulations

We then tested whether model-generated spike data would show

the same characteristics of reduced variability with increasing bin

width. The integrate-and-fire based model includes mixed random

excitatory and inhibitory synaptic inputs and an HAP, and can be

extended by adding an AHP and a DAP; the standard parameters

that we used are given in Table 1. For each neurone modelled, we

attempted to match the mean firing rate, the ISI distribution and

the index of dispersion for different bin widths.

For ‘typical’ oxytocin neurones (i.e. those with hazard functions

like the average function shown in Fig. 3B), parameters could be

found for model neurones with no AHP, that gave very close fits

to the ISI distributions (Fig. 5C1). For neurones where the index of

dispersion was independent of bin width, it was possible to match

both the index of dispersion and the ISI distribution with just a

HAP (Fig. 5B1–B2). When the index of dispersion followed the ‘typi-

cal’ decreasing pattern, adding an AHP to the model could result in

good fits to the index of dispersion data for all neurones. However,

only for some neurones was it possible to simultaneously obtain

good fits to the ISI distribution (Fig. 5A1, A2). Specifically, good fits

to both could generally be achieved when the index of dispersion

was < 0.6 at a bin width of 0.5 s but, for neurones with an ini-

tially high index of dispersion that fell steeply with increasing bin

width, we could not obtain good fits to both. For example, for the

neurone shown in Fig. 5(C), the ISI distribution could be closely

matched by a model with a HAP alone (Fig. 5C1) but, when we

added an AHP to match the index of dispersion data (Fig. 5C4), we

could no longer match the ISI distribution (Fig. 5C3). For these neu-

rones, the difficulty in simultaneously fitting the index of disper-

sion data and the ISI distribution arose because an AHP that can

account for a low index of dispersion at large bin widths also

reduces the index of dispersion at short bin widths. To increase the

index of dispersion for low bin widths only, the HAP can be

reduced, although this results in an excess of short ISIs in the ISI

distribution.

This suggested that we were neglecting another factor increasing

variability at short bin widths, and an obvious candidate was the

DAP, which tends to amplify high frequency firing. In these neu-

rones, we could fit both the ISI distribution and the index of disper-

sion data with a model that incorporates a DAP, as well as a HAP

and an AHP (Fig. 5C5–C6).
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Blocking the medium AHP

The model data thus indicated that the index of dispersion data

could be explained by the effects of an AHP. However, an AHP suf-

ficiently large to explain the index of dispersion data has, for some

neurones, effects that are apparently inconsistent with the shape

of the ISI distribution. The modelling suggested that, in addition to

the HAP and the AHP, at least some oxytocin neurones may also

have a DAP, the overt effects of which may be occluded by the

superimposed HAP and AHP.

To test these inferences, we analysed five identified oxytocin

neurones that had been exposed to apamin to block one compo-

nent of the AHP. In these previous experiments (23), neurones

had been successively exposed over prolonged periods to two

concentrations of apamin administered directly to the supraoptic

nucleus by retrodialysis. In each of these neurones, exposure to

apamin unmasked a period of post-spike hyperexcitability consis-

tent with a DAP. Accordingly, we added a DAP to the model, and

looked for a fit to the observed distributions before and after each

exposure to apamin, and also a fit to the index of dispersion

data.

We matched the model to each neurone by finding parameters

for the HAP, AHP, DAP and synaptic input rate (Ire) that closely

matched the ISI distribution and the index of dispersion data at

baseline (before any exposure to apamin). For the HAP, changing

the amplitude has similar effects to changing the half-life, and so

we fixed the amplitude at 30 and varied the half-life. We thus

aimed to find a good match to the three ISI distributions and sets

of index of dispersion data for each of the five neurones, with fixed

values for the half-life of the HAP, the half-life of the AHP and the
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© 2015 The Authors. Journal of Neuroendocrinology published by
John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12358

Modelling oxytocin neurone activity 9 of 13



amplitude and half-life of the DAP but different values for the

amplitude of the AHP and Ire.

We found parameter sets that produced good fits for each of

the five neurones (Fig. 6 and Table 3). In each case, good fits were

obtained to the data after exposure to apamin by reducing both

the amplitude of the AHP and the synaptic input rate. The parame-

ter sets that produced good fits are not unique because different

combinations of parameters often give equivalent effects but, in

every case, including a DAP was essential for fitting the ISI distribu-

tions after apamin and, in all but one of the five neurones, includ-

ing an AHP was essential for fitting the index of dispersion data at

baseline. Figure 6(A–F) shows all the fitted data for one of the five

neurones under baseline and apamin conditions and Fig. 6(G) shows

the mean index of dispersion data for the five neurones and for

the five corresponding model neurones.

Discussion

In these experiments, we have shown that the spiking activity in oxy-

tocin neurones, when measured in bins of 5–10 s, is much more reg-

ular than we would expect from the variability of ISIs. This is

consistent with a slow activity-dependent negative-feedback and

likely reflects the actions of the AHP that arises by activation of

Ca2+-dependent K+ channels. The best fits with the model, with kAHP
in the range 350–500 ms, correspond most closely to the time

course of the apamin sensitive SK channel based medium AHP. The

half-life of the AHP determines how quickly it changes and, because

it is relatively slow (i.e. taking several seconds to accumulate), its

effect on reducing spike interval variability is only detectable in the

larger bin sizes. However, a value for kAHP of 1000 ms or greater,

which would more closely correspond to the slow AHP, is unable to

fit the index of dispersion at the medium bin widths of 2, 4 and 6 s.

However, adding to the model an AHP that is sufficiently large

to account for the values of index of dispersion significantly

impacts upon the ISI distribution, delaying the mode and impinging

on the ability of the model neurones to display high frequency fir-

ing, especially as seen during the milk-ejection reflex. It therefore

appears that oxytocin neurones also have an activity-dependent

depolarisation superimposed upon the HAP and AHP, with an inter-

mediate timescale. Together, these three features allow the neu-

rones to maintain a relatively regular firing rate in basal conditions

at the same time as retaining the ability to generate bursts of

activity.

In fitting models to the data from oxytocin neurones exposed to

apamin, we aimed to identify parameters that fitted the behaviour

of each of five neurones in three conditions (at baseline and after

exposure to two concentrations of apamin). Hazard function based

spike interval analysis shows that apamin removes any hazard

detectable AHP, and unmasks a distinct DAP, which is enhanced

further with an increased dose of apamin (23). For each neurone,

we found a parameter set that would fit all three conditions well

with changes in just two parameters: the synaptic input rate and

the amplitude of the AHP. In each case, the fits involved reducing

the AHP amplitude progressively with increasing apamin concentra-

tion, consistent with the established actions of apamin to block one

component of the AHP, although the fits also required a progres-

sive reduction in synaptic input. This suggests that, in the experi-

mental conditions, apamin also had presynaptic actions, either

reducing excitatory input or increasing inhibitory input. The latter is

more likely because the actions of apamin would be generally

expected to increase neuronal excitability, increasing spike rate as is

observed in vitro (34), and supraoptic neurones receive an extensive

inhibitory input from GABA neurones in the perinuclear zone imme-

diately adjacent to the supraoptic nucleus (35,36).

Importantly, to obtain these good fits in all conditions, it was

necessary in all neurones to include a DAP in the model. The DAP

has the opposite effect to the AHP on the index of dispersion; by

acting as a positive feedback, it increases spike interval variability

at short bin widths. Although vasopressin neurones in the supraop-

tic nucleus typically display a conspicuous DAP, oxytocin neurones

generally do not. However, the presence of a fast DAP has been

reported in approximately 20% of oxytocin neurones (17), which is

consistent with the observation in the present study of a conspicu-

ous post-spike hyperexcitability in nine of 76 neurones (12%). In

supraoptic neurones generally, DAPs are triggered by Ca2+ influx

during spikes (13,37–39), although their ionic basis is poorly under-

stood. One study suggested that they may result from the Ca2+-

dependent reduction of a resting K+ conductance (19), although

subsequent work suggested that a Ca2+-activated nonselective

cation channel is involved (17,18). The effect of a DAP on oxytocin

neurone activity is to increase irregularity of firing, especially when

measured in short bin widths; it thus appears that the combination

of a DAP and an AHP has the effect of increasing the regularity of

firing in long bin widths while protecting the ability to fire at high

frequencies during milk-ejection bursts.

The parameters that we found for the DAP correspond approxi-

mately to those reported for the fast DAP (17). A larger subset of

oxytocin neurones in vitro have been reported to express a slow

DAP, with a much longer duration (approximately 2 s) than the fast

DAP (3,20). Because the duration of the slow DAP is similar to that

of the slow AHP, it is possible that their effects upon spike

excitability largely cancel out in the circumstances that we are

exploring them (stable spontaneous activity).

How important it is for an oxytocin neurone to maintain a regu-

lar firing rate in constant conditions is hard to judge. For oxytocin

neurones generally, slow activity-dependent mechanisms reduce the

index of dispersion in 10-s bins from approximately 1 to 0.4 at a

firing rates of 4 spikes/s. This is equivalent to reducing the SD from

6.3 to 2.8, which is a substantial reduction, although the plasma

oxytocin concentration reflects the averaged secretion of several

thousand oxytocin neurones. Thus, is this reduction physiologically

meaningful? It may well be because, for any one oxytocin neurone,

the relationship between firing rate and secretion is complex and

nonlinear: for short bursts of spikes, secretion increases dispropor-

tionately with spike frequency (40), so that a 1-s burst at 50 Hz

triggers the secretion of approximately 100 times as much oxytocin

as is released by the same number of spikes at 1 Hz (41). Moreover,

subsets of magnocellular neurones project to sites within the brain,

and these sites receive relatively few oxytocin fibres (42). Accord-

ingly, mechanisms that reduce the ‘burstiness’ of firing that arises
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Fig. 6. Model fits to five oxytocin neurones that were recorded in basal conditions and during exposure to two concentrations of apamin, given by retrodialy-

sis to the supraoptic nucleus. For each of the five neurones, spike data were fitted by model that included a hyperpolarising afterpotential (HAP), afterhyperpo-

larisation (AHP) and depolarising afterpotential (DAP); the parameters varied between neurones but, for each of the neurones, we varied only the amplitude of

the AHP and the synaptic input frequency to fit the data after apamin. The model parameters are given in Table 3. (A–F) Show the fits (in blue) to data (red)

from one of these five neurones (neurone 1 in Table 3); the interspike interval (ISI) distributions (A, C and E) are normalised to the total number of events in

the period analysed. (G) The mean index of dispersion at different bin widths for the five neurones in basal conditions (light red bars) and after the higher dose

of apamin (dark red bars) and the corresponding data from the model neurones (light blue for matches to basal data; dark blue for matches to apamin data).
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from random variation in synaptic input may be very important for

ensuring that the secretion rate at these sites accurately reflects

the mean firing rate.

We can also look more generally at the possible utility of these

mechanisms, remembering that subpopulations of magnocellular

oxytocin neurones project to many different brain sites and that, at

these central projections, they appear to use glutamate as a conven-

tional synaptic neurotransmitter. The mean firing rate of any particu-

lar oxytocin neurone is proportional to the plasma sodium

concentration, and increases by an average of approximately 0.7

spikes/s for every 1 mM increase. We can therefore ask, if the plasma

Na+ concentration is raised by 1 mM, for how long do we need to

measure the firing rate of an oxytocin neurone to know with 95%

confidence that plasma sodium has increased (given no change in

any of the other stimuli that influence oxytocin neurones)? Suppose

that the starting firing rate ‘a’ is 3 spikes/s, that we know this with

certainty, and that the true rate ‘b’ after osmotic stimulation is 3.7

spikes/s. If the index of dispersion is 1, it will be necessary to measure

the firing rate of the neurone for at least 30 s to have 95% confi-

dence that the firing rate is actually higher than ‘a’. By contrast, if

the index of dispersion is 0.2, then just 8 s is sufficient. In practice,

neurones do not have good mechanisms for averaging synaptic

inputs over prolonged periods. Thus, if it is important for neuronal

networks to respond to small but sustained changes in external sig-

nals swiftly and reliably, then cellular mechanisms for reducing the

variability of discharge patterning may be very important.
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