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Simple Summary: Glioblastoma is one of the most treatment-refractory human malignancies, and
despite techniques that have allowed scientists and clinicians to better understand the molecular
underpinnings of resistance, little progress has been made in improving the survival of patients
with glioblastoma. We posit that dysregulated Janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling represents one major hub of tumorigenesis and resistance to
medical therapies and that clinical study of its targeted inhibition is warranted, as well as highlighting
the lessons learned from historical investigation going forward.

Abstract: Glioblastoma remains one of the deadliest and treatment-refractory human malignancies
in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune
escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling
pathway contributes substantively to a wide variety of protumorigenic functions, including prolif-
eration, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review
the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma,
therapeutic strategies, and future directions for the field.
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1. Introduction

Despite decades of intense study, the prognosis for patients with glioblastoma (GBM)
remains near universally poor, with inevitable therapeutic resistance and subsequent
recurrence despite multimodality therapies. As advances in other solid and liquid cancers
continue to be made, there remains an urgent unmet need for GBM therapeutics. Treatment
resistance arises from a wide variety of mechanisms, including the blood–brain barrier
(BBB), inter- and intra-tumoral heterogeneity, and a profoundly immunosuppressive tumor
microenvironment (TME). As the mechanisms underlying these barriers have been and
continue to be elucidated, a number of crucial oncogenic signaling pathways have been
discovered that contribute redundantly in promoting tumorigenesis, disease recurrence,
and confounding therapeutic strategies. Increasing evidence demonstrates the importance
of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling
as a pivotal molecular hub active in critical microenvironmental cellular populations,
such as glioma cells, reactive astrocytes, and stromal and immune cells, that drives not
only aggressive growth, invasion, treatment resistance, and cancer cell stemness but also
tumor-mediated immunosuppression. Herein, we review the present knowledge to date of
JAK/STAT signaling in promoting these activities, the historical approaches taken to target
this pathway, and the future directions.
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2. Physiologic JAK/STAT Signaling

The STAT family of transcription factors is comprised of seven proteins—STAT1,
STAT2, STAT3, STAT4, STAT-5a, STAT-5b, and STAT6—which reside in the cytoplasm and
are activated by phosphorylation as a downstream consequence of a number of signaling
pathways, including cytokines, growth factors, or non-receptor tyrosine kinases [1]. In the
classical JAK-mediated pathway, cytokine binding of its cognate receptor leads to receptor
dimerization followed by docking of JAK and consequent phosphorylation of the receptor’s
cytoplasmic tail. STAT proteins are then recruited via their SH2 domains to the activated
receptor where tyrosine phosphorylation occurs, STAT hetero- or homodimerization ensues,
and activated STAT then undergoes translocation to the nucleus to bind DNA elements
such as promoters or enhancers to both directly and indirectly regulate transcription of
associated genes (Figure 1) [2]. Although tyrosine phosphorylation of STAT is the most
important activating step, STAT can be phosphorylated on serine residues to modulate
their activity.
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Figure 1. Physiologic JAK-STAT signaling. The classical JAK/STAT signaling pathway begins with (A) recognition and
binding of an extracellular cytokine by its respective receptor leading to (B) receptor dimerization, docking of JAK protein,
JAK autophosphorylation, and phosphorylation of the receptor’s cytoplasmic tail. STAT proteins are then able to (C) bind
via their SH2 domains to these activated receptors, undergoing the critical activating step of tyrosine phosphorylation that
allows them to dimerize with other STAT proteins and (D) translocate to the nucleus to effect transcription of target genes.
Abbreviations: JAK—Janus kinase; STAT—signal transducer and activator of transcription.

The negative regulation of STAT signaling is mediated through a number of mecha-
nisms acting both upstream and downstream of STAT activation, such as the suppressors
of cytokine signaling (SOCS) proteins that inhibit JAK activity via binding to their SH2
domains [3]. The protein inhibitors of activated STAT (PIASs) proteins are another group
of proteins that can bind activated STAT and prevent DNA binding, thereby inhibiting
downstream transcriptional programs [4–6]. Protein tyrosine phosphatases (PTPs), such as
Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), inactivate STAT
molecules via dephosphorylation [7,8].

Of the aforementioned seven STAT family members, pathogenic activation of STAT1,
STAT3, and STAT5 have been studied in malignant glioma and are the main focus of
this review.
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3. Biological Principles in JAK/STAT Signaling in Glioblastoma Cells
3.1. STAT1 and STAT5 in GBM

The role of STAT1 in malignant glioma is evolving. Historically, STAT1 was believed
to play a tumor suppressor role; however, more recent studies support a more nuanced
view [9–11]. For example, exogenous overexpression of STAT1 was initially described to
decrease proliferation and migration and increase apoptosis in glioma cells [12]. STAT1
signaling is also a negative regulator of HIF-1α-mediated CXCR4 and VEGF gene expres-
sion [9,13]. In direct contrast, a more recent study showed that IL-8 secreted by glioblastoma
and other microenvironmental immune cells promotes glioma migration, invasion, and
mesenchymal transition via the STAT1/HIF-1α/Snail cascade [14]. Consistently, investiga-
tors have found upregulated expression of STAT1 signaling genes to be associated with
poor prognosis in pathways involving N-Myc or IGFBP-3 [11,14,15].

The complexity of the role of STAT1 in the GBM TME is further confounded by
the therapeutic context. For example, STAT1 signaling is essential to induce the effects
of oncolytic virotherapy by prompting proinflammatory and apoptotic effects through
interferon [16]. Interestingly, STAT1 is expressed in the cytoplasm of reactive astrocytes at
the leading or invasive edge of most GBMs as well as in microglia, although the mechanistic
implications of this are unclear since it is not the activated phosphorylated form or in a
transcriptionally active nuclear location [17]. On balance, it appears to be that the net effect
of STAT1 signaling in glioblastoma is context dependent, and this axis may therefore be
difficult to therapeutically modulate in a predictable fashion.

STAT5 signaling has been linked to tumorigenesis in GBM. STAT5 is mainly concen-
trated at the tumor leading edge and plays a role in proliferation and invasion [18,19].
Indeed, knockdown of STAT5 leads to impaired migration in epidermal growth factor vari-
ant III (EGFRvIII)-bearing GBM, likely as a result of decreased MMP-1 [20,21]. Granulocyte
macrophage colony-stimulating factor (GM-CSF) secreted by glioma cells also activates
STAT5 signaling in myeloid derived suppressor cells (MDSCs) to induce Bcl2a1 expression
and downregulate IRF8 transcription, thereby inhibiting apoptosis and promoting prolifer-
ation, respectively [22,23]. Overall, STAT5 appears to be a potential therapeutic target in
GBM, although a dearth of confirmatory in vivo data currently precludes this application.

3.2. STAT3 Dysregulation in GBM

Of all the STAT family members in GBM, STAT3 is the most well-characterized in its
breadth of oncogenic activity and immune suppressive role. As gain-of-function STAT3
mutations have not been described in GBM, aberrant STAT3 signaling in malignant glioma
occurs predominantly as a result of dysregulated upstream events that ultimately promote
proliferation; neovascularization; resistance to apoptosis; and immune escape through
downstream targets, such as Bcl-xL, Bcl2l1, Bcl-2, cyclin D1, and c-Myc (Figure 2) [24,25].
Constitutive activation of EGFR signaling—for instance, via EGFR amplification, which
occurs in 60% of GBMs—leads to dysregulated STAT3 signaling in part via inhibition
of nuclear phosphatases by TRIM59 and constitutive nuclear translocation of STAT3 by
RanBP6 [26–31]. Basic fibroblast growth factor (bFGF), PDGF, c-MET, and PKCε can
also activate STAT3 signaling [32,33]. Elevated expression of IL-6 within the TME by a
number of cellular populations, including reactive astrocytes, also leads to increased STAT3
signaling through JAK signaling [34,35].
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Figure 2. STAT3 pathway activation represents a focal point of tumorigenesis and immune escape. Aberrant STAT3
activation occurs as a result of several potential upstream and downstream regulatory events including growth factor
receptor signaling (e.g., epidermal growth factor (EGFR), platelet-derived growth factor (PDGF), and c-MET)), inhibition of
negative regulators of STAT3 (e.g., protein tyrosine phosphatases (PTPs), suppressors of cytokine signaling (SOCS), and
protein inhibitor of activated STAT 3 (PIAS3)), and microenvironmental cytokine crosstalk between immune and glioma cells.
STAT3 activation transcriptionally upregulates key genes involved in proliferation, stem cell self-renewal, angiogenesis,
invasiveness, and formation of the immune microenvironment. The balance of microenvironmental cytokines favors
the infiltration of immunosuppressive immune cell populations, including myeloid derived suppressor cells (MDSCs),
tumor-associated macrophages/microglia (TAMs), and Tregs. These cytokines activate STAT3 signaling within immune cell
populations to increase immunosuppressive macrophage polarization, decreased antigen presentation, and decreased T
cell activation.

A lack of negative STAT3 regulation also contributes to its constitutive activation in
gliomas. Indeed, epigenetic silencing of the PTPRD gene encoding the receptor protein tyro-
sine phosphatase delta—an inactivating dephosphorylator of STAT3—is commonly found
in GBM as a consequence of CpG hypermethylation on chromosome 9p [36]. Additionally,
SOCS1 and SOCS3 promoter hypermethylation–which inactivates these genes—occurs in
24% and 35% of GBM, respectively, and is associated with poor prognosis [37]. SOCS3
knockdown results in an increase in EGFR-related signaling pathways [37–39]. Recently
characterized, the non-receptor tyrosine kinase bone marrow and X-linked (BMX) is also an
inhibitor of SOCS3 and is highly upregulated in nearly 90% of patient-derived glioma stem
cells (GSCs) [40]. Finally, overexpression of TGF-β-related protein Smad6 in nearly 90%
of GBM tissues promotes the ubiquitination and subsequent degradation of the STAT3 in-
hibitor PIAS3 [41–43]. As a consequence of these aforementioned mechanisms, the reported
frequency of phospho-Tyr-STAT3 positivity in human glioma samples ranges up to 60%
and has been significantly correlated with histologic grade, EGFRvIII positivity, aggressive
behavior, and poor prognosis [44–49]. Recent work has affirmed the negative prognostic
significance of upregulation of JAK/STAT gene targets—e.g., cytokines, cytokine receptors,
and JAKs—in the classical subtype of GBM [50].

Adding a layer of complexity to the role of STAT3 in gliomagenesis is that the role
of STAT3 may be to a certain degree genetically determined. In one notable in vitro
study, de la Iglesia et al. demonstrated that in GBMs harboring inactivating mutations of
PTEN, consequent AKT activation led to downregulation of cytokine receptor leukemia
inhibitory factor receptor-β and inhibition of STAT3 signaling, thereby leading to IL-8-
induced proliferation and invasiveness [51]. A companion study by de la Iglesia et al.
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further found that in EGFRvIII-positive GBMs, STAT3 complexed with EGFRvIII in the
nucleus to activate its tumorigenic activity [52]. In other words, in PTEN-deficient GBM
(found in ~35% of GBM), STAT3 may be tumor suppressive rather than oncogenic [53].
These findings may have significant implications for the clinical study of STAT3 inhibition
in GBM. However, because of the known complexity of STAT3 dysregulation, and because
an association between PTEN status and response to STAT3 inhibition has not been shown,
it would be premature to exclude such a significant proportion of patients with GBM
from a clinical trial of a STAT3 inhibitor. PTEN status will likely need to be considered
in the correlative analysis of outcome in any clinical trial involving STAT3 inhibition in
GBM. In summary, the net balance favors aberrant STAT3 pathway activation as primarily
tumorigenic in GBM.

3.3. Consequences of Dysregulated STAT3 Signaling in GBM

STAT3 activation underlies a host of tumorigenic cellular pathways, the foremost of
which is in transcriptionally regulating glioma stem cells (GSCs)—a critically treatment-
resistant population of cells that give rise to recurrent disease [54,55]. Indeed, activated
STAT3 has been associated with Notch signaling in GBMs that is involved in regulating
stem cell genes such as OCT4, SOC2, and NANOG [56–58]. Aberrant cytokine signaling
also promotes GSC self-renewal. One such cytokine is transforming growth factor (TGF)-
β, which is highly overexpressed in glioblastoma where it induces expression of the
cytokine leukemia inhibitory factor (LIF) to consequently activate JAK/STAT3 to prevent
differentiation of the GSCs [59]. Another mediator is IL-6, which is secreted by a multitude
of microenvironmental cells that is critical for GSC survival [60,61]. miR-30 is another
factor highly expressed in GSCs that binds and inhibits SOCS3 to further promote STAT3
activation [62]. STAT3 also promotes the transcription of miR-182-5p, which binds and
inhibits the tumor suppressor protocadherin-8 [63,64]. Finally, STAT3 and NF-κB are
preferentially bound and methylated by the enhancer of zeste homolog 2 (EZH2) in GSCs,
enhancing their activation and self-renewal [65,66]. These are summarized in Figure 3.
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Figure 3. STAT3 activation in glioma stem cells. A number of dysregulated extra- and intra-
cellular signaling pathways lead to constitutive STAT3 activation in glioma stem cells, which are
important progenitor cell populations that are capable of seeding recurrent disease. Chief among
these is aberrant cytokine-related JAK/STAT signaling, which includes both autocrine (e.g., IL-6
and leukemia inhibitory factor (LIF)) and paracrine (e.g., IL-6, transforming growth factor (TGF)-β
among others) factors. Intracellular regulators include miR-30 (which binds and inhibits the STAT3-
inhibitory protein SOCS3) and enhancer of zeste homolog 2 (EZH2), which methylates STAT3 to
promote its constitutive activation. The net effect is to promote self-renewal, prevent apoptosis and
differentiation.
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The multi-faceted tumorigenic roles of STAT3 in human glioma cells has been well
established by both molecular and pharmacologic inhibition. Targeted inhibition of STAT3
in GSCs not only triggers apoptosis but also leads to decreased proliferation, multipotency,
and neurosphere formation [67–69]. RNAi-mediated knockdown of STAT3 in human U251
glioma cells led to increased apoptosis via the suppression of transcriptional downstream
targets of STAT3, such as Bcl-xL, Mcl-1, and survivin [70–72]. WP1066, a small-molecule
STAT3 inhibitor, similarly induced apoptosis in U87-MG cells and murine xenografts [73].

Angiogenesis is another hallmark of cancer that has been directly linked to STAT3.
In histopathologic examination, phosphorylated STAT3 preferentially localizes to tumor
endothelial cells along with vascular endothelial growth factor receptor-2 (VEGFR-2),
suggesting an autocrine feed-forward loop promoting the hallmark neovascularization
seen in GBM [74]. Indeed, tissue hypoxia dose-dependently increases STAT3 phospho-
rylation and consequent angiogenesis in human GBM cell lines by stabilizing HIF-1α to
enable its transcription of VEGF [75]. GBM also responds to hypoxia by STAT3-mediated
upregulation of key proteins involved in motility and invasiveness, such as the matrix
metalloproteinases (MMPs-2, -3 and -9), focal adhesion kinase, fascin-1, and TWIST [76–80].
Additionally, activated STAT3 promotes the epithelial–mesenchymal transition (EMT) and
invasive behavior [81,82].

3.4. Consequences of Dysregulated STAT3 Signaling on the Immune Microenvironment

With the surging enthusiasm for immunotherapy for other solid malignancies, im-
mune therapeutic targeting of STAT3 is a compelling strategy for modulating tumor-
mediated immune suppression, especially for a cancer like GBM that has in general not
been responsive to immune checkpoint inhibitor monotherapies [83,84]. Indeed, GBMs
have been shown to express a number of tumor-specific antigens—e.g., EGFRvIII, IL13Rα2,
and HER2—that may be recognized by the host immune system [85–88], yet there is com-
pelling evidence that glioma-mediated immune suppression prevents immune recognition
and effector responses. For example, GBM is notable for a paucity of T cells and an enrich-
ment of myeloid cells such macrophages and microglia, which may be even more evident
in the transcriptionally defined GBM mesenchymal and classical subtypes [89,90]. As will
be discussed, a substantial body of literature points to the role of aberrant STAT3 signaling
in mediating dysfunction of both the innate and adaptive components of the immune
system in GBM [91,92].

3.4.1. STAT3 Activation Generates an Immunosuppressive Cytokine Milieu

In GBM, interactions between tumor cells, reactive astrocytes, and microglia lead
to high levels of IL-10 and TGF-β, which promotes a positive feedback loop of STAT3
signaling [93,94]. STAT3-driven HIF-1α transcription also leads to the secretion of immuno-
suppressive cytokines, such as galectin-3, CCL-2, and CSF. These events, combined with
additional STAT3-driven elaboration of such factors as IL-4, IL-6, and GM-CSF, further
promotes immunosuppressive crosstalk [55,95–100]. Anti-sense oligonucleotide-mediated
STAT3 blockade in murine models of melanoma and breast and colon cancer show upregu-
lation of proinflammatory cytokines, such as CXCL10, RANTES, TNF-α, and IFN-β [101].

3.4.2. STAT3 Activation Impairs the Innate Immune System

Preferential activation of the STAT3 pathway by the permissive cytokine milieu has
profound effects on the innate immune system components of the TME, which are largely
mediated by tumor-associated macrophages/microglia (TAMs), myeloid-derived suppres-
sor cells (MDSCs), and other cells [102]. Natural killer (NK) cells in the setting of STAT3
activation, for instance, have impaired cytotoxicity [92]. STAT3 activation in GBM-resident
TAMs, which comprise the largest population of infiltrative cells, leads to polarization to-
ward an immunosuppressive phenotype that secretes IL-10 and TGFβ1 and are impaired in
their ability to mediate phagocytosis [103–108]. These same TAMs also lack co-stimulatory
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molecules such as CD80 necessary for T cell activation and secrete IL-23, which induces
Tregs to adopt a more immunosuppressive phenotype [109,110].

STAT3 activation also inhibits maturation of dendritic cells and their ability to express
key molecules necessary for effective antigen presentation (e.g., MHC class II) and T
cell activation (e.g., IL-12) [92,111]. Similar to its effect in TAMs, STAT3 also inhibits the
expression of co-stimulatory molecules CD80 and CD86 on dendritic cells that are necessary
for induction of T cell activation and proliferation.

Various cytokines—but particularly IL-6—are associated with the infiltration of MD-
SCs in the TME, which are positively correlated with glioma grade and have been shown
to exert immune suppressive effects against T and NK cells through expression of enzymes
such as arginase that trigger T cell arrest and apoptosis [112–117]. MDSCs also express
IFN-α, which signals through interferon receptor type 1 (IFNAR1) to activate JAK1/STAT1
signaling, thereby upregulating expression of co-inhibitory molecule programmed death
ligand-1 (PD-L1) [114]. STAT3 inhibition not only promotes the maturation of tumor-
infiltrating dendritic cells to express the costimulatory molecules, such as CD80 and CD86,
necessary for T cell activation, but also induces a shift in tumor immune cell composition
toward less MDSCs and immunosuppressive macrophages/microglia [118–121].

3.4.3. STAT3 Activity Impairs the Adaptive Immune System

Constitutive STAT3 activation also has significant effects on the adaptive immune
system. STAT3 activation alters the immune cell composition of the microenvironment,
promoting decreased infiltration of effector CD4+ and CD8+ T cells and an increased
proportion of Tregs [121]. Activation of STAT3 in CD8+ T cells reduces their secretion of
IFN-γ, which further inhibits T cell activation [122]. STAT3 cooperates with transcription
factor Forkhead box P3 (FOXP3) to promote the differentiation of immunosuppressive
Tregs [123–127]. Indirectly through innate immunity, TAMs inhibit T cell proliferation
via secretion of TGF-β [105]. STAT3 has also been shown to play an important role in
regulating PD-L1 expression by antigen-presenting dendritic cells and in upregulating the
expression of T cell coinhibitory molecule B7-H4 on GSCs and TAMs [95].

In a pivotal early study, Kortylewski et al. demonstrated that hematopoietic cell-
specific inhibition of STAT3 in tumor-bearing mice led to significantly enhanced functional
activity of T, NK, and dendritic cells, resulting in antitumor immunity and growth inhi-
bition [92]. Hussain et al. similarly demonstrated that STAT3 inhibition of the immune
cells from glioblastoma patients promotes not only expression of co-stimulatory molecules
on microenvironmental TAMs and proinflammatory cytokines but also the expansion of
effector T cells over immunosuppressive Tregs [122].

In summary, STAT3 signaling constitutes a crucial hub through which the tumor
microenvironment is shaped and driven toward immunosuppression.

4. STAT3-Mediated Resistance to Therapeutic Modalities

At present, the standard-of-care for patients with GBM consists of maximum safe
resection followed by the “Stupp regimen”: alkylating chemotherapy temozolomide (TMZ)
combined with radiation, followed by adjuvant TMZ. TMZ mediates its cytotoxic effects
via the formation of O6-methylguanine adducts on DNA, leading to replication-associated
double-stranded DNA breaks and apoptosis [128,129]. A number of studies have shown
that STAT3 signaling is involved in chemoresistance. Kohsaka et al. demonstrated that
STAT3 inhibits the degradation of the enzyme O(6)methyl-guanine DNA methyltransferase
(MGMT) [130], whose expression is associated with TMZ resistance [131]. Additionally,
findings from Wang et al. [132] and Lee et al. [133] indicate that inhibition of STAT3
sensitizes glioma cells to TMZ. Another study by Li et al. linked a reduced level of
the STAT3 inhibitory miR-519a—which normally mediates proapoptotic and autophagic
responses to chemotherapy—to TMZ resistance in GBM cells [134]. They further showed
that STAT3 inhibition strongly decreased the IC50 of TMZ and increased TMZ-induced
apoptosis while upregulating Bcl-2 expression and downregulating Bax expression. Finally,
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they showed that STAT3 inhibition leads to increased TMZ-induced G0-G1 arrest and
decreased cyclin D1 expression compared to TMZ alone. It should be noted that these
findings are somewhat contradicted by recent work from Heynckes et al. [135], which found
that recurrent GBM tissue from Stupp regimen-treated patients demonstrated decreased
phospho-STAT3 expression compared to their original tumors. Furthermore, the authors
found that treatment of two IFNγ-stimulated patient-derived GBM cell lines with TMZ
led to decreased JAK/STAT pathway genes including STAT1 and STAT3, although this
was not seen in the commercial LN229 GBM cell line. The generalizability of the authors’
primary conclusion that TMZ treatment leads to inhibition of JAK/STAT signaling in
recurrent GBMs is uncertain. Notably, this study had methodological limitations, including
small sample sizes (three cell lines and fifteen tissue samples) and—most critically—the
absence of microenvironmental JAK/STAT expression analysis. Nevertheless, the authors’
findings suggest that the role of aberrant STAT3 signaling in underlying chemoresistance is
nuanced and further point to the fact that the optimal role and timing of STAT3 inhibition
in combination with conventional therapeutic strategies remains to be determined.

There is also evidence that STAT3 is involved in mediating resistance to radiotherapy,
which induces cell death largely via single- and double-stranded DNA breaks and oxidative
damage [136]. Rath et al. found that cytokine crosstalk between astrocytes and GSCs
in vitro led to transcriptional upregulation of STAT3 target genes and radioresistance in
the latter [137]. Radiation combined with pharmacological inhibition of STAT3 in the
corresponding orthotopic murine xenografts led to decreased tumor size and prolonged
survival, suggesting that STAT3 contributes to the baseline radioresistance of GSCs. More
recently, Yu et al. elucidated that this may involve the protein regulator of chromosome
condensation 2 (RCC2), which signals through STAT3 to activate transcription of DNA
methyltransferase 1 to lead to silencing of tumor suppressor genes [138]. Radiation induces
the secretion of exosomes by glioma cells containing proteins involved in numerous crucial
signaling pathways including JAK/STAT, as well as proteins such as ribophorin II, which
signal through STAT3 to promote anti-apoptosis via Mcl1 [139,140]. Studies of GBM cells
with acquired radioresistance are notable for decreased SOCS3 and increased Forkhead box
protein M1 (FOXM1), the latter of which interacts with STAT3 to increase transcription of
DNA repair genes such as MRE11 and RAD51 [141,142]. Finally, irradiated GBM cells have
been shown to acquire increased invasive, migratory, and mesenchymal properties via the
upregulation of intercellular adhesion molecule (ICAM-1) through activated STAT3/NF-κB
and Slug signaling [143,144]. In summary, STAT3 signaling appears to be involved in
promoting intrinsic as well as acquired chemo- and radio-resistance.

There is substantial literature that supports the role of STAT3 activation in medi-
ating resistance to targeted therapy. The reliance on several dysregulated—and often
redundant—signaling pathways, including EGFR, PIK3CA, PDGF, and NF-κB, has been
well-characterized in glioblastoma, and cross-talk between these have likely contributed
in large part to the historical failures of targeted therapy [53,145,146]. Indeed, compen-
satory STAT3 upregulation has been demonstrated in numerous studies of other receptor
tyrosine kinases (e.g., EGFR, MEK, HER2) in other solid tumors [147–149]. Treatment of
GBM with anti-VEGF monoclonal antibody bevacizumab for instance—currently the only
FDA-approved targeted treatment for glioblastoma and one that has not been shown to
have survival benefit—eventually induces STAT3 activation likely via the hypoxia response,
leading to the expression of stemness and invasive markers such as nestin and ICAM-1,
respectively [150]. The combination of STAT3 and VEGF inhibition with AZD1480 and
cediranib, respectively, led to significantly decreased angiogenesis and tumor volume in a
murine model [150,151]. In a more recent study of acquired MET inhibitor resistance in
GBM, Cruickshanks et al. found compensatory upregulation of a number of other signaling
pathways, including MAPK, PI3K, and STAT [152]. Co-inhibition of STAT3 and MET
restored sensitivity to apoptosis.
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Rationale for Combination Therapy

From the preceding discussion, it is clear that the compensatory mechanisms of
resistance to conventional, targeted, and immunotherapeutic strategies against GBM will
likely thwart therapies based on a single vulnerability [153]. Consequently, one of the major
tasks in neuro-oncology is leveraging continually evolving molecular knowledge to design
rational therapeutic combinations. One recently published study of STAT3 inhibition
and radiation in a syngeneic immune-competent glioma mouse model found that the
combination led to immunologic reprogramming of the TME, with increased dendritic
cell–T cell interaction and antigen presentation. This was associated, moreover, with
significantly improved animal survival, indicating that a fully functional immune response
was required for mediating the therapeutic effects of STAT3 inhibition [154]. Clinical
investigators have also recognized that STAT3 inhibition as monotherapy is unlikely to
demonstrate an improvement in survival for the vast majority of GBM patients, and,
as such, the results of trials investigating STAT3 inhibition with conventional radiation
(NCT03514069) and chemotherapy (NCT02315534) are eagerly awaited.

With regard to its well-characterized immunomodulatory effects, combining STAT3
inhibition with other immuno-oncologic strategies also represents an exciting prospect.
For example, one preclinical study has shown improved effector functions of adoptively
transferred CD8+ T cells in combination with STAT3 inhibition in myeloid cells [155].
Another study demonstrated that administration of a STAT3-targeting miR-124 in combi-
nation with a T cell co-stimulatory aptamer was able to increase CD4+ and CD8+ T cells
and decrease macrophage trafficking into the TME in a genetically engineered murine
glioma model [156]. Subsequent immunotherapeutic efforts focusing on further optimiz-
ing tumor-specific cytotoxicity and immune microenvironmental modulation are clearly
warranted. The combination of STAT3 inhibition with other immunotherapies, such as
adoptive cell transfer, tumor vaccination, oncolytic virotherapy, and immune checkpoint
inhibition, are rational. Trials investigating the safety and efficacy of STAT3 and PD-1
blockade (e.g., NCT02851004, NCT02467361, NCT02983578, and NCT03421353) in various
solid malignancies are underway, and there is hope that insights gained from these may
inform trial design for GBM.

5. JAK/STAT Axis-Targeting Therapies

The aforementioned convergence of multiple oncogenic and immunosuppressive
cellular pathways on the JAK/STAT signaling axis makes it an attractive molecular target.
Indeed, Stechishin et al. found that targeted JAK2/STAT3 inhibition in orthotopic GBM
xenografts regardless of molecular strategy led to increased cytotoxicity of GSCs regardless
of MGMT promoter methylation status [157]. To date, a vast number of agents ranging
from antisense oligonucleotides and repurposed drugs, JAK1/2 to direct STAT3 inhibitors
have been the subject of investigation in numerous cancers. As the BBB presents a unique
anatomic barrier to drug delivery in contrast to other malignancies, identifying high-
potency, specific, BBB-penetrant molecules of favorable bioavailability is the foremost
priority. A discussion of those studied in malignant glioma follows.

Targeting aberrant upstream IL-6/IL-6R signaling is one potential avenue of JAK/STAT
blockade. Treatment with IL-6 pathway blockade via its receptor (IL-6R, tocilizumab) or
binding soluble IL-6 (siltuximab) has been shown to inhibit glioma growth in vitro and
reduce the expression of coinhibitory molecules such as PD-L1 on infiltrative myeloid
cells [158,159]. A number of clinical trials investigating the efficacy of these agents in
other solid malignancies are underway (e.g., NCT03135171, NCT04258150 NCT04524871,
NCT03424005, and NCT04191421), although it should be noted that as far as potential ther-
apies for GBM, these large monoclonal antibodies have not been found to attain therapeutic
concentrations in the CSF after systemic administration [160].

A number of repurposed pharmacologic agents have been found to have STAT3
inhibitory activity; however, off-target effects due to lack of specificity and questionable
CNS penetrance have limited their utility. Atovaquone is an anti-malarial drug FDA-
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approved for pneumocystis pneumonia that was found to have STAT3 inhibitory effects;
notably, it appears to be poorly bioavailable in the CNS [161,162]. Arsenic trioxide (ATO)
was shown to reduce STAT3 activation via JAK inhibition and induce apoptosis and
stemness of GSCs. Despite encouraging safety data, a phase II trial combining ATO with
radiation and temozolomide for newly diagnosed malignant glioma did not demonstrate
a survival benefit [163–165]. Sorafenib, a multi-kinase (Raf, VEGFR2, and PDGFR-β)
inhibitor with STAT3 inhibitory activity FDA approved for other solid malignancies, was
shown to inhibit the proliferation of GBM in vitro, likely through its effects on AKT and
MAPK [166,167]. Subsequent clinical trials combining sorafenib with mTOR inhibition,
temozolomide, or radiation for patients with newly diagnosed or recurrent GBM did not
demonstrate a survival benefit [168–170].

5.1. Nutraceutical Inhibition of STAT3

A staggering number of natural compounds have been found to have STAT3 inhibitory
activity in vitro, but the clinical utility of these in their native forms for GBM is largely
hindered by unfavorable pharmacokinetic properties including low potency, unacceptable
toxicity, rapid metabolism, and/or poor BBB penetrance. Plant/fruit-derived resveratrol,
for instance, is capable of inhibiting proliferation and invasion of glioma cells in a STAT3-
dependent fashion in vitro and when administered intrathecally in vivo. Sadly, it is rapidly
metabolized when given systemically [171,172]. To circumvent this, Jhaveri et. al., encap-
sulated resveratrol within transferrin-bearing liposomes targeting GBM cells [173]. This
strategy was insufficient in that no overall significant growth inhibition after intravenous
administration was seen. Earlier efforts with liposomal modification of ursolic acid met
with similar lack of anti-proliferative and anti-angiogenic activity [174]. What appears to
be increasingly clear is that the chief utility of natural STAT3-inhibiting compounds lies in
serving as the structural basis for synthesizing novel and more effective small molecules.
KYZ3, for instance, a synthetic derivative of quinoid diterpene cryptotanshinone found in
dried roots, demonstrated cytotoxic activity in a murine model of triple-negative breast
cancer [175]. The various challenges associated with a selected list of natural compounds
are summarized in Table 1.

5.2. Pharmaceutical Inhibition of STAT3: JAK Inhibitors

JAK inhibition, although historically employed in the treatment of myeloproliferative
disorders, represents another avenue of STAT3 pathway targeting in malignant glioma.
As summarized in Table 2, a number of agents have encouraging preclinical evidence of
antitumoral efficacy in glioma cells or stem cells, although confirmatory in vivo studies are
pending (e.g., G6 and SAR317461) [211,212]. One agent is JSI-124, a JAK2 inhibitor with
NF-κB pathway activating capability based on the structure of cucurbitacin, which has been
shown to inhibit proliferation of glioblastoma in vitro and also promote the maturation
and T-cell-activating capability of dendritic cells isolated from the spleens of tumor-bearing
mice, leading to improved cytotoxicity and growth inhibition with subsequent dendritic
cell vaccination [209,213–215]. To date, only one JAK inhibitor of potential benefit for
GBM patients—AZD1480—has advanced to a phase I clinical trial, where unusual dose-
limiting neuropsychiatric toxicities halted further development [216,217]. The most recent
JAK inhibitors of translational relevance are pacritinib and ruxolitinib. Both are orally
administered, BBB-penetrant, highly potent inhibitors of either JAK1/JAK2 (ruxolitinib)
or JAK2 (pacritinib), with demonstrated GSC-specific cytotoxicity and chemosensitizing
properties [218]. Interestingly, pacritinib was also shown to decrease the amount of miR-21-
enriched exosomes released from tumor-associated macrophages, reducing an exogenous
source of STAT3 upregulation in glioma cells [94]. Ruxolitinib not only decreased the
invasiveness of GBM cells but also was found to be able to inhibit the compensatory
JAK1/STAT1 signaling that limits the efficacy of oncolytic virotherapy [219–221]. Rux-
olitinib is currently being evaluated in a phase I trial for patients with newly diagnosed
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MGMT-unmethylated malignant glioma in combination with radiation and temozolomide
(NCT03514069).

Table 1. Natural compounds with STAT3 inhibitory activity evaluated in glioma.

Natural
Compound Mechanism Preclinical Evidence

of Efficacy in Glioma Limitations References

Silibinin
STAT3 inhibition,

autophagy,
chemosensitization

In vitro Poor oral bioavailability, low
potency [176–180]

Cryptotanshinone STAT3 inhibition In vitro Poor bioavailability [181,182]

Alantolactone STAT3, NF-κB inhibition In vitro Poor bioavailability, rapid
metabolism, low potency [183,184]

Shikonin STAT3, EGFR inhibition In vitro Poor bioavailability, low potency [185,186]

Sulforaphane JAK2, STAT3, NF-κB
inhibition In vitro Poor bioavailability, moderate

potency [187–189]

Crocetin STAT3 inhibition
(SHP-1 induction) In vitro Poor bioavailability, limited BBB

penetrance, low potency [190–192]

Cardamonin STAT3 inhibition In vitro Poor bioavailability [193,194]

Serenoa repens
(Saw palmetto) STAT3 inhibition In vitro Poor bioavailability [195]

Oroxylin A mTOR, STAT3 inhibition In vitro Poor bioavailability, rapid
metabolism, low potency [196–198]

Quercetin IL-6, STAT3 inhibition In vitro Poor bioavailability, rapid
metabolism, low potency [199]

Oleanolic acid STAT3 inhibition, IL-10
inhibition In vitro Poor bioavailability, rapid

metabolism, low potency [200–202]

Cucurmin JAK1, JAK2, STAT3
inhibition In vitro Poor bioavailability, low potency [203–205]

Ascochlorin FAK, STAT3 inhibition In vitro Poor bioavailability, low potency [206,207]

Cucurbitacin JAK, STAT3, PI3K, MAPK
inhibition In vitro Poor bioavailability, specificity,

high toxicity [208,209]

Resveratrol STAT3 inhibition In vitro
In vivo Poor bioavailability, low potency [171–173,210]

5.3. Pharmaceutical Inhibition of STAT3: Peptide and Non-Peptide STAT3 Mimetics

Peptidomimetics such as PY*LKTK were among the earliest in vitro STAT3 inhibiting
strategies, designed to bind the SH2 domain and thereby prevent dimerization and DNA
binding [222]. Concerns about in vivo stability, immunogenicity, and low potency led
to the design of non-peptide mimetics, such as LLL12 and STX-0119, which have been
found to induce apoptosis in GBM cell lines or TMZ-resistant xenografts via inhibition of
downstream STAT3 targets, such as survivin Bcl-2 and Bcl-xL [223–226]. In spite of these,
moderate potency (e.g., IC50 15–44 µM for STX-0119), poor bioavailability, and/or unclear
BBB penetrance limit the utility of these agents at this time.

5.4. Pharmaceutical Inhibition of STAT3: Oligonucleotide-Based Strategies

Oligonucleotides represent another strategy of direct STAT3 modulation. In a proof-
of-concept experiment, Gu et al. designed a decoy oligodeoxynucleotide comprised of
a STAT3-specific DNA cis-element and transfected it into human GBM cells U251 and
A172, finding specific blockade of STAT3 activation with subsequent cell-cycle arrest and
apoptosis mediated by decreases in mRNA levels of c-Myc, cyclin D1, and Bcl-xL [71]. Ko-
rtylewski et al. conjugated a STAT3-specific small interfering (siRNA) to a Toll-like receptor
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agonist CpG and found it was able to be internalized by tumor-associated macrophages
and dendritic cells to mediate STAT3 inhibition [227]. MicroRNA (miRNA)-based strategies
have also shown promise. Having initially found STAT3-inhibitory miR-124 expression to
be significantly downregulated in gliomas compared to normal brain, Wei et al. demon-
strated that exogenously administered miR-124 induced secretion of proinflammatory
cytokines from GSCs, promoted CD8+ T cell effector with decreased Treg function, and led
to immune-mediated growth inhibition in a murine model of glioma [228].

As oligonucleotides are susceptible to degradation by circulating nucleases, subsequent
groups have developed various modifications to optimize stability and drug delivery. Yaghi
et al. encapsulated miR-124 duplexes within lipid nanoparticles and demonstrated efficient
uptake by immune cells with subsequent reduction in activated STAT3 and increased sur-
vival in a murine model of glioma [229]. Linder et al. complexed anti-STAT3 siRNA with a
polyethylenimine (PEI) and phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipo-
somal conjugate and found it to mediate STAT3 inhibition in glioma cells, although in vivo
no significant growth inhibition was observed, and tumoral STAT3 inhibition was quite
heterogeneous upon histopathologic examination [230]. PEI-siRNA directed against survivin
has also shown some efficacy, albeit in subcutaneously implanted gliomas in mice [231].

Table 2. Pharmacologic inhibitors of STAT3 signaling investigated in glioma.

Agent Mechanism Evidence of
Efficacy in Glioma Notes References

G6 JAK2 In vitro In vivo studies lacking, therapeutic
requirement for JAK2 overexpression [211]

SAR317461 JAK2 In vitro In vivo studies lacking, compensatory
autophagy [212]

AZD1480 JAK1/JAK2 In vitro
In vivo Unacceptable dose-limiting toxicities [150,216,217]

JSI-124 JAK2 In vitro
In vivo

Anti-proliferative, immune
modulatory [213–215]

Pacritinib JAK2 In vitro
In vivo BBB penetrant, chemosensitizing [94,218]

* Ruxolitinib JAK1/JAK2 In vitro
In vivo

BBB penetrant, anti-proliferative,
radiosensitizing, immune modulatory [219,220]

PY * LKTK STAT3 In vitro In vivo studies lacking, low potency [222]

LLL12 STAT3 In vitro
In vivo

Potent, low solubility/poor
bioavailability, unclear BBB

penetrance
[223,224]

STX-0119 STAT3 In vitro
In vivo

Minimal growth inhibition of GBM in
mouse model [225,226]

AG490 STAT3, JAK2 In vitro Low potency, in vivo efficacy lacking [73,236]

Stattic STAT3, STAT1, STAT2 In vitro
Susceptible to intracellular

modification, in vivo efficacy lacking,
low specificity

[232–235]

WP1193 STAT3, JAK2 In vitro In vivo efficacy data lacking [240]

SH-4-54 STAT3
STAT5

In vitro
In vivo

BBB penetrant, potent, specific,
in vivo studies in subcutaneously

implanted GBMs
[237–239]

* Napabucasin (BBI608) STAT3 In vitro
In vivo Bioavailable, BBB penetrant [242,243]

* WP1066 STAT3, JAK2 In vitro
In vivo

Bioavailable, BBB penetrant, immune
modulatory [73,122,241]

* Currently being evaluated in clinical trials.
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Overall, the major challenges for nanoparticle-based delivery of oligonucleotides
include ensuring adequate tissue distribution in tumors with a high degree of vascular
heterogeneity and minimizing nonspecific uptake by non-tumor or stromal cells. Further
study is certainly warranted to optimize these approaches before clinical application.

5.5. Pharmaceutical Inhibition of STAT3: Direct STAT3 Inhibitors

A tremendous number of molecules have been synthesized to inhibit STAT3, usually
acting by binding the SH2 domain required for interacting with phosphorylated tyrosine
residues on receptors and STAT dimerization. Of these, only a handful have advanced to
clinical trials for GBM, for reasons that will be discussed.

Stattic was one of the earliest SH2-binding STAT3 inhibitors, and was found to ex-
ert anti-proliferative and radiosensitizing effects on GSCs, although a lack of specificity
and in vivo efficacy data has prevented it from moving forward [232–235]. AG490 is a
caffeic acid derivative able to inhibit STAT3 phosphorylation in vitro to decrease the in-
vasiveness of GBM cells, whose low pharmacologic potency has also hindered further
development [73,236]. Promisingly, SH-4-54 is small molecule STAT3/STAT5 inhibitor
based on salicylic acid with excellent BBB penetration that was found to potently induce
apoptosis in GSCs and inhibit growth of gliomas in a murine xenograft model, although
it should be noted that these were subcutaneously implanted tumors [237,238]. Another
study by Cui et al. showed that SH-4-54 could induce apoptosis in TMZ-resistant GBM cells
by inducing the translocation of mitochondrial STAT3 [239]. This led to the activation of
mitochondrial STAT3, negative regulation of mitochondrial-encoded genes, and abnormal
oxidative phosphorylation.

Attempts to improve the pharmacokinetic parameters of small molecules such as
AG490 led to the development of subsequent compounds such as WP1193 [240] and one
of the best-studied novel STAT3 inhibitors, WP1066. WP1066 demonstrated not only
favorable BBB penetrance and proapoptotic effects in GBM cell lines but also the important
capability of upregulating immune costimulatory molecule expression and the release
of proinflammatory cytokines from TAMs. Indeed, this molecule was among the first
to document the modulating effects of STAT3 on immune cell composition and effector
function in the TME [73,122,241]. It has recently been shown to have radiosensitizing
effects in GSCs [232]. It is currently the subject of study in a phase I clinical trial of
patients with recurrent glioblastoma (NCT01904123) and pediatric patients with brain
tumors (NCT04334863). Napabucasin is another recently characterized orally bioavailable
small-molecule STAT3 inhibitor capable of inducing cell cycle arrest, apoptosis, and the
reduction of markers of stemness, leading to improved survival in an orthotopic murine
glioma model [242,243]. A phase I/II study of napabucasin in combination with TMZ
for patients with recurrent glioblastoma has been completed, and the results are eagerly
awaited (NCT02315534). The above discussed pharmacologic inhibitors of JAK/STAT
signaling are summarized in Table 2.

6. STAT3-Related Biomarkers

In view of the tremendous intra- and inter-tumoral heterogeneity of GBM, identifying
patients most likely to benefit from targeted STAT3 inhibition is a critically important
challenge. There is yet to be a consensus, for instance, on whether expression of phospho-
Tyr705 STAT3, phospho-Ser727 STAT3, or both represents maximally abnormal STAT3
pathway activation with its concomitantly poorest prognosis [47,244]. Interestingly, recent
work by Tan et al. integrating the TCGA subtypes with STAT3-related gene expression data
defined “STAT3-high” and “STAT3-low” gene signatures intended to assist with patient
stratification [245]. STAT3-high tumors were enriched for classical/mesenchymal subtyp-
ing, IDHwt, and 1p/19q-non-codeleted status, while STAT3-low tumors were enriched for
proneural subtypes with IDHmut and 1p/19q-codeleted status. Cells isolated from patients
with STAT3-high gene signatures had lower IC50s upon treatment with STAT3 inhibitors
such as Stattic or WP1066 relative to those with STAT3-low gene signatures. Of note, STAT3-
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low tumors (i.e., STAT3 inhibition non-responders) upregulated insulin-like growth factor
binding protein 2 (IGFBP2) and insulin growth factor-1R (IGF-1R) in response to STAT3
inhibition, and the combination inhibition of IGF-1R and STAT3 in orthotopic xenografts
led to re-sensitization to STAT3 inhibition. Interestingly, their functionally determined gene
signature outperformed conventional immunohistochemically determined phospho-STAT3
expression in identifying STAT3 inhibition responders, although an important methodolog-
ical limitation to note is that these were validated in severe combined immunodeficiency
(SCID) mice who by definition lack an antitumoral immune response. In addition, it is also
notable that the authors did not comment on whether PTEN mutation was associated with
a “STAT3-low” phenotype, as might be expected based on work by de Iglesia et al. [51].
Future correlative studies based on molecular data of patients being treated with STAT3
inhibitors are warranted to refine the criteria by which patients should be considered for
STAT3 inhibition.

7. Conclusions

As increasingly sophisticated genomic, transcriptomic, proteomic, and bioinformatic
analyses continue to propel the field of oncology into the molecular era, glioblastoma
continues to represent a glaringly unmet need. Rational therapeutic strategies need to
account not only for anatomic barriers such as the BBB but also the tremendous intra- and
intertumoral heterogeneity that characterize this disease. As the preclinical studies have
shown, JAK/STAT signaling is tremendously complex, and, while on balance, constitutive
activation tends to promote tumor proliferation, angiogenesis, and immune escape, the
effects of targeting upstream or downstream effectors are not always predictable. Never-
theless, it is our position that, on balance, there is sufficient evidence of the importance of
dysregulated JAK/STAT signaling as an important driver of gliomagenesis and treatment
resistance that human study continues to be warranted for this deadly disease. Because
it is unlikely that strategies based on one or two key molecular vulnerabilities will be
generalizable to the entire patient population, continued efforts to define and validate
biomarkers to help stratify patients appropriate for JAK/STAT combination therapy are
crucial to advancing our understanding of the disease.
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