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Abstract: Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play
crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the
molecular mechanisms and further providing insight into biological processes. Although a variety of
high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by
experimental approaches only cover a small fraction of the whole PPI networks, and further, those
approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high
false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to
predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical
and evolutionary-based feature extraction method for predicting PPIs using our newly developed
discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly
consist in introducing an effective feature extraction method that can capture discriminative features
from the evolutionary-based information and physicochemical characteristics, and then a powerful
and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM
model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and
Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%,
respectively. The computational results indicate that our method is effective and robust for predicting
PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for
future proteomics research.

Keywords: evolutionary information; physicochemical characteristics; protein sequence; protein
interactions; discriminative vector machine

1. Introduction

Proteins are the building blocks of any living organism. Protein-protein interactions (PPIs)
occur at almost all levels of cell functions in organisms [1]. Identification of PPIs is essential for
deciphering molecular mechanisms and further providing great insight into various biological
processes [2–4]. The analysis of disease-related PPIs can speed up new drug development and
therapy breakthrough [5]. Recently, a variety of high-throughput experimental technologies, such as
two-hybrid-based screens [6,7], protein chips [8] and spectrometric protein complex identification [9],
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have been proposed by investigators for the large-scale PPIs detection. However, these experimental
techniques suffer from some inherent disadvantages such as significantly time-consuming, expensive,
very low coverage and high false positive rate [10,11]. Therefore, it is highly desired to develop the
efficient and accurate computational approaches to facilitate the prediction of novel PPIs [12].

In general, computational approaches for PPIs detection contain two critical steps: feature
extraction and classification prediction [13,14]. Feature extraction is the foundation of the overall
prediction process. If those extracted features are highly discriminative, they will facilitate the
subsequent steps to significantly improve the success rate of PPIs prediction. In fact, numerous feature
extraction approaches have been proposed to improve the performance of PPIs prediction. For example,
Shen et al. developed a conjoint triad feature extraction method using only the information of protein
sequence for predicting PPI and PPI networks [15]. Guo et al. adopted auto covariance of protein
sequence to construct feature vector and obtained the promising prediction results [2]. Zhou et al.
employed local descriptors to capture continuous and discontinuous binding patterns of protein
sequences [16]. In addition, evolutionary-based features of protein sequences have also been widely
used in PPIs prediction. Zahiri et al. extracted the evolutionary features based on position-specific
scoring matrix (PSSM) of protein sequences [17]. Jia et al. incorporated seven physicochemical
properties and wavelet transform to detect the interactions between proteins [4]. Although the
aforementioned techniques have been demonstrated to be successful in PPIs analysis, they only
utilized partial information of protein sequences (such as sequential information, or evolutionary-based
information, or physicochemical characteristics). Considering the fusion of multi-class information
may reveal some implicit correlations of protein sequences and are able to provide more discriminative
information, we select four representative physicochemical characteristics integrated with evolutionary
information based on PSSM of protein sequences to improve the prediction performance of PPIs.

Besides feature extraction, the following classification prediction is also critical. Many machine
learning techniques have been employed for classification, such as support vector machine
(SVM) [2,16,18], artificial neural network (ANN) [19,20], relevance vector machine (RVM) [21,22],
collaborative filtering (CF) [23], weighted sparse representation [1,24] and ensemble classifier [4,25,26].
In this work, our newly developed discriminative vector machine (DVM) [27,28] classifier is used.
To the best of our knowledge, it is the first time that the DVM model is applied to the field of
bioinformatics. More specifically, we first use the position-specific scoring matrix (PSSM) to represent
each protein sequence and calculate the corresponding PSSM probabilities. Second, each probabilistic
residue product is calculated. Third, the autocorrelation coefficients are calculated and the final
160-dimensional vector for each protein sequence is constructed accordingly. Moreover, the proposed
method is evaluated on the two different PPIs datasets: Yeast and Helicobacter pylori (H. pylori).
The computational results show that our method yields good prediction accuracy. To further validate
the performance of our method, it is compared with the state-of-the-art SVM classifier. Achieved
results demonstrate that the proposed method is superior to SVM in prediction performance. Finally,
comparisons between the proposed method and other previous works are implemented.

2. Results and Discussion

2.1. Performance of the Proposed Method on Yeast and Helicobacter pylori (H. pylori) Datasets

In this step, to minimize data dependence and avoid the over-fitting of the predicting model,
fivefold cross-validation was adopted. As described in materials and methods section, the final Yeast
dataset contains 11,188 protein pairs, half from the negative dataset and half from the positive dataset.
Here four-fifths of the protein pairs (8950 protein pairs) respectively from the negative and positive
dataset were randomly chosen to train the predicting model and the remaining one-fifths (2238 protein
pairs) were employed for testing. To validate the robustness of the proposed approach, the random
selection of training set and test set was repeated five times and five training sets and five test sets
were obtained. Therefore, five predicting models on the Yeast dataset were generated accordingly.
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The processing method for the H. pylori dataset is the same as the one for the Yeast dataset. To facilitate
the comparison between different experiments, the four physicochemical properties of protein sequence
and parameters of the DVM predictor were set to the same for the Yeast and H. pylori datasets. The RBF
function was chosen as the kernel function. The achieved results of the proposed method on the Yeast
and H. pylori datasets are shown in Tables 1 and 2.

When applying the proposed approach to the Yeast dataset, we got the prediction results of
average accuracy (Acc), sensitivity (Sen), precision (Pre), and Matthews’s correlation coefficient (MCC)
of 94.35%, 92.97%, 96.52%, and 89.07%, respectively. The corresponding standard deviations were
0.68%, 0.65%, 1.17%, and 1.56%. Similarly, the average values of accuracy, sensitivity, precision,
and MCC on the H. pylori dataset reached 90.61%, 91.32%, 90.74%, and 82.79%. Their standard
deviations were 1.55%, 1.48%, 1.81%, and 1.47%, respectively. The computational results indicate that
the proposed method is successful in predicting PPIs.

Table 1. Fivefold cross validation results using the proposed method on Yeast dataset.

Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

1 93.52 93.07 98.34 88.94
2 94.76 92.41 96.56 87.57
3 93.83 93.64 95.68 87.61
4 94.43 93.52 96.67 90.02
5 95.21 92.19 95.33 91.19

Average 94.35 ± 0.68 92.97 ± 0.65 96.52 ± 1.17 89.07 ± 1.56

Average accuracy (Acc), sensitivity (Sen), precision (Pre), and Matthews’s correlation coefficient (MCC).

Table 2. Fivefold cross validation results using the proposed method on H. Pylori dataset.

Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

1 92.81 92.28 93.40 83.32
2 89.59 90.73 91.73 81.08
3 90.82 93.37 90.19 84.51
4 91.06 89.64 89.27 83.61
5 88.75 90.59 89.12 81.43

Average 90.61 ± 1.55 91.32 ± 1.48 90.74 ± 1.81 82.79 ± 1.47

Average accuracy (Acc), sensitivity (Sen), precision (Pre), and Matthews’s correlation coefficient (MCC).

From the results in Tables 1 and 2, we can see that the DVM-based predicting model combining
the four physicochemical properties with PSSM evolutionary information is accurate, effective and
robust for the prediction of PPIs. The possible reasons of the excellent prediction performance
lie in the highly discriminative hybrid features and the choice of the powerful DVM classifier.
The proposed feature extraction method is novel and effective. As a representation of a protein
sequence, PSSM not only retains the probability of any given amino acid at a particular position
sequence but also holds sufficient prior evolutionary information. Apart from the use of PSSM, we also
extracted four selected physicochemical attributes which also retain highly discriminatory information.
By incorporating effective evolutionary-based information and physicochemical characteristics,
the highly discriminatory features were formulated in the end.

2.2. Comparison with SVM-Based Method

To further evaluate the performance of the proposed method, we also constructed the
state-of-the-art Support Vector Machine (SVM) classifier. Here, we used LIBSVM toolbox [29] as
SVM classifier to carry out the prediction of PPIs. To be fair, the two predicting models adopted the
same hybrid feature extracted from the Yeast dataset. A general grid search scheme was employed
to optimize LIBSVM’s two parameters (regularization parameter C, kernel width parameter γ) and
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they (C, γ) were tuned to 0.7 and 0.3 respectively. Additionally, Gaussian function was chosen as the
kernel function. For the DVM and SVM classifiers, all the input vectors were normalized in the range
of [−1,1].

The final prediction results of the two methods are illustrated in Table 3 and the corresponding
ROCs (receiver operating characteristic curve) are shown in Figure 1. From Table 3, the average
prediction accuracy, sensitivity, precision and MCC of the SVM method attained 85.77%, 85.38%,
86.46%, and 75.65%, respectively. Meanwhile, the corresponding values based on DVM achieved
94.35%, 92.97%, 96.52%, and 89.07%, which indicate that our method is significantly better than SVM
for predicting PPIs. Furthermore, as shown in Figure 1, the ROC of the DVM-based prediction model
is superior to that of the SVM-based classifier. It obviously suggests that the proposed method is more
effective and robust. There are two possible explanations to explain the results. (1) Based on k nearest
neighbors (kNNs), the robust M-estimator and manifold regularization, DVM reduces the effect of
outliers and overcomes the shortcoming of the kernel function being required to satisfy the condition of
Mercer; (2) Although there are three parameters (β, γ, and θ) in DVM model, those parameters slightly
affect the performance of DVM if they are adjusted in appropriate ranges. Therefore, the DVM-based
model is more suitable for PPIs prediction than the SVM-based method.

Table 3. Fivefold cross validation results on Yeast dataset between our method and support vector
machine (SVM).

Model Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

SVM

1 85.12 84.87 86.34 75.92
2 86.16 83.91 85.36 74.99
3 87.96 85.64 86.61 77.58
4 85.42 85.80 88.67 75.02
5 84.21 86.70 85.33 74.76

Average 85.77 ± 1.41 85.38 ± 1.05 86.46 ± 1.36 75.65 ± 1.16

DVM

1 93.52 93.07 98.34 88.94
2 94.76 92.41 96.56 87.57
3 93.83 93.64 95.68 87.61
4 94.43 93.52 96.67 90.02
5 95.21 92.19 95.33 91.19

Average 94.35 ± 0.68 92.97 ± 0.65 96.52 ± 1.17 89.07 ± 1.56

Average accuracy (Acc), sensitivity (Sen), precision (Pre), and MCC.
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2.3. Comparison with Other Methods

So far, numerous classification methods for predicting PPIs have been developed by investigators.
To further validate the advantage of our approach, we compared the predictive performance of
our method with other existing methods (as described in Tables 4 and 5). The achieved results
of fivefold cross-validation of different methods on the Yeast and H. pylori datasets are shown in
Tables 4 and 5. In Table 4, the prediction accuracy of other previous methods on the Yeast dataset varies
from 75.08% to 93.92%, while the proposed method achieved higher value of 94.35%. Similarly,
the sensitivity, precision and MCC of our method are also higher than those of other methods.
Moreover, the corresponding standard deviations demonstrate the proposed method is stable and
robust. Considering that ensemble classifier usually has better prediction effect than single classifier,
although RF + PR-LPQ method has smaller standard deviations, our method is also considered as
one of the most competitive computational methods for predicting PPIs. The similar results on the
H. pylori dataset can also be found in Table 5. The highest prediction accuracy of six other methods
is 89.47%, which is lower than the result (90.61%) of the proposed method. The same is true for
precision, sensitivity and MCC. All prediction results in Tables 4 and 5 indicate that the DVM classifier
incorporating the evolutionary-based information and physicochemical characteristics can improve the
prediction performance compared with the state-of-the-art methods. The high prediction performance
of our method may contribute to the novel feature extraction method which extracts the highly
discriminative information, and the use of DVM classifier which has been demonstrated to be robust
and powerful [27].

Table 4. Practical predicting results of different methods on the Yeast dataset.

Model Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

Guo [2]
ACC 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A
AC 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A

Yang [30]

Cod1 75.08 ± 1.13 75.81 ± 1.20 74.75 ± 1.23 N/A
Cod2 80.04 ± 1.06 76.77 ± 0.69 82.17 ± 1.35 N/A
Cod3 80.41 ± 0.47 78.14 ± 0.90 81.66 ± 0.99 N/A
Cod4 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 1.34 N/A

You [25] PCA-EELM 87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44

Wong [26] RF + PR-LPQ 93.92 ± 0.36 91.10 ± 0.31 96.45 ± 0.45 88.56 ± 0.63

Proposed Method DVM 94.35 ± 0.67 92.97 ± 0.51 96.52 ± 0.57 89.07 ± 1.30

N/A—Not applicable.

Table 5. Practical predicting results of different methods on the H. Pylori dataset.

Model Acc (%) Sen (%) Pre (%) MCC (%)

Nanni [31] 83.00 86.00 85.10 N/A
Nanni [32] 84.00 86.00 84.00 N/A

Nanni and Lumini [33] 86.60 86.70 85.00 N/A
You [25] 87.50 88.95 86.15 78.13

Martin [18] 83.40 79.90 85.70 N/A
Wong [26] 89.47 89.18 89.63 81.00

Proposed Method 90.61 91.32 90.74 82.79

N/A—Not applicable.
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3. Materials and Methods

3.1. Dataset

In this work, we evaluate the proposed method on the two high-confidence PPIs benchmarked
datasets Yeast and H. pylori which are gathered from the publicly available Database of Interaction
Proteins (DIP), version DIP_20070219 [34]. Those protein pairs in the datasets with less than
50 residues are excluded because they might be fragments. All protein pairs are aligned by using
a multiple sequence alignment tool, cd-hit [35]. The protein pairs with too much sequence identity are
generally considered to be homologous; so the pairs having ≥40% sequence identity are also removed.
After above preprocessing, each dataset is divided into two subsets: negative dataset (non-interacting
pairs) and positive dataset (interacting pairs). In the Yeast dataset, we select 5594 negative protein
pairs as the negative dataset and 5594 positive protein pairs as the positive dataset. In the same way,
1458 negative protein pairs are selected to construct the negative dataset and 1458 positive protein pairs
to form the positive dataset from H. pylori dataset. Therefore, the Yeast dataset consists of 11,188 protein
pairs and H. pylori dataset includes 2916 protein pairs.

3.2. Feature Extraction

In this work, we aim to demonstrate that the perdition performance of PPIs can be improved
by incorporating amino acids’ physicochemical properties and evolutional information. Although
Taguchi and Gromiha held the viewpoint that physicochemical-based features do not carry important
discriminative information [36], we believe that the combination of physicochemical properties
with evolutionary information can provide highly discriminatory features for PPIs prediction.
However, there are more than 544 physicochemical characteristics [37,38] . Fortunately, according to
Gaurav Raicar et al., not all physicochemical properties play the same role for predicting PPIs [39].
Gaurav Raicar summarized the rank of physicochemical characteristics based on its frequency counts
over all the datasets and a subset of them was identified. Here, through the extensive experiments,
four physicochemical characteristics, including hydrophobicity (H), polarity (P), polarizability (Z),
and van der Waals volume (V), are selected for the calculations. The numerical indices of the four
physicochemical characteristics for the 20 amino acids are shown in Table 6.

Table 6. Numerical indices of the four physicochemical characteristics for the 20 amino acids.

Amino Acid Name Hydrophobicity Polarity Polarizability van der Waals Volume

Alanine 0.61 8.1 0.046 1.00
Arginine 0.60 10.5 0.291 6.13

Asparagine 0.06 11.6 0.134 2.95
Aspartic Acid 0.46 13.0 0.105 2.78

Cysteine 1.07 5.5 0.128 2.43
Glutamine 0.0 10.5 0.180 3.95

Glutamic Acid 0.47 12.3 0.151 3.78
Glycine 0.07 9.0 0.000 0.00

Histidine 0.61 10.4 0.230 4.66
Isoleucine 2.22 5.2 0.186 4.00
Leucine 1.53 4.9 0.186 4.00
Lysine 1.15 11.3 0.219 4.77

Methionine 1.18 5.7 0.221 4.43
Phenylalanine 2.02 5.2 0.290 5.89

Proline 1.95 8.0 0.131 2.72
Serine 0.05 9.2 0.062 1.60

Threonine 0.05 8.6 0.108 2.60
Tryptophan 2.65 5.4 0.409 8.08

Tyrosine 1.88 6.2 0.298 6.47
Valine 1.32 5.9 0.140 3.00
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Since the length of each protein sequence is different, the physicochemical characteristics and
evolutionary-based information cannot merge directly. Based on pseudo amino acid composition
(PseAAC) [40,41], we propose a novel feature extraction method which integrates position specific
scoring matrix (PSSM) probabilities with the four physicochemical properties. PSSM is a representation
of a protein sequence which defines the probability of any given amino acid occurring at a particular
position in the sequence and carries the evolutionary information of protein sequence [39]. In this
work, we adopt the position specific iterated BLAST (PSI-BLAST) tool to create PSSMs for all protein
sequences of the Yeast and H. pylori datasets, via three iterations setting the E-value cutoff at 0.001 for
the query protein sequence against multiple sequence alignment [10,42]. The PSSM P of a query
protein sequence is a L × 20 matrix (P =

{
Pj

i

}
, i = 1, 2, . . . , L, j = 1, 2, . . . , 20), where L is the length of

the protein sequence and 20 denotes the 20 native amino acids. Pij is the score for the jth amino acid in
the ith position of the given protein sequence [13]. The residue index Rm for the mth physicochemical
property is a column vector of 20 × 1 (as described in Table 6). Therefore, the probabilistic expression
Fm (m = 1, 2, . . . , 4) of the residues about the mth physicochemical property can be defined as

Fm = P× Rm (1)

where Fm is a vector of size L × 1. It should be pointed out that the order of the amino acids in
matrix P and vector Rm must remain consistent. Then the hybrid features based on physicochemical
characteristics and evolutionary information are calculated by using autocorrelation coefficients of the
probabilistic expressions (Fm) of the protein sequence. The calculating formula is illustrated as

Vi =
1

L− i

L−i

∑
j=1

(
Fj

m − µ
) (

Fj+i
m − µ

)
(2)

where Fj
m is the jth probabilistic residue of Fm on the mth physicochemical property in a protein

sequence and µ is the average value of all Fj
m (j = 1, 2, . . . , L). In this work, we use i = 1, 2, . . . , 40,

thus producing 40 autocorrelation coefficients features to the mth physicochemical property. Therefore,
each protein sequence is converted to a 4× 40 = 160 dimensional feature vector.

3.3. Discriminative Vector Machine

Classification is a fundamental issue in pattern recognition field and there exist numerous
classification algorithms for different recognition tasks. In this work, our newly developed
discriminative vector machine (DVM) classifier is adopted in the classification. To the best of our
knowledge, it is the first time that DVM model is applied to the field of Bioinformatics. DVM is
a probably approximately correct (PAC) learning algorithm which can reduce the error caused by
generalization and has strong robustness [27]. Given a test sample y, the first step of DVM is to find
its k nearest neighbors (kNNs) to suppress the effect of outliers. The kNNs of y can be expressed by
Xk = [x1, x2, . . . , xk], where xi is the ith nearest neighbor. For convenience, Xk is also represented by
Xk = [xk,1, xk,2, . . . , xk,c], where xk,j denotes the sample vector from the jth class. Then the objective of
DVM is to solve the following minimization problem:

min
βk ∑d

i=1 ∅((y− Xkβk)i) + δ||βk||+ γ
k

∑
p=1

k

∑
q=1

wpq

(
β

p
k − β

q
k

)2
(3)

where (y− Xkβk)i is the ith element of y − Xkβk and βk is denoted as
[

β1
k, β2

k, . . . , βk
k

]
or

[βk,1, βk,2, . . . , βk,c], where βk,i is the coefficient from the ith class. ∅ is a robust M-estimator to improve
the robustness of DVM. M-estimator is a generalized maximum likelihood operator proposed by Huber
to estimate parameters under the cost function [43]. There are a variety of alternative robust estimators
like Welsch M-estimator, MBA (Median Ball Algorithm) estimator and Cauchy M-estimator [44].
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In this work, a robust Welsch M-estimator (∅(x) = (1/2) (1− exp
(
−x2)) is adopted to attenuate large

error terms so that outliers would have a less impact on classification. ||βk|| is a norm of βk and the
corresponding l2-norm is employed in our calculation. The last section of Equation (3) is the manifold
regularization where wpq is the similarity between the pth and the qth nearest neighbor (NN) of y.
In this work, wpq is defined as the cosine distance between the pth and the qth NN of y. Then the
corresponding Laplacian matrix L can be depicted as

L = D−W (4)

where W is the similarity matrix whose element is wpq (p = 1, 2, . . . , k; q = 1, 2, . . . , k), D is a diagonal
matrix whose ith element di is the sum of wiq (q = 1, 2, . . . , k). According to Equation (4), the last
section of Equation (3) can be denoted as γβT

k Lβk. Construct a diagonal matrix P = diag (pi) and its
element pi (i = 1, 2, . . . , d) is:

pi = e−
((y−Xk βk)i)

2

σ2 (5)

where σ is the kernel size which can be calculated in the following form:

σ =

√
(θ × (y− Xkβk)

T × (y− Xkβk) /d (6)

where θ is a constant to suppress the effect of outliers. In this work, it is assigned to 1.0 as in the
literature [45]. Based on the Equations (4)–(6), the minimization of Equation (3) can be converted to
the following problem:

argmin
βk
(y− Xkβk)

T P (y− Xkβk) + δ||βk||22 + γβT
k Lβk (7)

According to the theory of half-quadratic minimization, the global solution βk of Equation (7) can
be solved by:

βk =
(

XT
k PXk + δI + γL

)−1
XT

k Py (8)

After the related coefficients for each class are calculated, the test sample y can be identified as the
ith class if the residual ||y− Xkiβki|| is the minimum distance.

Ri =
min

i ||y− Xkiβki||, i = 1, 2, ..., c (9)

As can be seen, DVM uses the robust M-estimator and manifold regularization to suppress
the effect of outliers and improve its discriminatory ability; therefore, it has better robustness and
higher generalization ability than kNNs. In this work, there are two classes in total to be identified:
non-interacting protein pair (class 1) and interacting pair (class 2). If the residual R1 is the minimum
distance, the test sample y will be classified as non-interacting protein pair (class 1), or it will be
identified as interacting protein pair (class 2). For three free parameters (δ, γ, θ) of the DVM model, it is
time-consuming to directly search for their optimal values. It is gratifying that the DVM algorithm is
so stable that all these parameters only affect the performance slightly if they are set in feasible ranges.
Based on above knowledge and through grid search, the parameters δ and γ are set as 1 × 10−3 and
1 × 10−4 respectively. Just as described before, θ is a constant and is always set to 1 throughout the
whole process. For large data set, the DVM classifier needs to spend relatively more time in finding the
representative vector, so multi-dimensional indexing techniques can be adopted to speed up search
process to a certain extent.

3.4. Procedure of the Proposed Method

In this study, the procedure of the proposed approach mainly consists of two steps: feature
extraction and classification prediction. The feature extraction is also divided into three sub steps:
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(1) the PSI-BLAST tool is used to represent each protein sequence and the corresponding PSSMs are
obtained; (2) Based on PSSM and physicochemical characteristics, each probabilistic residue Fm is
calculated; (3) Each autocorrelation correlation feature vector Vi is established according to Equation (2).
Similarly, classification prediction also includes two sub steps. (1) As described before, each dataset is
divided into training set and test set. The training set is used to train the DVM model; (2) the trained
DVM model is employed to predict the PPIs on the Yeast and H. pylori datasets and the performance of
the algorithm is evaluated. Similarly, the SVM model is also constructed for predicting PPIs on the
Yeast dataset. The flow chart of our proposed approach is illustrated as Figure 2.Int. J. Mol. Sci. 2016, 17, 1396 9 of 11 
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3.5. Performance Evaluation

To evaluate the predictive performance of the proposed approach, four evaluation metrics,
including the accuracy (Acc), sensitivity (Sen), precision (Pre), and Matthews’s correlation coefficient
(MCC), were calculated. The concrete computational formulas can be formulated as follows:

Acc =
TP + TN

TP + FP + TN + FN
(10)

Pre =
TP

TP + FP
(11)

Sen =
TP

TP + FN
(12)

MCC =
(TP× TN)− (FP× FN)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(13)

where FP, FN, TP and TN, denote false positive, false negative, true positive and true negative,
respectively. More specifically, FP is the number of non-interacting protein pairs that are falsely
predicted to be interacting protein pairs, and FN denotes the number of interacting protein pairs
that are falsely predicted to be non-interacting protein pairs. Similarly, TP represents the number of
interacting protein pairs predicted correctly while TN stands for the number of non-interacting protein
pairs predicted correctly. Furthermore, the Receiver Operating characteristic (ROC) curve is employed
to evaluate the performance comparison between SVM and the proposed method.
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4. Conclusions

In this work, we propose a novel computational method for predicting PPIs using the hybrid
feature incorporating the evolutionary information and physicochemical characteristics of protein
sequence. To minimize data dependence and avoid the over-fitting, five-fold cross-validation is
adopted. When applied to the Yeast and H. Pylori datasets, the proposed method achieves good
prediction accuracies of 94.35% and 90.61%, respectively. To further evaluate the performance of the
proposed method, it is compared with SVM model and other previous works. The achieved results
show that our proposed method is very competitive for predicting PPIs and can be taken as a useful
supplementary tool to the traditional experimental methods for future proteomics research.
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