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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most  

common cancer and the second leading cause of  

cancer-related death in the United States [1]. Colon 

adenocarcinoma (COAD) is a CRC subtype  

associated with high mortality [2]. Even though survival 

prognosis has modestly improved over the last three 

decades, poor survival and high recurrence still entail  

a pressing need for novel diagnostic biomarkers  
and therapeutic targets for COAD [3]. Although 

chemotherapy shows significant therapeutic value, 

surgery is still the only curative form of treatment for 

this CRC form [4]. 

Immunotherapies that boost the ability of endogenous T 

cells to destroy cancer cells have shown therapeutic 

efficacy in various human malignancies [5]. The 

tumoricidal activity of T cells is basically determined by 

recognition of immunogenic peptides expressed by 

cancer cells, termed tumor-specific antigens (TSAs) or 

neoantigens. Comprehensive analysis of transcriptome 

and whole exome sequencing (WES) data allows 

identification of tumor-specific mutations giving rise to 

neoantigens, which can be eventually selected as 

diagnostic/prognostic biomarkers and therapeutic 
targets [6]. To screen candidate neoantigens derived 

from tumor-specific mutations, we evaluated the 

expression of the corresponding host genes in both 
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ABSTRACT 
 

Colon adenocarcinoma (COAD) is one of the most common gastrointestinal malignant tumors and is 
characterized by a high mortality rate. Here, we integrated whole-exome and RNA sequencing data from The 
Cancer Genome Atlas and investigated the mutational spectra of COAD-overexpressed genes to define clinically 
relevant diagnostic/prognostic signatures and to unmask functional relationships with both tumor-infiltrating 
immune cells and regulatory miRNAs. We identified 24 recurrently mutated genes (frequency > 5%) encoding 
putative COAD-specific neoantigens. Five of them (NEB, DNAH2, ABCA12, CENPF and CELSR1) had not been 
previously reported as COAD biomarkers. Through machine learning-based feature selection, four early-stage-
related (COL11A1, TG, SOX9, and DNAH2) and four late-stage-related (COL11A1, SOX9, TG and BRCA2) 
candidate neoantigen-encoding genes were selected as diagnostic signatures. They respectively showed 100% 
and 97% accuracy in predicting early- and late-stage patients, and an 8-gene signature had excellent prognostic 
performance predicting disease-free survival (DFS) in COAD patients. We also found significant correlations 
between the 24 candidate neoantigen genes and the abundance and/or activation status of 22 tumor-
infiltrating immune cell types and 56 regulatory miRNAs. Our novel neoantigen-based signatures may improve 
diagnostic and prognostic accuracy and help design targeted immunotherapies for COAD treatment. 

mailto:fccwangc@zzu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 4025 AGING 

COAD and normal tissues. Only recurrent mutations 

that were highly expressed in tumor cells and lowly or 

not expressed in normal cells were selected as potential 

sources of candidate neoantigens [7].  

 

WES analysis aims to uncover the most frequently 

mutated genes for a given condition or disease [8]. 

Nevertheless, multiple genetic variants may be present 

within individual genes, especially long ones. In tumor 

suppressor genes, multiple mutations, usually scattered 

across different loci, may lead to loss-of-function and 

drive tumorigenesis if both alleles become deficient or 

inactivated (i.e. the “two-hit” hypothesis). In contrast, 

mutations in oncogenes are often aggregated, triggering 

a specific pathogenic function [9, 10]. Therefore, 

canonical gene-level analysis is not fully adequate to 

mine disease-specific properties. Instead of selecting 

genes containing the most mutations, we assessed 

mutation recurrence among patients at the nucleotide 

resolution. Subsequently, we integrated RNAseq data to 

screen recurrent mutations within overexpressed genes 

in COAD tissues, compared to normal ones. In this 

manner, we separately compared early and late stage 

COAD data and contrasted these findings with normal 

controls to analyze differential gene expression, 

mutational profiles, and hypothetical functions therefore 

affected. This approach led us to identify several 

differentially expressed genes (DEGs) with potential to 

generate tumor-specific neoantigens. We then addressed 

the correlations between these DEGs and both 

regulatory miRNAs and infiltrating tumor cells, and 

applied a machine learning model to select, among the 

candidate neoantigen-forming DEGs, molecular 

signatures for COAD diagnosis and prognosis. Our 

findings may serve to improve diagnostic and 

prognostic accuracy in COAD, and help also design 

targeted immunotherapeutic approaches to increase 

patient survival. 

 

RESULTS 
 

COAD data selection and clinical information 
 

We retrieved from TCGA a total of 459 COAD 

samples, including normal controls with clinical 

information. Of those, 329 and 399 samples underwent 

RNAseq and WES analysis, respectively. In addition, 

miRNA sequencing data was retrieved from 261 

samples. A total of 20,529 mRNAs and 2,113 miRNAs 

were identified in the aggregated sequencing data. 

Clinical information, including gender, stage, vital 

status, and survival time are shown in Figure 1. 
 

It can be seen that the number of male patients is 

slightly higher than the number of female patients at 

both early and late stages. The average age of first 

diagnosis shows no difference between genders, 

although late stage cases are more likely to be 

diagnosed in younger groups. As expected, the 

mortality ratio was significantly higher for late stage 

cases (P = 1.639e-05; Fisher’s exact test). There were 

no differences in overall survival (OS) time between 

genders. 

 

Differential gene expression analysis  

 

We conducted differential analysis of mRNA 

expression profiles between normal vs total, early stage, 

and late stage tumors, as well as between early vs late 

stage tumors samples (Table 1 and Figure 2A–2C). 

 

As shown in Table 1 and Figure 2A, 2B, a balanced 

distribution of up- and down-regulated genes was 

detected, regardless of tumor stage, upon comparison 

with normal control data. In contrast, most DEGs 

between early and late stage tumors were upregulated 

(Figure 2C). Since only 8 normal samples were 

included in the miRNA data, we only compared miRNA 

profiles between early and late stage tumors. As shown 

in Figure 2D, most differentially expressed miRNAs 

were downregulated. This finding seems to be 

consistent with the observed DEG pattern, considering 

that negative, rather than positive, regulation is usually 

exerted by miRNAs on protein-coding transcripts. 

 

Gene clustering and functional analysis 

 

The identified DEGs exhibited diverse expression 

patterns among normal, early-stage, and late-stage 

samples. As seen in Figure 3A, tumor and normal 

samples were separated into different groups based on 

DEG profiling. To some extent, early and late stage 

patients also presented some distinctions. Principal 

component analysis (PCA) was then used to visualize 

the distribution of all samples based on the first two 

principal components (Figure 3B). Consistent with the 

heatmap analysis, the result showed that tumor samples 

showed diverse patterns compared with normal ones. 

 

To investigate the cellular functions regulated by the 

DEGs, we conducted Gene Ontology (GO) functional 

enrichment analysis (Figure 4). 

 

Comparison between early stage and normal control 

samples revealed many interacting DEGs enriched 

mainly in homeostasis-related functions (Figure 4A, 

4B). Between late stage patients and normal controls, 

the predominant DEG-enriched functional modules 

included ‘homeostasis’ and ‘multiple system 
development’ (Figure 4C, 4D). It implies that as the 

disease progresses, different biological functions are 

dynamically interfered. 
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Stage-specific co-expression network analysis 

 

We next applied the Pearson’s correlation algorithm to 

assess potential regulatory influences exerted by 

differentially co-expressed miRNAs on the identified 

DEGs. As shown in Figure 5A, a total of 4,656 edges 

and 362 nodes were identified in the network, and four 

significant modules were extracted using the MCODE 

plugin. 

 

The principal biological GO terms within the network 

were then obtained using the BiNGO plugin [11]. The 

process of ‘microtubule-based transport’ was seemingly 

activated, since all the involved genes were upregulated in 

late stage patients. In contrast, ‘negative regulation of 

angiogenesis’ was apparently inhibited, as all the 

corresponding regulatory components were down-

regulated. Lastly, significant enrichment in both 

upregulated and downregulated DEGs was detected for 

‘regulation of DNA repair’ and ‘microtubule-based 

process’. 

Functional enrichment analysis was also conducted to 

assess the biological roles of the 19 differentially 

expressed miRNAs in relation to their target genes 

(Supplementary Table 1). Results showed that 86 DEGs 

were targeted by these 19 miRNAs, exerting a 

predominant regulatory influence on cell cycle 

dynamics (Figure 5B). 

 

Recurrent somatic mutation selection 

 

A mutation profile analysis of WES data from COAD 

patients revealed that missense mutations were the most 

dominant variants (Figure 6). In turn, a transition (Ti)–

transversion (Tv) bias was one of the significant features 

in both whole-genome sequencing (WGS) and WES data. 

In COAD-WES data, the C>T transition was the most 

distinct feature, which suggests an essential role for 

oxidative DNA damage in COAD pathogenesis [12]. 

 

On gene-level analysis, the top 10 mutated genes 

included TTN, APC, MUC16, SYNE1, TP53, FAT4, 

 

 
 

Figure 1. Clinical characteristics of COAD patients. (A) Stage distribution between male and female COAD patients. (B) Gender-
based distribution of age of first diagnosis and stage. (C) Vital status distribution according to stage. (D) Survival time distribution for 
gender and stage. 
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Table 1. Number of differentially expressed genes among conditions and stages. 

 N vs. T N vs. E N vs. L E vs. L 

Upregulated 1026 1027 1027 482 

Downregulated 1027 1027 1027 369 

Low cutoff -2.21 -2.28 -2.12 -0.2 

High cutoff 1.25 1.24 1.29 0.41 

N, T, E, and L represent normal, tumor (any stage), early stage, and late stage, respectively. Low and high cutoffs were 
determined using 95% confidence interval limits across the logFC values of all genes. 

 

KRAS, RYR2, OBSCN, and PIK3CA. Then we 

investigated the recurrence of each mutation across 

patients from each stage. All recurrent somatic 

mutations with a frequency larger than 5% were 

selected.  

 

Identification of candidate neoantigen-coding genes 

 

Under the assumption that genes with one or more 

recurrent mutations potentially leading to neoantigen 

production are exclusively overexpressed in tumor 

tissues and not in normal ones, we selected the recurrent 

mutations within differentially overexpressed genes 

between early and late stage patients. We eventually 

identified 24 genes harboring recurrent somatic 

mutations in at least 5% of patients from either stage 

(Supplementary Tables 1, 2). The host genes and their 

corresponding mutational frequency in either stage are 

shown in Figure 7A. 

 

As seen in Figure 7A, the host genes of the candidate 

neoantigens were different from the top-mutated genes 

identified by the canonical protocol. A main reason for 

this is that the most mutated genes might be either silent 

in tumor tissues or expressed at similar levels than 

normal ones. Among the 24 genes identified by our 

 

 
 

Figure 2. Distribution of differentially expressed genes. (A) Distribution of DEGs between normal (N) and early-stage (E) samples. (B) 

Distribution of DEGs between N and late-stage (L) samples. (C) Distribution of DEGs between E and L samples. (D) Distribution of differentially 
expressed microRNAs between E and L samples.  
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Figure 3. Clustering analyses. (A) Hierarchical clustering analysis of DEGs. The intersections of DEGs of early vs late stage are used to 

cluster samples. Normal, early stage, and late stage samples are marked by dark blue, red, and light blue, respectively. (B) PCA of samples. 
 

 
 

Figure 4. Functional enrichment analysis. (A) Enrichment network (emapplot)of functions regulated by the NvsE DEGs. (B) Upset plot of 
the top 10 NvsE-related functions. (C) Emapplot enrichment network of functions held by the NvsL DEGs. (D) Upset plot of the top 10 NvsL-
associated functions. 
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Figure 5. Interaction network and functional enrichment analysis of DEGs and miRNAs between early and late stage. (A) Co-

expression network analysis. Purple diamonds represent miRNAs; red and green rectangles represent upregulated and downregulated DEGs, 
respectively. Orange and blue lines indicate, respectively, positive and negative correlations between nodes. Top-enriched functions are 
indicated under the corresponding modules. (B) Functional network depicting DEG-enriched processes regulated by the 19 differentially 
expressed miRNAs. 
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protocol, NEB and DNAH5 were found to be mutually 

exclusive, especially in late-stage patients. 

 

We next performed KEGG pathway enrichment 

analysis for the 24 genes to evaluate their functional 

properties (Figure 7B). Among them, 5 genes involved 

in collagen synthesis, i.e. COL11A1, COL12A1, 

COL27A1, COL5A1, and COL7A1, were enriched in the 

protein digestion and absorption pathway.  

 

Correlation of COAD-associated neoantigen genes 

with tumor infiltrating immune cells and predicted 

miRNAs  

 

The Pearson’s correlation coefficients between the 24 

neoantigen-associated DEGs and COAD-infiltrating 

immune cells (determined by RNA-seq data) are shown 

in a heatmap on Figure 8A. Intuitively, we observed 

two correlation patterns within the 22 immune cells 

analyzed. The most prominent, positively correlated 

immune cells consisted of neutrophils, macrophages, 

dendritic cells, activated mast cells, and naïve and 

activated T cells. In contrast, B cells, resting mast cells, 

resting T cells, monocytes, plasma cells, and 

eosinophils were mainly negatively correlated with the 

candidate neoantigen-forming DEGs. 

 

We further investigated the correlation between the  

24 selected neoantigen genes and miRNAs. We 

combined 47 validated miRNAs from three miRNA 

databases and 9 predicted miRNAs based on 

expressional correlation. These 9 predicted miRNAs 

 

 
 

Figure 6. Somatic variant analysis of COAD-TCGA data. Variants per sample are shown as a stacked barplot and variant types as a 
boxplot summarized by variant classification. 
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Figure 7. Mutational profile and KEGG pathway analysis of candidate COAD neoantigen-related DEGs. (A) Mutation frequency 
data. The percentage of patients harboring the color-coded variations listed at the bottom are indicated on the left and right sides. (B) KEGG 
pathways enriched in the 24 candidate neoantigen-related genes. Red and green boxes indicate up- and down-regulated genes, respectively. 
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were all correlated with at least one of the 24 

neoantigen-related host genes. A correlation matrix 

between the 24 neoantigen genes and the 56 miRNAs is 

shown in Figure 8B. It can be seen that six host genes 

(ZNF469, COL5A1, COL12A1, KIF26B, COL11A1, and 

VCAN) were the most significantly regulated by the 

overall miRNA pool, especially by MIMAT0000440. 

 

Although similar correlation patterns were observed for 

both predicted and validated miRNAs, stronger links 

were identified for the 9 predicted miRNAs. This 

suggests their potential involvement in the regulation of 

COAD progression. 

 

Diagnostic model construction 

 

Since the candidate neoantigen-forming DEGs were all 

overexpressed and tumor-specific, we evaluated their 

potential as diagnostic markers. Applying the random 

forest algorithm, we obtained four early stage-related 

signatures, represented by COL11A1, TG, SOX9, and 

DNAH2. Likewise, four late stage-related signatures, 

namely COL11A1, SOX9, TG, and BRCA2, were also 

selected (Figure 9). Except for DNAH2 and BRCA2, all 

the other genes were shared by the two tumor stages. 

This suggests a relatively stable expression for these 

DEGs during COAD progression. However, the stage-

specific signatures indicate that some differences exist 

between the two stages.  

 

Using the selected genes as signatures, the trained 

predictor was tested against a validation dataset. The 

accuracy of predicting early and late stage cancer was 

100% and 97%, respectively. These data suggest that 

the neoantigen-related DEGs identified by our protocol 

have the potential to be exploited as both therapeutic 

targets and diagnostic biomarkers. 

 

Evaluation of neoantigen-related DEGs as survival 

indicators in COAD 

 

The potential impact of the 24 neoantigen-associated 

DEGs on survival prognosis was investigated using 

stepwise regression. Eight genes, i.e. ZNF469, VCAN, 
RP1, MUC16, KIF26B, COL5A1, COL12A1, and 

CENPF, were chosen to build a signature for overall 

survival (OS). In turn, another 8-gene set, including 
RP1L1, VCAN, SOX9, KIF26B, MUC16, COL5A1, 

COL11A1, and CELSR1, was selected as a relevant 

prognostic signature for disease-free survival (DFS). 

 

 
 

Figure 8. Correlation matrix between neoantigen-associated DEGs and immune cells and miRNAs. (A) Correlation between 
COAD-related neoantigen genes and immune infiltrating cells. (B) Correlation between COAD-related neoantigen genes and miRNAs. 
Validated and predicted miRNAs are marked in blue and orange, respectively. 
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Based on expression data for these signature genes, 

high- and low-risk patient groups were determined  

by the regression model prior to construction of  

Kaplan-Meier curves comparing OS and DFS (Figure 

10A, 10B). 

 

Despite a non-significant log-rank P value for OS 

(0.07), the 8-gene set still has valuable clinical 

implications. That the P-value did not reach statistical 

significance is attributable to the mixture of patients 

surviving no more than 3 years. However, the survival 

difference is obvious for patients surviving longer than 

3 years. Moreover, another 8-gene set was significantly 

predictive of DFS (P-value=0.0025). These results show 

that differential expression of signature genes can be 

used to successfully predict OS and DFS among high- 

and low-risk patients.  

 

Comparative analysis of neoantigen-related DEG 

expression between COAD and multiple cancers 

 

To assess whether the 24 overexpressed host genes 

harboring recurrent mutations associated with candidate 

neoantigens identified herein were specific to COAD, 

we evaluated their expression in 10 other cancers 

(Figure 11).  

 

Genes with FC > 2 and FDR > 0.05 were retained for 

analysis. Normalized RSEM values were used as 

expression values in GSCALite, but log2(x+1) 

transformed RSEM normalized count was used in our 

RNAseq analysis. Because of the different 

quantification methods, some slightly overexpressed 

genes, such as NEB and DNAH2, whose log2FC values 

were respectively 2.2 and 2.6 in NvsT analysis, were 

missed by the GSCALite analysis.  

 

We found that most host genes were overexpressed in 

multiple cancers besides COAD, including BRCA, 

LUAD, HNSC, and STAD. Other genes, including 

DNAH5, COL7A1, COL27A1, RP1L1, and ROBO2, 

seemed instead to be COAD-specific, as they were 

silent or even downregulated in other cancers (Figure 

11A). Most of these genes were however recurrently 

mutated in COAD and other digestive system cancers 

such as stomach adenocarcinoma (STAD) and 

esophageal carcinoma (ESCA). They were also highly 

mutated in lung adenocarcinoma (LUAD), but this may 

be attributed to the large number of mutations 

characteristic to this entity (Figure 11B). 

 

Pathway analysis indicated that some biological 

functions were significantly impacted by mutations  
in the host genes analyzed. For instance, apoptosis,  

cell cycle, DNA damage response, EMT, and 

hormone_AR/ER were all simultaneously or alternatively 

activated and/or inhibited by the different mutations 

(Figure 12). 

 

DISCUSSION 
 

Immunotherapy approaches have gained prominence in 

the treatment of many cancers, especially leukemia, 

lymphoma and lung, kidney, and bladder cancer. Seven 

standard treatments, including surgery, radiofrequency 

ablation, cryosurgery, chemotherapy, radiation, target 

therapy, and immunotherapy, are currently used for 

COAD. Resection and anastomosis are the major 

strategies for early stage (stage I and II) colon cancer 

patients, while chemotherapy may be further indicated 

for stage III patients. Immunotherapy is currently used 

to treat stage IV and recurrent colon cancer patients 

[13], and its potential use in early stage patients remains 

controversial. This is largely due to uncertainty about 

both the mutational changes impacting early to late 

stage progression, as well as the immune influences that 

shape this transition. 

 

Tumor neoantigens are modified proteins expressed on 

the surface of tumor cells and recognized as “non-self” 

or foreign by cells of the immune system [14]. 

Generally, these foreign proteins derive from tumor-

specific mutations that change the original peptide 

sequence and/or structure. Tumor neoantigens have 

attracted a great deal of attention as potential targets for 

immunotherapy, including individualized or broad-

spectrum cancer vaccines. To reduce the risk of 

potentially severe autoimmune reactions, proper 

screening protocols are required to identify clinically 

actionable tumor neoantigens. Ideally, the mutations 

that give rise to neoantigens should be recurrently 

observed in a significant fraction of patients so that the 

therapy can be broadly applied. High-throughput 

sequencing technologies provide the opportunity for 

large-scale screening of potential neoantigens in cancer 

patients. For instance, approaches using WES data 

alone or together with gene expression data have been 

used in clinical trials of checkpoint inhibitors [7]. 

 

In this study, we integrated WES and RNA-Seq data to 

screen candidate neoantigen-hosting genes in colon 

cancer. After selecting stage-specific DEGs through 

RNA-Seq analysis, recurrent mutations in the 

overexpressed genes were further selected through WES 

analysis. Based on mutational recurrence rates among 

COAD specimens, we then applied the random forest, a 

supervised machine learning model, to construct two 

gene signatures that showed high diagnostic accuracy to 

discriminate early and late tumor stages. In turn, 

survival analyses showed prognostic differences 

between patients with and without these recurrent 

mutations. 
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We identified SOX9 and COL11A1 as relevant biomarkers 

of diagnosis and survival prognosis in COAD. COL11A1 

expression is upregulated in many cancers, including 

colorectal, breast, and ovarian cancer, and head and neck 

squamous cell carcinoma [15–19]. Previous studies 

suggested that COL11A1 regulates tumor progression 

through the APC/beta-catenin pathway, and inhibits 

apoptosis by modulating the NFkB pathway [20, 21]. 

 

 
 

Figure 9. Feature selection and confusion matrices. Top: normal vs early stage. Bottom: normal vs late stage. The x-axis of barplot 

graphs lists featured genes and the y-axis indicates how many times each feature is selected over 100 permutations. The grey dash line 
represents the significance cutoff (0.8). The x-axis in the confusion matrices represents the predicted labels and the y-axis represents the true 
labels. 

 

 
 

Figure 10. Prognostic ability of neoantigen-related gene signatures in COAD. (A) Overall survival. (B) Disease-free survival. Time is 

expressed as days in the graphs’ x-axis. 
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Elevated SOX9 expression was characteristic of COAD 

and this gene was thus included in the diagnostic 

signatures for early and late stage tumors. SOX9 

overexpression is associated with increased mortality in 

many cancers, including colon and rectal cancers [22–

24]. SOX9 is involved in multiple functions that 

promote cancer progression, such as proliferation and 

transformation, and resistance to apoptosis and 

chemotherapy [23, 25]. 

 

Among the 24 neoantigen-related genes identified 

herein, COL11A1, COL12A1, COL27A1, COL5A1, and 

COL7A1 participate in the synthesis of various collagen 

types. Excessive, abnormal deposition of collagen 

chains may lead to enhanced activation of fermentation 

by colonic bacteria. This phenomenon has been linked 

to colon carcinogenesis; as colon cancer progresses, the 

activity of colonic microorganisms becomes more 

intense, which would intensify the digestion and 

absorption of proteins [26–29]. Other markers identified 

by us as candidate host genes for neoantigens have 

already been postulated as driving factors in COAD. 

These include BRCA2 [30], MKI67 [31], MUC16 [32], 

RP1 [33], and VCAN [34]. 
 

Novel findings of our study include the new diagnostic 

and prognostic signatures, the observed correlation 

between the neoantigen-associated genes and specific 

tumor-infiltrating immune cell populations, and the 

predicted regulatory influences exerted on the former by 

several miRNAs. Moreover, we identified several DEGs 

that had not so far been associated with COAD. These 

include NEB, which predicted high survival risk in 

COAD patients, and DNAH2 and ABCA12, which are 

considered essential prognostic indicators for ESCA. 

Two other DEGs, CENPF and CELSR1, were in turn 

selected in this study as prognostic indicators of OS and 

DFS in COAD patients.  
 

ABCA12 is a member of the ATP-binding cassette 

(ABC) family of transporters, which are essential 

mediators of chemoresistance [35]. DNAH2 encodes for 

 

 
 

Figure 11. Representation of the 24 COAD-related neoantigen genes in other cancers. (A) Comparative expression analysis of the 
24 host genes across 9 cancers. (B) Number of mutated samples across 11 cancers. 
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the dynein heavy chain, which also has ATPase 

activity [36]. CENPF is a widely studied driver gene 

in multiple cancers, such as gastric [37], prostate [38], 

breast [39], and bladder [40] cancer. Functional 

experiments revealed positive effects of CENPF on 

cellular proliferation, migration, and invasion [41]. 

CELSR1 was shown to promote progression and 

paclitaxel resistance of ovarian cancer in vitro and in 

vivo [42]. Our data thus reveal novel associations 

between these genes and COAD, some of which 

present potential relevance as diagnostic/prognostic 

indicators. 

 

Somatic mutations may lead to generation of neoantigens 

for T-cell recognition, leading in turn to increased 

recruitment of various kinds of immune cells [5]. 

Therefore, uncovering the relationship between tumor 

neoantigens and infiltrating immune cell populations  

will greatly boost the efficacy of immunotherapy  

[43–45]. Correlation analysis between COAD-associated 

neoantigen genes and tumor-infiltrating immune cells 

indicated that as neoantigen expression increases, the 

fractions of several immune cell types rise accordingly. 

Specifically, our data showed that some immune cells, 

such as dendritic cells, mast cells, and T cells were over-

represented and synchronously activated in samples with 

high neoantigen expression. Meanwhile, other immune 

cells, such as B cells, monocytes, plasma cells, and 

eosinophils, were inhibited and downregulated. This 

suggests an obvious link between tumor neoantigen 

expression and differential representation and activity of 

tumor-associated immune cell populations. Although 

further research is warranted, this suggests the possibility 

of assessing neoantigen levels to estimate the immune 

status of tumors.  

 

To gain insight on the regulatory landscape of the 24 

DEGs harboring potential COAD neoantigens, we 

correlated their expression with that of miRNAs. Nine 

non-validated miRNAs were predicted to regulate these 

 

 
 

Figure 12. Pathway activity and mutation survival analysis. Top: Inferred activity of the identified host genes in biological pathways. 

Red and blue represent percent activation or inhibition. Bottom: Relationship between mutations in identified DEGs and survival prognosis 
for selected cancers. 
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24 neoantigens. The candidate neoantigen genes with 

the strongest negative correlation with these miRNAs 

were ZNF469, COL5A1, COL12A1, KIF26B, COL11A1 
and VCAN. Although experimental confirmation of 

these interactions is lacking, these miRNAs correlated 

with at least one of the genes more strongly than any of 

the validated miRNAs. 

 

The recurrent mutations identified herein are 

predominantly observed in COAD, compared to other 

cancers. ESCA and STAD are the cancers most closely 

related to COAD in terms of recurrent mutation 

profiles. This is not unexpected, because these three 

cancers arise in the digestive system and share a similar 

tumor microenvironment [46]. However, the predicted 

impact of the identified mutations on the survival risk of 

patients was rather dissimilar among these entities. For 

instance, our analyses showed that mutations in NEB 

correlate with higher survival risk in COAD patients, 

but have no obvious impact on ESCA patients. 

Conversely, mutations in DNAH2 and ABCA12 were 

associated with higher risk in ESCA, but not COAD, 

patients. In turn, mutations in RP1, KIF26B, COL11A1, 

BRCA2, and COL7A1 had no prognostic significance in 

COAD patients, but correlated with lower risk in STAD 

patients. Besides ESCA and STAD, we found that 

LUAD also shares a similar mutational profile as 

COAD. A possible reason for this is that LUAD patients 

tend to harbor more mutations due to exposures such as 

tobacco smoking [47]. 

 

In summary, our study integrated transcriptome and 

whole-exome sequencing data from COAD-TCGA and 

identified 24 DEGs harboring recurrent somatic 

mutations with neoantigen-forming potential in COAD 

patients. Among these candidate neoantigen genes, 

NEB, DNAH2, ABCA12, CENPF, and CELSR1 were 

newly identified as COAD biomarkers, while DNAH5, 

COL7A1, COL27A1, RP1L1, and ROBO2 had 

mutational profiles specific to COAD, compared to 

other solid tumors. We further constructed two 

diagnostic signatures, composed respectively of 4 early 

stage-related genes (COL11A1, TG, SOX9, and 
DNAH2) and 4 late stage-related genes (COL11A1, 

SOX9, TG, and BRCA2), which predicted COAD stage 

with high accuracy. Furthermore, several candidate 

neoantigen-yielding genes identified herein showed 

significant correlations with both miRNAs and diverse 

tumor-infiltrating immune cell types, and therefore 

represent promising therapeutic targets for immuno-

therapy. Nevertheless, further research is warranted to 

experimentally validate the association between the 

recurrently mutated DEGS identified herein and the 
generation of tumor-specific neoantigens, and to 

explore the functional impact of the identified mutations 

on tumor biology. 

MATERIALS AND METHODS 
 

Data collection 

 

We downloaded WES and RNAseq data of COAD from 

the TCGA database (https://www.cancer.gov/tcga). We 

also retrieved the clinical information for all patients, 

including MNT stage and survival data. A total of 459 

COAD cases (329 with transcriptome and 399 with 

exome sequencing data, respectively) were thus 

obtained. We also retrieved the miRNA sequencing data 

for 261 samples, involving 2,113 microRNAs. Gene 

expression profiles for all patients were determined 

using the Illumina HiSeq 2000 RNA Sequencing 

platform. Level 3 data were downloaded from TCGA 

data coordination center. This dataset shows the gene-

level transcription estimates as the log2(x+1) 

transformed RSEM-normalized count. Patients 

diagnosed with tumor stage I/II were assigned to the 

early stage group, and those with more advanced stages 

were assigned to the late stage group. 

 

Differential gene expression analysis  

 

We analyzed RNAseq data from 329 COAD patients, 

41 of which had matching data for normal tissues.  

The limma algorithm [48] was used to identify 

differentially expressed genes (DEGs) in early and late 

stage COAD samples, compared with normal tissue 

specimens. As the microRNA data was only used to 

explore potential regulatory actions on protein-coding 

genes, differential microRNA expression was only 

assessed between the two tumor stages. All genes and 

microRNAs with P < 0.05 and logFC values over the 

95% confidence limit were considered as differentially 

expressed. 

 

Gene clustering and functional analysis 

 

Overexpressed genes in either stage were selected to 

establish candidate neoantigen pools. These genes were 

either lowly expressed or silent in normal tissues, and 

therefore potentially good targets to avoid adverse 

effects if used to develop targeted therapies [49]. 

Hierarchical clustering [50] was used to visualize gene 

expression patterns in normal and tumor specimens. 

ClusterProfiler and enrichplot R packages [51] were 

used to conduct functional enrichment analyses.  
 

Co-expression network analysis 
 

DEGs and miRNAs identified at early and late  

tumor stages were used to construct the co-expression 
network [52]. Transcript (mRNA or microRNA) co-

expression was determined by Pearson’s correlation 

analysis [53], with a correlation coefficient cutoff 

https://www.cancer.gov/tcga
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determined based on 95% CIs for all pairs. The  

network was constructed using Cytoscape 3.8.0 

software [54]. Significant modules were mined from the 

network using the MCODE plugin with default 

parameters [55].  

 

Recurrent somatic mutation selection 

 

MAF files including somatic mutation information for 

exome sequencing data were retrieved from the TCGA 

database. We focused on nucleotide resolution and 

selected recurrent somatic mutations (i.e. those carried 

by at least 5% of patients), which represent potential 

therapeutic targets [56]. 

 

Selection of candidate neoantigen-associated genes  

 

Candidate neoantigen-forming genes were initially 

selected based on high expression in COAD samples 

and low or no expression in normal ones [57]. Among 

those, we selected the early and late stage genes that 

harbored somatic mutations that were recurrent in at 

least 5% of COAD specimens. Putative neoantigen 

genes corresponding to each stage were compared to 

determine stage-specific differences with potential 

correlation with tumor progression. 

 

Analysis of tumor-infiltrating immune cell 

populations 

 

We applied CIBERSORT [58], a computational method 

for quantifying immune cell fractions from RNAseq 

data, to evaluate infiltration rates for 22 immune cell 

types. Pearson’s correlation coefficients were 

subsequently computed to assess potential correlations 

between neoantigen genes and infiltrating immune cells. 

The correlation matrix was visualized by heatmap using 

the heatmap.2 R package. 

 

Prediction of miRNAs targeting candidate 

neoantigen-associated transcripts 

 

The co-expression network described above was used to 

extract all the miRNAs correlated with at least one of 

the selected host genes of the candidate neoantigens. 

The correlated miRNAs included both validated 

(retrieved from miRecords [59], miRTarBase [60], and 

TarBase [61] databases) as well as unannotated 

transcripts. Then, we inferred potential miRNAs 

targeting the candidate neoantigens by cross-assessment 

with the validated miRNAs. 

 

Diagnostic model construction 

 

To investigate whether the host genes encoding putative 

COAD neoantigens could serve as diagnostic 

signatures, we trained a random forest model as a 

diagnostic predictor [62]. The host genes corresponding 

to each stage were used as signatures. The whole data 

was randomly split into discovery (70%) and validation 

(30%) samples. For feature selection, we first randomly 

split the discovery data into train and test sets. A linear 

SVC model was used to select the most significant 

features [63]. This process was repeated 100 times, and 

the features selected in at least 80 iterations were 

considered as robust signatures. The predictor was 

trained with default parameters using the training set, 

and 10-fold cross-validation was used to evaluate the 

performance of the predictor [64]. Eventually, we 

applied the predictor to the test set and assessed the 

model’s accuracy. 

 

Survival analysis 

 

The impact of candidate host genes harboring 

neoantigen-related mutations on COAD prognosis was 

initially assessed using stepwise regression [65]. Then, 

patients were separated into low- and high-risk cohorts 

based on individual expression frequencies. Survival 

analysis was conducted using Kaplan-Meier curves 

generated through the survival and ggsurvplot R 

packages [66, 67].  

 

Comparative neoantigen expression analysis  

 

To investigate whether the neoantigen-related DEGs 

identified herein are COAD-specific or are also shared 

by other types of cancers, we used the GSCALite tool 

[68] to compare the corresponding expression patterns 

in datasets from ten additional cancers retrieved from 

the TCGA database. 
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Supplementary Table 1. Differentially expressed miRNAs and target genes. 

Supplementary Table 2. Variant information of recurrent somatic mutations. 


