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Abstract

Information on the genetic diversity, population structure, and trait associations of germ-

plasm resources is crucial for predicting hybrid performance. The objective of this study was

to dissect the genetic diversity and population structure of extra-early yellow and orange

quality protein maize (QPM) inbred lines and identify secondary traits for indirect selection

for enhanced grain yield under low-soil nitrogen (LN). One hundred and ten inbred lines

were assessed under LN (30 kg ha -1) and assayed for tryptophan content. The lines were

genotyped using 2500 single nucleotide polymorphism (SNP) markers. Majority (85.4%) of

the inbred lines exhibited wide pairwise genetic distances between 0.4801 and 0.600.

Genetic distances were wider between yellow and orange endosperm lines and predicted

high heterosis in crosses between parents of different endosperm colors. The unweighted

pair group method with arithmetic mean (UPGMA) and the admixture model-based popula-

tion structure method both grouped the lines into five clusters. The clustering was based on

endosperm color, pedigree, and selection history but not on LN tolerance or tryptophan con-

tent. Genotype by trait biplot analysis revealed association of grain yield with plant height

and ear height. TZEEQI 394 and TZEEIORQ 73A had high expressivity for these traits. Indi-

rect selection for high grain yield among the inbred lines could be achieved using plant and

ear heights as selection criteria. The wide genetic variability observed in this study sug-

gested that the inbred lines could be important sources of beneficial alleles for LN breeding

programs in SSA.

Introduction

Information on the genetic diversity and population structure of inbred lines in hybrid breed-

ing programs enables breeders to develop inbred lines with high heterosis in hybrid combina-

tions and enhanced adaptation to specific or broad environmental conditions [1,2].

Knowledge of genetic diversity ensures efficient utilization of germplasm, which provides
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insurance against unexpected genetic drift and promotes sustainability of breeding programs

[3]. Genetic distance information has been reliably used by maize breeders to resolve inbreds

into heterotic groups and predict hybrid performance among tropical maize inbred lines [4].

Adu et al. [5] reported wide genetic distances among 94 early maturing white and yellow endo-

sperm stress tolerant tropical maize inbred lines suggesting the presence of unique alleles for

maize improvement. In another study by Abu et al. [6] significant correlation was observed

between genetic distances and grain yield (GY) performance of tropical QPM maize inbred

lines under low soil nitrogen (LN), Striga and optimal growing environments. Suwarno et al.

[4] also reported correlations between single nucleotide polymorphism (SNP)-based heterotic

groupings and high heterosis of selected provitamin A maize inbred lines. Oyekunle et al. [7]

reported significant association of simple sequence repeat (SSR)-marker based heterotic

grouping and genetic relationships with high heterosis under drought and optimal growing

conditions.

Genetic diversity in maize populations can be determined using molecular, biochemical or

morphological markers. However, molecular markers are the preferred choice because they

are faster and more reliable for diversity studies and are independent of the environment,

plant growth and developmetal stages [5]. DAlthough different types of markers such as SSR

[8], amplified fragment length polymorphism (AFLP), restriction fragment length polymor-

phism (RFLP) [9,10] and single nucleotide polymorphism (SNP) [11] are available for maize

diversity studies. However, SNP [10] markers are the preferred choice because they are more

abundant in the genome, locus specific, cheaper and less prone to genotyping errors [11,12].

Several studies have reported significant genetic diversity within tropical maize germplasms

and populations. For example, Adu et al. [14] reported wide genetic distances in 94 early

maturing white and yellow stress tolerant endosperm maize inbred lines developed by the

International Institute of Tropical Agriculture (IITA). The authors concluded that unique

alleles were present in the inbred lines which could be utilized for genetic enhancement of

maize in the tropics. Abu et al. [15] reported significant correlation between genetic distances

and grain yield (GY) performance of tropical QPM maize inbred lines under low soil nitrogen

(LN), Striga and optimal growing environments. Similarly, [8] reported significant correla-

tions between SNP-based heterotic groupings and high heterosis of selected CIMMYT (Inter-

national Maize and Wheat Improvement Centre) provitamin A maize inbred lines. Using

SSR-markers [16], identified 42 early maturing tropical maize inbred parents for development

of commercial hybrids with high heterosis under drought and optimal growing conditions.

The present global challenge to increase food production while protecting the environment

neccesitates the the development of nitrogen use efficienct genotypes. In Africa, particularly

sub-saharan Africa (SSA), however, poor soil fertility especially low soil nitrogen (LN) remains

a widespread constraint to maize production and productivity [13]. Additionally, the SSA

region has the lowest fertilizer application rate of about 15 kg ha-1 compared to the global aver-

age of 140 kg ha-1 [14]. Consequently, yield losses due to LN in SSA is estimated at over 50%

[15]. Moreover, farmers in the region presently plant low yielding varieties with low quality

protein content due to low lysine (1.5–2.5%) and tryptophan (0.025–0.050%) contents [16].

Quality protein maize (QPM) genotypes have optimum lysine and tryptophan contents and

provide about 73% of the daily protein requirement compared to the 46% in normal endo-

sperm maize [17]. Therefore, the development of LN tolerant QPM hybrids and open-polli-

nated varieties is critical to the successful promotion of soil health, increased grain yield and

improved nutrition among resource poor farmers.

IITA, through its breeding efforts over the years has developed extra-early (80–85 days

maturity) yellow and orange inbred lines from two Striga tolerant populations, 99 TZEE-Y

Pop STR QPM and 2009 TZEE-OR2 STR QPM. To maximize the utilization of the germplasm
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for breeding LN tolerant QPM hybrids, it is imperative to determine the genetic diversity, pop-

ulation structure and important agronomic traits for selecting LN tolerant genotypes. Under

the IITA- MIP, selection of Striga resistant/tolerant genotypes is carried out under low-N

stress (30 kg N ha-1) conditions and has resulted in concomitant improvement of LN tolerance

[18]. Therefore, it is anticipated that the newly developed yellow and orange QPM inbred lines

would possess desirable alleles for LN tolerance since they were extracted from the Striga resis-

tant/tolerant populations.

In breeding for LN tolerance, although high GY is the primary goal, secondary traits have

been invaluable for indirect selection for high GY due to the low heritability of GY under

stress. Therefore, secondary traits such as ears per plant, stay-green characteristic, anthesis-

silking interval [19], plant height, ear height and plant aspect [20] have been employed by

breeders for selecting for improved grain yield under low-N. Nonetheless, the reliability of sec-

ondary traits for indirect selection and hybrid performance prediction depends on the identifi-

cation of highly heritable traits and genotypes with high expressivity for such traits [20].

Additionally, inter-trait relationship analysis such as genotype by trait (GT) biplot are efficient

tools for correlation and trait profile analyses for multiple trait selection [21]. The tool is also

effective for identifying reliable traits for indirect selection and the identification of the most

suitable genotypes as parents for hybrid production [20]. The objectives of this study were to:

(i). determine the genetic diversity and the population structure of tropical extra-early yellow

and orange QPM inbred lines using SNP markers located within LN tolerance genomic

regions, and (ii) dissect the inter-trait relationships among the inbred lines and identify the

appropriate traits for selecting LN tolerant genotypes.

Materials and methods

Description of genetic materials

A total of 110 extra-early QPM inbred lines recently developed under the IITA- MIP were

used (S1 Table). These included 53 yellow QPM inbred lines from population 99 TZEE-Y Pop

STR QPM (designated TZEEQI), 53 orange QPM lines with favourable alleles for provitamin

A derived from population 2009 TZEE-OR2 STR QPM (designated TZEEIORQ) and four

white endosperm lines (designated TZEEQI-CHK) used as checks. Two of the checks

(TZEEQI 7 and TZEEQI 60) are LN tolerant while the other two (TZEEQI 16 and TZEEQI

110) are susceptible based on the results of previous field studies. White endosperm lines were

used as checks because no extra-early yellow or orange QPM checks were available at the time

of the experiment.

Assessment of inbred lines under low-soil nitrogen

Two test locations (Fumesua and Legon) in Ghana were used for the study during the minor

planting season (September to November) of 2017. The first testing site was the Crop Research

Institute-Fumesua (6˚410 N lat., 1˚280 W long.), with an altitude of 286 m above sea level, a

semi-deciduous agro-ecological zone with annual rainfall of 1500 mm and temperatures of 21
oC to 31 oC. The second test site was the West Africa Centre for Crop Improvement (WACCI)

Research Field-Legon (5˚380 N lat., 00o110 E long.), with an altitude of 97 m above sea level, a

Coastal Savanna agro-ecological zone with annual rainfall of 809 mm and temperatures of 23
oC to 31 oC. The Legon test site was depleted of N by planting maize at very high population

density and removing the biomass at harvest. The Fumesua test site required no initial deple-

tion because it had been previously depleted of N and used for LN trials only. Soil samples

from each location were analyzed with Kjeldahl digestion calorimetric procedure [22] to

ensure low N levels before planting. The nitrogen content of the soils at Legon and Fumesua
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were 0.06% and 0.11% respectively, which were considered lower than 0.2% minimum limit

based on the Landon [23] interpretation (S2 Table).

The inbred lines were planted using a 10 x 11 alpha lattice design with two replications at

each test location. Plot size was 4 m long single rows, with planting distance of 0.75 x 0.4 m.

Three seeds were initially planted and thinned to two seeds per hill at 2 weeks after planting,

resulting in population density of about 66,666 plants per hectare. Each plot received 15 kg ha-

1 N, applied as urea (46% N) at two weeks after planting. Potassium (muriate of potash, 60%

K) and phosphorus (triple super phosphate, 46% P) were applied at 60 kg ha-1 each. Top-dress-

ing was carried out using 15 kg N ha-1 at 4 weeks after planting, bringing the total N to 30 kg N

ha-1. Hand weeding was done to control weeds when necessary.

Determination of the tryptophan content of the inbreds

Seed samples of 65 (55 yellow plus 10 orange lines) selected inbred lines were dispatched to the

Maize Nutritional Quality and Plant Tissue Analysis Laboratory of CIMMYT, for tryptophan

analysis using the calorimetric method [24]. The 65 inbred lines were selected because they

were newly developed lines with high levels of pro-vitamin A and/or lysine and tryptophan

contents, and were also of major interest for the combining ability studies [6]. Tryptophan

content of each genotype was estimated from two independent samples. Although lysine and

tryptophan are equally important determinants of the protein content in maize, only trypto-

phan was analyzed due to high cost implications. Furthermore, the correlation between trypto-

phan and lysine is positive and very high [24].

Data collection

Days to anthesis (DA) was recorded as number of days from planting to when 50% of the

plants in a plot had shed pollen. Days to silking (DS) was obtained as the number of days from

planting when 50% of the plants in a plot had silks. Anthesis silking interval (ASI) was the dif-

ference between DS and DA. The stay green characteristic was scored at 70 days after planting

(DAP) based on leaf senescence using a scale on 1–9; where 1 = 0–10% dead leaf area and

9 = 91–100% dead leaf area, respectively. Plant aspect was scored on a scale of 1–9; where

1 = excellent plant phenotypic appearance and 9 = poor plant phenotypic appearance [25].

Plant and ear heights were the mean of five random plants measured as the distance from the

ground to the first tassel branch and the node bearing the upper ear, respectively. Husk cover

was scored on a scale of 1–5; where 1 = tightly arranged husks extending beyond the tip of the

ear and 5 = completely exposed ear tip. The number of ears per plant was calculated as number

of ears harvested per plot divided by the number of plants harvested. Ear aspect was scored on

a scale of 1–9; where 1 = uniform, well-filled, large and disease-free ears and 9 = undesirable

ear features [25]. Grain yield (kg ha-1) in each plot was calculated using the grain weight and

moisture content of shelled ears and 15% adjusted moisture content.

Genotyping of the inbred lines with single nucleotide polymorphism (SNP)

markers

Out of the 110 inbred lines studied, 103 were genotyped because seven lines did not germinate

in the nursery. Leaf samples were taken from two-week-old plants and dispatched to LGC

Company (http://www.lgcgroup.com/) for DNA extraction and genotyping. The targeted gen-

otyping by sequencing service (SeqSNP) platform provided by LGC genomics was used

(https://www.biosearchtech.com/services/sequencing/targeted-genotyping-by-sequencing-

seqsnp). A total of 2500 SNP markers were selected from the 50 K maize SNP genotyping

array by [26] to genotype the inbred lines. The markers were selected based on QTL and
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genomic regions of LN tolerance traits identified in previous studies with SNP [27–32] or SSR

[33,34] markers. For studies that used SSR markers, the physical positions of the QTLs were

obtained from the Maize Genetics and Genomics Data base, MaizeGDB [35], (https://www.

maizegdb.org/) to enable selection of SNPs targeting the relevant QTLs. The schematic map of

the QTLs used for the selection of SNPs for this study can be accessed from the cited references.

Data analysis

Phenotypic data analysis. Analysis of variance (ANOVA) was performed using the gen-

eral linear model procedure (PROC GLM) of the Statistical Analysis System (SAS) software

adopting a random statement with test option [36]. Each location was considered as a test

environment. Replications and environments were treated as random factors and inbred lines

as fixed factors. The entry means were adjusted for block effects according to the lattice design

[37]. Means were separated with the least significant difference (LSD). The restricted maxi-

mum likelihood (REML) method was used to estimate the broad sense heritability for each

trait using the phenotypic and genotypic variance components via PROC Varcomp in SAS.

The low nitrogen base index (LNBI) proposed by [20] that combined grain yield (GYLD),

number of ears per plant (EPP), anthesis-silking interval (ASI), plant aspect (PA), ear aspect

(EA) and the stay green characteristic (STYG) was used to identify LN tolerant genotypes;

LNBI ¼ ð2 x GYLDÞ þ EPP � ASI � PA � EA � STYG

Prior to the analysis, all traits were standardized using a standard deviation of 1 and mean

of zero to reduce the effects of the different scales used for measuring the various traits. There-

fore, a positive LNBI value indicated LN tolerance and the negative value susceptibility.

Genotype-by trait biplot analysis was done using the standardized means of the measured traits

and GGE biplot procedure [38] in the R software version 3.6.1. The analysis was performed by

installing the GGE Biplot GUI and GGE Biplot packages in R (http://www.rproject.org/).

Genotypic data analysis. The data was filtered in TASSEL version 5.2.53 [39] to retain

only markers with missing data <10% and minor allele frequency (MAF) > 5%. This resulted

in 1691 markers for the diversity study. Gene diversity, heterozygosity, major allele frequency

and polymorphic information content (PIC) were estimated in PowerMarker version 3.25

[40]. Nei’s frequency based genetic distances [41], the unweighted pair group method with

arithmetic mean (UPGMA) and 1000 nonparametric bootstrapping across different loci were

used for the cluster analysis in PowerMarker. Phylogenic tree was viewed in MEGA X software

[42]. Population structure analysis was done using the admixture model-based method of the

STRUCTURE software version 2.3.4 [43]. In this model, K represented the number of clusters

which were initially fixed from 1 to 12 with 10 alterations per each K and run against 10,000

Markov Chain Monte Carlo (MCMC) with 10,000 burn-in. The best K for grouping the inbred

lines into clusters was determined by importing the output from the structure analysis into the

STRUCTURE HARVESTER [44]. A threshold of 70% was used to classify each inbred line

into a cluster and the inbred lines below threshold were classified into the admixture cluster

[45,46].

Results

Genotypic variation and mean performance of inbred lines under low soil

nitrogen

Combined analysis of variance (ANOVA) revealed significant (P<0.01) differences among the

inbred lines for all measured traits across the two LN environments (Table 1). Genotype by
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environment interaction (G X E) was significant for all traits except days to silking (DS) and

ear aspect (EA). Broad sense heritability estimates were low to moderately high for measured

traits, ranging between 15% for ears per plant (EPP) and 85% for DS. Broad sense heritability

for grain yield (GY) was 51%. TZEEIORQ 73A was the only inbred line that out-yielded the

check TZEEQI 60 (Table 2). The inbreds displayed varying levels of tolerance to LN, high

yield, and EPP, shorter ASI, lower scores for plant aspect (PA) and the stay-green characteristic

(STYG). Of the 110 lines, 50.1% (56 lines) had positive LN base index scores. The GY of 37

inbred lines were higher than the mean GY. The performance of the orange lines was slightly

better than that of the yellow lines based on the index scores. About 52.8% and 49.1% of the

orange and yellow lines had positive base indices, respectively. The mean index scores of the

orange and yellow lines were 0.2 and -0.2, respectively. The tryptophan contents of the selected

lines ranged from 0.044% for TZEEQI 357 to 0.094 for TZEEQI 414 with a mean of 0.064%

(S3 Table). Of the 65 inbred lines selected based on the tryptophan contents, 25 satisfied the

minimum level of 0.07% [27], with 14 of having positive base indices. Four inbred lines,

TZEEIORQ 73A, TZEEQI 392, TZEEQI 394 and TZEEQI 408 displayed LN tolerance and had

optimal tryptophan contents of 0.08%, 0.07%, 0.07% and 0.08%, respectively. Fifteen inbred

lines displayed positive base index values but had sub-optimal tryptophan contents (S3 Table).

Inter-trait relationship and correlation among traits

The genotype-by-trait biplot (GT) analysis was performed to study the inter-relationships

among the measured LN tolerance traits and to select parental lines and predict hybrid perfor-

mance (Fig 1). The top 15 best and worst 10 performing lines were selected using the GT biplot

analysis and the base index scores. The first and second principal component axis (PC1 &

PC2) explained 63.86% of the total variation among the lines. In the biplot polygon view, high

values of GY, PHT, EHT and EPP were desirable while high values for DA, DS, ASI, STYG,

PA, EA and husk cover (HC) were undesirable. Genotypes located at the vertex of the polygon

were the winning genotypes for the traits located within that sector. The distance of a genotype

from the biplot origin represented the uniqueness of the genotype relative to the mean for all

genotypes. Thus genotypes that had average performance across the traits were positioned

closer to the biplot origin whereas genotypes that performed above average across the traits

Table 1. Mean squares and heritability estimates of the inbred lines under LN stress.

Source DF GY (kg

ha-1)

DA DS ASI STYG (1–

9)

PA (1–9) EA (1–9) EPP HC (1–5) PHT (cm) EHT (cm)

Block

(Env�Rep)

40 158288

(p = 0.022)

9.7

(p<0.001)

10.2

(p<0.001)

1.5

(p = 0.008)

0.39ns 0.73

(p = 0.036)

0.29ns 0.08

(p = 0.049)

0.89ns 243.6

(p = 0.009)

87

(p = 0.004)

Rep (Env) 2 2891037

(p<0.001)

32.5

(p<0.001)

35.4

(p<0.001)

1.8ns 0.85ns 0.82ns 2.00

(p = 0.002)

0.39

(p<0.001)

2.97

(p = 0.013)

3571.4

(p<0.001)

1230

(p<0.001)

Genotype 109 297090

(p<0.001)

29.5

(p<0.001)

29.5

(p<0.001)

2.8

(p<0.001)

0.84

(p<0.001)

0.85

(p<0.001)

0.79

(p<0.001)

0.12

(p<0.001)

2.68

(p<0.001)

741.8

(p<0.001)

232

(p<0.001)

Env 1 9002574

(p<0.001)

2539.2

(p<0.001)

189.8

(p<0.001)

1340.5

(p<0.001)

14.18

(p<0.001)

129.82

(p<0.001)

8.52

(p<0.001)

16.69

(p<0.001)

25.06

(p<0.001)

256040

(p<0.001)

37116

(p<0.001)

Genotype�

Env

109 149315

(p = 0.008)

5.4

(p = 0.002)

4.82ns 2.1

(p<0.001)

0.48

(p = 0.037)

0.72

(p = 0.006)

0.39ns 0.11

(p<0.001)

1.11

(p<0.001)

203.57

(p = 0.016)

84.28

(p<0.001)

Error 178 99514 3.3 4 0.9 0.36 0.47 0.3 0.05 0.66 141.84 47.79

Heritability 0.51 0.84 0.85 0.28 0.45 0.17 0.52 0.15 0.61 0.74 0.67

ns = not significant, Env = environment, Rep = replication, GY = grain yield, DA = days to 50% anthesis, DS = days to 50% silking, ASI = anthesis-silking interval,

STYG = stay-green characteristic, EA = ear aspect, EPP = ears per plant, HC = husk cover, PHT = plant height, EHT = ear height.

https://doi.org/10.1371/journal.pone.0252506.t001
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were positioned away from the origin. The results showed that inbred lines 1 (TZEEQI 394)

and 2 (TZEEIORQ 73A) performed better in terms of GY, PHT and EHT while inbred line 4

(TZEEIORQ 4) had the highest number of EPP. In terms of flowering date, inbred 16

(TZEEQI 368) performed poorly (later maturity) due to the higher DA and DS values. Inbred

lines 21 (TZEEQI 351) and 25 (TZEEIORQ 6A) were located at the vertex of the sector con-

taining STYG and PA indicating poor performance of these traits resulting in poor GY.

Summary statistics of SNP markers and genetic distance

The genetic diversity among the newly developed extra-early yellow and orange QPM inbred

lines was studied using 1691 informative markers to obtain information for parent selection in

hybrid breeding programs. Major allele frequency of the SNPs ranged from 0.500 to 0.990 with

a mean of 0.725. (Table 3). Gene diversity varied from 0.019 to 0.607 with an average of 0.363.

Table 2. Grain yield and other traits of 25 (top 15 and worst 10) inbred lines along with four checks under LN stress conditions.

INBRED GY (kg ha-1) DA DS ASI STYG (1–9) PA (1–9) HC (1–5) PHT (cm) EHT (cm) EA (1–9) EPP LNBI

TZEEQI 394 1313.83 55.92 56.97 1.04 5.12 4.32 1.58 128.34 51.61 4.12 1.20 9.30

TZEEIORQ 73A 1943.55 50.38 51.96 1.58 5.44 4.63 3.44 130.12 66.71 4.84 0.91 8.50

TZEEIORQ 22A 1484.05 57.57 58.76 1.18 4.73 5.41 1.88 123.61 62.87 4.20 1.09 8.19

TZEEIORQ 4 1344.59 58.91 61.07 2.16 4.69 4.17 1.44 119.89 63.44 4.61 1.05 7.51

TZEEQI 408 1117.07 57.29 58.43 1.14 3.91 4.37 3.87 111.45 60.00 4.90 0.97 7.35

TZEEIORQ 17 1554.68 56.34 57.28 0.94 4.56 5.29 2.54 119.59 58.18 5.18 1.04 7.16

TZEEIORQ 5 1056.81 54.67 55.47 0.79 4.37 3.82 4.08 120.04 57.99 5.62 1.18 7.08

TZEEIORQ 63A 857.65 55.26 56.97 1.71 4.01 3.91 2.98 135.57 52.15 5.06 1.21 6.65

TZEEQI 392 1392.37 55.31 57.10 1.79 4.78 4.17 2.31 126.08 62.43 4.84 0.84 6.48

TZEEQI 7-Check 1 772.14 55.69 56.67 0.98 4.49 4.65 2.11 106.33 41.71 5.03 1.44 5.81

TZEEQI 357 906.23 55.06 56.28 1.22 4.24 4.23 3.54 95.63 41.54 4.42 0.69 5.09

TZEEIORQ 61A 1023.04 52.29 54.10 1.80 4.16 4.72 2.37 125.00 45.05 5.04 1.06 5.01

TZEEIORQ 72A 977.85 58.79 60.77 1.99 4.41 4.71 3.77 128.17 42.45 5.15 1.23 4.69

TZEEQI 393 941.83 56.01 57.03 1.03 4.78 4.80 3.31 123.11 61.22 4.78 1.03 4.34

TZEEIORQ 34 787.26 58.35 59.68 1.32 4.29 4.94 1.82 121.71 50.80 4.55 1.03 4.25

TZEEIORQ 3 808.03 59.64 60.42 0.77 4.46 5.20 2.35 106.34 52.38 4.88 1.13 4.01

TZEEQI 60-Check 2 1204.08 56.21 58.46 2.25 4.54 4.61 2.10 131.59 53.34 4.86 0.77 3.94

TZEEQI 110-Check 3 380.90 57.01 60.15 3.14 4.14 4.31 3.00 87.61 36.52 5.44 0.76 -2.31

TZEEQI 368 21.67 60.86 62.65 1.80 4.04 4.64 4.85 82.77 35.22 6.12 0.72 -5.21

TZEEQI 16-Check 4 360.17 59.60 62.57 2.96 5.20 4.55 2.36 130.95 67.83 5.19 0.57 -5.34

TZEEQI 359 407.27 55.15 57.50 2.35 5.71 5.14 2.54 115.16 52.19 4.98 0.64 -5.69

TZEEIORQ 67 369.64 58.81 60.01 1.20 5.42 5.52 3.06 102.61 49.86 4.97 0.35 -6.27

TZEEIORQ 13A 562.72 54.71 58.03 3.32 5.22 6.54 2.33 110.97 55.78 5.10 0.82 -6.73

TZEEIORQ 50B 551.14 52.96 56.46 3.50 5.04 5.36 4.85 114.14 55.88 5.86 0.61 -7.16

TZEEQI 351 528.22 51.29 53.80 2.50 5.82 6.36 3.59 97.43 45.87 4.87 0.49 -8.15

TZEEQI 411 197.49 53.03 55.95 2.92 3.21 4.97 3.81 102.95 36.70 6.22 0.69 -8.71

TZEEIORQ 50 395.36 53.98 57.02 3.03 5.06 6.03 4.65 102.39 51.43 5.95 0.64 -8.98

TZEEQI 363 314.95 55.78 59.92 4.15 4.82 4.84 2.79 100.33 36.95 6.33 0.51 -9.51

TZEEIORQ 6A 233.19 53.31 54.87 1.56 5.34 6.02 4.47 91.38 44.41 7.04 0.77 -10.51

Mean 684.26 56.11 58.23 2.13 4.70 4.87 2.88 114.76 51.23 3.1481 0.91

LSD 440.19 2.53 2.79 1.29 0.83 0.96 1.14 16.62 9.65 0.76 0.32

CHK = check, GY = grain yield, DA = days to anthesis, DS = days to silking, ASI = anthesis-silking interval, STYG = stay-green characteristic, PA = plant aspect,

HC = husk cover, PHT = plant height, EHT = ear height, EA = ear Aspect, EPP = ears per plant, LNBI = low nitrogen base index.

https://doi.org/10.1371/journal.pone.0252506.t002
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Polymorphic information content (PIC) ranged from 0.019 to 0.535 with a mean of 0.290. The

average heterozygosity for the 1691 markers was 0.070 and ranged from 0.00 to 0.590. The

mean pairwise genetic distance was 0.508 and varied between 0.0098 and 0.615 (Fig 2). Gener-

ally, the genetic distances were higher between yellow and orange lines. The lowest genetic dis-

tance was detected between TZEEIORQ 50 and TZEEIORQ 50B. These two inbred lines have

orange endosperm, are related by descent, and shared similar selection history based on their

pedigree information (S1 Table). The highest genetic distance was detected between TZEEQI

16 and TZEEIORQ 6A followed by TZEEQI 393 and TZEEIORQ 9A. These pairs of lines dif-

fered both in endosperm color and the source populations from which they were extracted. In

Fig 1. A ‘which won where/what genotype-by-trait biplot view of 25 (15 best and 10 worst) selected inbred lines

evaluated under LN stress. GY = grain yield (kg ha-1), DA = days to 50% anthesis, DS = days to silking,

ASI = anthesis-silking interval, STYG = stay-green characteristic, PA = plant aspect, PHT = plant height, EHT = ear

height, HC = husk cover EA = ear Aspect, EPP = ears per plant. 1 = TZEEQI 394; 2 = TZEEIORQ 73A;

3 = TZEEIORQ 22A; 4 = TZEEIORQ 4; 5 = TZEEQI 408; 6 = TZEEIORQ 17; 7 = TZEEIORQ 5; 8 = TZEEIORQ 63A;

9 = TZEEQI 392; 10 = TZEEQI 357; 11 = TZEEIORQ 61A; 12 = TZEEIORQ 72A; 13 = TZEEQI 393; 14 = TZEEIORQ

34; 15 = TZEEIORQ 3; 16 = TZEEQI 368; 17 = TZEEQI 359; 18 = TZEEIORQ 67; 19 = TZEEIORQ 13A;

20 = TZEEIORQ 50B; 21 = TZEEQI 351; 22 = TZEEQI 411; 23 = TZEEIORQ 50; 24 = TZEEQI 363; 25 = TZEEIORQ

6A.

https://doi.org/10.1371/journal.pone.0252506.g001

Table 3. Summary statistic of 1691 SNP markers used to study the genetic diversity.

Marker MajAF GenDiv Het PIC MinAF

Minimum 0.500 0.019 0.000 0.019 0.010

Maximum 0.990 0.607 0.594 0.535 0.500

Mean 0.725 0.363 0.070 0.290 0.275

MajAF = major allele Frequency, GenDiv = gene diversity, Het = Heterozygosity, PIC = polymorphic information content, MinAF = minor allele frequency.

https://doi.org/10.1371/journal.pone.0252506.t003
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general, most of the inbred lines had pairwise genetic distances between 0.4801 to 0.600, 37.7%

and were between 0.4801–0.5400 and 47.7% and between 0.5401–0.600.

Cluster and population structure. The UPGMA cluster analysis grouped the inbred lines

into five main clusters using Nei’s genetic distances (Fig 3). Group 1 comprised four inbred

lines, group 2, 3, 4, and 5 had 15, 47, 29 and 8 inbred lines, respectively. Groups 2, 3, 4 and 5

were further divided into two sub-groups. The extra-early white checks were distinctively clas-

sified into group 1. The remaining four groups contained either yellow or orange endosperm

lines. Group 2 had orange lines that shared similar selection history with the two yellow lines,

TZEEQI 353 and TZEEQI 354. Generally, the inbred lines clustered based on the source popu-

lations, endosperm colors, selection history and pedigrees. No distinct clustering pattern was

detected based on LN tolerance or tryptophan content.

In the population structure analysis, the inbred lines were grouped into five sub-popula-

tions (Fig 4A) based on the highest peak for the ad hoc K = 5 (Fig 4B). Although the population

structure analysis revealed 5 sub-populations just as the UPGMA cluster analysis, the inbred

lines in each of the five groups were quite different. However, all the 13 inbred lines in the first

sub-group of the cluster analysis (Fig 3) were distinctively grouped into sub-population 3 (Fig

4A). In the population structure analysis, sub-populations 1, 2, 3, 4, and 5 had 15 (14.6%), 11

(10.7%), 13 (12.6%), 17 (16.5%), and 7(6.8%) lines, respectively (S1 Table). About 38.8% (40

lines) had probability of association below the 70% threshold and were classified into the

mixed population group. Sub-populations 1 and 5 had only yellow endosperm lines, sub-pop-

ulation 2 and 3 had only orange endosperm lines while sub-population 4 had 71% yellow lines.

All the white endosperm lines were classified into the mixed group. Generally, the groupings

of the lines were based on endosperm color, selection history and pedigree information. No

specific pattern of grouping was detected based on LN tolerance or tryptophan content. The

population structure analysis estimated the fixation index (FST) for each sub-population and

indicated significant divergence between the five sub-populations. The FST values for popula-

tions 1–5 were 0.29, 0.51, 0.72, 0.43 and 0.41, respectively.

Discussion

The development of high yielding QPM and LN tolerant varieties is critical for addressing the

present malnutrition and food security challenges in sub-Saharan Africa (SSA). The success of

Fig 2. Frequency distribution of pairwise genetic distances among the inbred lines estimated using the Nei’s

method using 1691 SNP markers.

https://doi.org/10.1371/journal.pone.0252506.g002
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a stress tolerant hybrid breeding program depends largely on the performance of the inbred

parents and the heritability of traits under stress [47]. Understanding of the genetic diversity of

inbred lines enables the selection of genetically divergent parents to maximize heterosis for

hybrid production [1,3]. This study was conducted to access the genetic diversity and LN toler-

ance among a set of newly developed extra early yellow and orange endosperm QPM inbred

lines in order to maximize the potential for hybrid production and population improvement

in breeding programs in SSA. High genetic variation was detected for GY and other measured

traits suggesting that selection could result in significant gains. Bänziger et al. [48]and Presterl

et al. [49] reported the existence of significant genetic variation for LN tolerance in maize. The

environmental effects were significant for GY and most traits and indicated significant cli-

matic and edaphic differences in the two test locations. The significant genotype by environ-

ment effects suggested an inconsistency in the ranking of performance of the lines across the

two locations. This is attributable to the divergent environmental factors prevailing in the two

locations probably due to the differences in temperature, soil types, amount of rainfall and irri-

gation systems in the two locations. The experiments for both locations were conducted during

the minor planting season (September–November) under rain-fed conditions supplemented

with sprinkler or drip irrigation. Annor and Badu-Apraku [50] also reported significant G X E

Fig 3. Clustering patterns of the inbred lines based on Nei’s genetic distances with 1691SNP markers using the

UPGMA dendrogram method.

https://doi.org/10.1371/journal.pone.0252506.g003

Fig 4. a. Population structure bar plot of the inbred lines showing five sub-populations of the 103 extra-early QPM/

Provitamin A inbred. b. A graph showing of the best K with the Evanno method used to group the inbred lines into

sub-populations at k = 5.

https://doi.org/10.1371/journal.pone.0252506.g004
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under similar environments. This underpins the significance of the environment in identifying

LN tolerant genotypes and the need to test parents across contrasting locations and identify

the best parents for specific locations [51]. The heritability estimates for GY and most traits

were moderate to high, suggesting that a large proportion of the genetic variability was due to

genes rather than the environment. This implied that direct phenotypic selection for the mea-

sured traits might have resulted in genetic gains. Heritability estimates were however low for

ASI and EPP which are both secondary traits employed in the base index for selection for LN

tolerance. Bänziger et al. [48] and Badu-Apraku et al. [20] had suggested that ASI and EPP to

be highly heritable traits for selection for high GY under LN and thus included the trait in

their proposed selection index.

Fifty-six out of the 110 inbred lines studied displayed positive LN base indices although the

populations were not improved for LN tolerance. This is attributable to the screening method

adopted to improve the populations for Striga tolerance that uses low N levels (30 kg ha-1), and

probably induced concomitant improvement for LN tolerance. The result corroborated the

previous findings of [18] who reported outstanding performance of Striga tolerant lines under

LN and suggested that selection for Striga resistance under LN resulted in simultaneous

improvement in LN tolerance. The degree of LN tolerance was higher for the orange lines

compared to the yellow line suggesting that the orange lines had undergone more cycles of

genetic enhancement for LN tolerance.

Thirty-eight percent out of 65 inbred lines analyzed for tryptophan content had optimum

tryptophan contents although all the inbred lines were extracted from QPM populations. This

is probably because early-generation selection for QPM alleles and desirable grain qualities

was done using visual characterization under the light box and not through chemical analysis

due to the large number of genotypes and the high cost of laboratory and molecular analysis.

According to Vivek et al. [52], endosperm modification under the light box does not guarantee

protein quality since the right dose of modifier genes is required for optimal amino acid accu-

mulation. TZEEQI 414 had the highest tryptophan content of 0.094 and could serve as a good

source of favorable genes for developing QPM populations and improving the yellow endo-

sperm population.

The fifteen extra-early yellow inbred lines that had high positive base indices, but low tryp-

tophan content levels could serve as good germplasm resource for developing LN tolerant nor-

mal endosperm hybrids. Furthermore, favorable tryptophan alleles could be introgressed into

these inbred lines to increase the levels of tryptophan while maintaining LN tolerance to

develop LN tolerant QPM lines. The four inbred lines TZEEIORQ 73A, TZEEQI 392, TZEEQI

394 and TZEEQI 408 that combined high positive base indices with high tryptophan levels

could provide good sources of alleles for improving tryptophan contents of the orange and yel-

low source populations.

The genotype-by trait biplot (GT) analysis provides a graphical display of the inter-relation-

ship among traits and helps to identify the best genotypes and traits for indirect selection. In

this study, the GT analysis identified TZEEQI 394 and TZEEIORQ 73A as the best inbred

lines for GY, PHT and EHT indicating that they possessed desirable genes for improving these

traits and for hybrid production. The positioning of GY, PHT and EHT within the same sector

containing the best two inbred lines TZEEQI 394 and TZEEIORQ 73A indicated that the traits

were inter-related such that selection for tall plant and ear heights, and high EHT/PHT ratio

could result in indirect selection for high GY. TZEEIORQ 4 was the best genotype for EPP and

possessed favorable alleles for improving the trait although it was not very high yielding. Addi-

tionally, the results suggested that TZEEQI 368 may not have been the best genotype for

improving earliness or for producing early maturing hybrids because it was late in maturity

and possessed high ASI.
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Due to the low heritability of GY under stress, high selection efficiency in LN breeding pro-

grams can be achieved through indirect selection with secondary traits that are easy to measure,

have high heritability and strong correlation with grain yield [53]. In the present study, ASI and

EPP were significantly associated with GY. However, due to the low heritability estimates of ASI

and EPP, the traits may not be reliable for indirect selection for high grain yield. Indirect selection

with secondary trait under stress only becomes more efficient than direct selection with GY when

the secondary traits are highly heritable and strongly correlated with grain yield [54]. The other

secondary traits PHT, EHT, EPP, EA and DS had significant and positive correlation with GY.

The heritability estimates of the traits were also moderate to high. Therefore, selection for high

GY with these traits would be possible. Contrarily, since DA, STYG, PA and HC were not signifi-

cantly associated with GY, selection cannot be based on these traits. The results of our study cor-

roborated the findings of Ziyomo and Bernado [54] who reported significant association between

plant height and grain yield under stress. The authors also reported high selection efficiency and

correlation of ASI with GY which was not consistent with our results.

Knowledge of the genetic diversity among inbred lines or within a population is important

in selecting parental lines for maximizing heterosis without making all possible crosses among

a set of inbred lines. Genetic diversity studies have been used to determine the phylogeny and

genetic distances among lines extracted from the same source population for the purpose of

initiating a hybrid program [4,55]. The average PIC (0.290) observed in the present study, rep-

resenting the mean allelic diversity at a locus, was higher than the 0.19, 0.218 and 0.239

reported by [5,10,56], but similar to the 0.291 and 0.289 reported by [57,58], respectively. The

average MAF was 0.275, with 3.0% of the SNPs showing MAF<0.1 and 12.1% having almost

equal MAF (0.5±0.05) for the two alternative alleles. These values were found to be higher than

those reported in other IITA and CIMMYT lines as reported by [5,10] who had MAF<0.1 and

mean MAF of 0.16 and 0.202, respectively. Gene diversity of 0.363 observed in this study was

higher than the 0.22 and 0.25 reported among IITA inbred lines by [5,10] but lower than the

0.390 reported by [59] respectively. Similar genetic diversity was reported by [60] among 70

IITA early provitamin A-QPM inbred population with 8170 DArTseq markers. The results

corroborated the findings of [58,61] which concluded that tropical germplasm was highly

diverse, usually exhibiting diversity of above 0.3. The differences between our results and

results of other studies could be attributed to genotypic differences, number of genotypes used,

number of markers and the genotyping platform used. In the present study, we used the

SeqSNP targeted genotyping platform and selected markers with higher MAF based on previ-

ous studies, hence the high MAF values obtained were not surprising.

Genetic distance is a useful parameter for estimating the genetic similarity among individu-

als in a population [58]. In this study, there were wide average genetic distance (0.508) among

the inbreds. Similarly, the pairwise genetic distance of majority of the inbred lines were high.

Our results are comparable to those of [5] involving 96 IITA maize inbred lines using 15,047

SNP markers. Our findings suggested that most of the inbred lines studied were distinct and

possessed unique alleles that could be invaluable to breeding programs in the tropics. The

wide genetic distances observed in the inbred lines in the present study indicated that heterosis

among the inbred lines could be high when used in hybrid breeding programs.

The average heterozygosity of 7% observed among the inbred lines exceeded the 3.34%,

3.8% and 5.6%, reported by [10,60,62], respectively but lower than the 8.6% reported by [63].

Similar result of 7% residual heterozygosity was reported by [5]. The relatively low heterozy-

gosity observed for the inbred lines suggested that majority (93%) of the gene loci were fixed as

expected of homozygous inbred lines. This was expected because most of the inbred lines were

advanced generations (S6—S8) and were considered fixed for hybrid development (Badu-

Apraku, 2019; Personal communication).
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In the cluster analysis, majority of the lines were grouped based on the endosperm color,

pedigree, and selection history. Even though most of the markers selected for this study were

located within LN tolerance genomic regions, the pattern of clustering was not based on the

performance under LN since both tolerant and susceptible lines were grouped together. Fur-

thermore, no tryptophan content-based clustering pattern was observed. The failure of some

lines to cluster based on selection history corroborated the findings of [64] who reported that

inbred lines extracted from the same population may not share similar selection history and

may not cluster together. Also, the absence of clustering based on LN tolerance or tryptophan

content is supported by previous finding of [65,66] who reported that clustering among a set

of CIMMYT inbreds and open pollinated varieties was independent of the phenotype or envi-

ronmental adaptations. The high genetic distances between inbreds from different source pop-

ulations which caused them to be grouped under different clusters suggested that hybrid

crosses between yellow and orange lines from different clusters would produce higher hetero-

sis compared to crosses between only yellow or orange lines within to the same cluster [6].

Population structure analysis also grouped the lines into five sub-populations largely based

on pedigree and selection history. The FST values observed among the five sub-populations in

the in the present study varied between 0.29 and 0.72 and were high and based on the interpre-

tation by [67] which considered FST value of above 0.15 as significantly different populations.

The FST values were similar to those previously reported in other tropical inbred lines by

[5,68], of 0.33 and 0.93, respectively. The high FST values indicated that the inbred lines from

the different groups possessed unique alleles that could be beneficial for improving LN popula-

tions in tropical breeding programs. In this study, the grouping of the lines under five sub-

groups were different between the population structure and the phylogenic tree. This is attrib-

utable to the differences in the models and clustering algorithms used by the two methods.

Inconsistent grouping pattern by different clustering methods have been reported by

[10,12,69].

Conclusions

The inbred lines exhibited wide pairwise genetic distances and expressed varying degrees of

LN tolerance. The admixture model-based population structure and the unweighted pair

group method with arithmetic mean placed the inbred lines into five groups each. The cluster-

ing patterns were neither according to tryptophan nor LN tolerance level, but were based on

the endosperm color, pedigree, and selection history. Genetic distances were wider between

the yellow and orange inbred lines compared to the distances between inbred lines of the same

endosperm color. Most of the inbred lines selected for tryptophan analysis had low tryptophan

content. TZEEIORQ 73A, TZEEQI 408, TZEEQI 392, TZEEQI 394 were LN tolerant and had

optimal tryptophan contents. Fifteen of the inbred lines expressed LN tolerance but sub-opti-

mal tryptophan contents. Inter-trait relationship existed between GY, PHT and EHT with

TZEEQI 394 and TZEEIORQ 73A having high expressivity for these traits. The study indi-

cated that the inbred lines are beneficial sources of alleles for QPM breeding programs for pop-

ulation improvement and developing LN tolerant varieties.
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