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The growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and
development, controlling survival and expansion by binding to Flt3 receptor tyrosine
kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L
has been found to suppress graft-versus-host disease (GvHD), specifically via host DCs.
We previously reported that the pre-transplant conditioning regimen consisting of
bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced
GvHD compared to cyclophosphamide (CY)+TBI. Pre-transplant BEN+TBI conditioning
was also associated with greater Flt3 expression among host DCs and an accumulation of
pre-cDC1s. Here, we demonstrate that exposure to BEN increases Flt3 expression on
both murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs
(moDCs). BEN favors development of murine plasmacytoid DCs, pre-cDC1s, and cDC2s.
While humans do not have an identifiable equivalent to murine pre-cDC1s, exposure to
BEN resulted in decreased plasmacytoid DCs and increased cDC2s. BEN exposure and
heightened Flt3 signaling are associated with a distinct regulatory phenotype, with
increased PD-L1 expression and decreased ICOS-L expression. BMDCs exposed to
BEN exhibit diminished pro-inflammatory cytokine response to LPS and induce robust
proliferation of alloreactive T-cells. These proliferative alloreactive T-cells expressed
greater levels of PD-1 and underwent increased programmed cell death as the
concentration of BEN exposure increased. Alloreactive CD4+ T-cell death may be
attributable to pre-cDC1s and provides a potential mechanism by which BEN+TBI
conditioning limits GvHD and yields T-cells tolerant to host antigen.
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INTRODUCTION

Fms-like tyrosine kinase 3 (Flt3) (aka CD135, Flk2, STK1)
is a receptor tyrosine kinase that binds the growth factor
Flt3 Ligand (Flt3L) (1–5). Flt3 is expressed by early
hematopoietic cells and controls their survival and expansion
(3, 4, 6, 7). Flt3 expression is lost as hematopoietic precursors
differentiate, but expression is maintained on dendritic cells
(DCs) through their terminal differentiation (8, 9). Flt3
signaling is crucial to the homeostasis and development of
steady state DCs (3, 10–17). Given the critical role of DCs in
graft-versus-host disease (GvHD) (18, 19) and graft-versus-
leukemia (GvL) (20), Flt3L has been investigated by numerous
groups in the context of hematopoietic stem cell transplantation
(HSCT). Administration of Flt3L to recipients prior to transplant
significantly reduces GvHD, an effect largely attributed to
increased numbers of host CD8a+ type 1 conventional DCs
(cDC1s) capable of inducing clonal deletion of alloantigen-
specific T-cells (21–23).

Previous work from our laboratory using murine bone
marrow transplantat ion (BMT) models found that
bendamustine (BEN) supplemented with total body irradiation
(TBI) conditioning results in significantly reduced GvHD and
improved survival compared to cyclophosphamide (CY)+TBI,
the standard regimen used in cases of acute lymphoblastic
leukemia (ALL) (24–27). BEN is a cytotoxic alkylating agent
with diverse immunomodulatory properties (24–26, 28–33).
Importantly, BEN+TBI conditioning yields donor T-cells
that are tolerant to host, while preserving T-cell-dependent
GvL (26). BEN+TBI also results in a more favorable host DC
composition at the time of transplant, with increased frequencies
of cDC1s, most substantially pre-cDC1s (27). Host DCs from
BEN-treated mice also display greater Flt3 expression compared
to CY-treated DCs (27). It remains unclear if increased Flt3
expression is a direct effect of BEN. Given the clear advantage of
enhanced Flt3 signaling in host DCs in the context of
transplantation, this warranted further investigation. Moreover,
it is not understood whether enhanced Flt3 expression alters DC
development or function in the same manner as administration
of exogenous Flt3L.

Here we investigate the ability of BEN to directly induce
increased Flt3 expression in murine bone marrow (BM)
progenitors and DCs, and examine the effect of BEN exposure
on dendropoiesis in murine and human DCs in vitro. We further
investigate how murine DCs exposed to BEN mature in response
to TLR activation and stimulate alloreactive T-cell responses.
Overall, our results demonstrate that BEN elicits a regulatory
program in DCs, associated with increased Flt3 signaling. This
“regulatory” program is exemplified by increased expression of
inhibitory co-stimulatory molecules (PD-L1), a minimal pro-
inflammatory response to lipopolysaccharide (LPS) stimulation,
and robust activation-induced death of alloreactive CD4+ T-cells.
This work highlights the capacity of Flt3L-driven DCs to regulate
alloreactive CD4+ T-cell responses in a way that is highly
advantageous for GvHD and may preserve GvL by sparing
alloreactive CD8+ T-cells.
Frontiers in Immunology | www.frontiersin.org 2
METHODS

Mice
All strains of mice used (BALB/c and C57BL/6) were age-
matched 6-10-week-old females purchased from The Jackson
Laboratory. Mice were housed in specific pathogen-free
conditions and cared for according to the guidelines of the
University of Arizona’s Institutional Animal Care and
Use Committee.

Drug Preparation and Administration
BEN (SelleckChem) was reconstituted and diluted for in vivo
administration as previously described (24–27). AC220
(SelleckChem) and JSI-124 (Santa Cruz Biotechnology) were
reconstituted in DMSO (Sigma-Aldrich). For in vitro studies,
stock solutions of drugs were diluted in complete media (CM)
consisting of RPMI-1640 with 10% FBS, 1% Sodium Pyruvate,
1% MEM NEAA, and 100 U/mL penicillin-streptomycin to their
final concentrations.

Murine Bone Marrow-Derived DCs
(BMDCs)
Murine bone marrow (BM) cells were collected, red blood cells
were lysed with Pharm Lyse (BD Biosciences), and 3x106 BM
cells were plated per well in 6-well plates at a concentration of
106/mL. BM was cultured at 37°C and 5% CO2 in CM containing
200 ng/mL of rhFlt3L (Miltenyi Biotec) with or without drugs
(bendamustine, AC220, or JSI-124). After 4 hours of culture, all
media were washed out, BM cells were washed with PBS and
again cultured in CM containing 200 ng/mL of rhFlt3L. Culture
media was replenished on day 3 and 5. LPS (Sigma-Aldrich) was
added on day 5 of culture for 18 hours at a final concentration of
1 mg/mL. Individual wells of BMDCs were collected on day 6.

Absolute Counts and Viability
BMDCs were resuspended in PBS and analyzed by MACSQuant
Analyzer 10 (Miltenyi Biotec) to determine absolute counts and
viability by Propidium Iodide staining.

Flow Cytometry
Cells were washed in flow buffer (PBS with 0.5% FBS), incubated
with anti-mouse or anti-human Fc Block (Thermo Fisher
Scientific), and flow cytometry was performed as previously
reported (24–27, 34). Intracellular staining of human moDCs
was performed using TruePhos Perm Buffer (Biolegend). All
antibodies used for flow cytometry are listed in Table 1.
Fluorescence data were collected using an LSRFortessa cell
analyzer (BD Biosciences) and analyzed using FlowJo 2 (Tree
Star). Total DCs were defined as CD11c+. Plasmacytoid DCs
(pDCs) were defined as CD11c+B220+. Conventional DCs
(cDCs) were defined as CD11c+ B220-. Type 1 conventional
DCs (cDC1s) were defined as CD11c+B220-CD8a+ and
CD11c+B220-CD103+. Type 2 conventional DCs (cDC2s) were
defined as CD11c+B220-SIRPa+. Pre-cDC1s were defined as
CD11c+B220-CD24highCD8a-. Pre-cDC2s were defined as
CD11c+B220-SIRPa+CD24mid.
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ELISAs
Cytokines in culture supernatants were measured with ELISA
kits (R&D Systems).

Intracellular Cytokine Staining
FL-BMDCs were LPS-activated on day 6 for 3-4 hours. Protein
transport inhibitors GolgiStop (Thermo Fisher) and GolgiPlug
(Thermo Fisher) were incubated with FL-BMDCs for 4-6 hours.
After Fc block, FL-BMDCs were fixed and stained using Fixation
Buffer (Biolegend) and Intracellular Staining Perm Wash Buffer
(Biolegend). Antibodies used for flow cytometry are listed
in Table 1.

Mixed Leukocyte Reaction (MLR)
Unstimulated FL-BMDCs were counted and enriched for live
cells using EasySep Dead Cell Removal (Annexin V) kit
(STEMCELL Technologies). Allogeneic T-cells were isolated
from the spleens of naïve C57BL/6 mice using the Pan T-cell
Frontiers in Immunology | www.frontiersin.org 3
isolation kit II (Miltenyi Biotec). Purified T-cells were stained
with CellTrace Violet (Invitrogen). Live FL-BMDCs were co-
cultured with allogeneic T-cells at a ratio of 1:10 and incubated at
37°C with 7.5% CO2. T-cells were stimulated with CD3/CD28
DynaBeads (Thermo Fisher Scientific) as a positive control. After
16-24 hours, rIL-2 (PeproTech) was added to each well at a final
concentration of 50 IU/mL. After 3-4 days of co-incubation flow
cytometry was performed, and data were analyzed using Modfit
software (Verity Software House) to determine the proliferation
index (PI) of H2Kb+ T-cells. T-cell death was determined using
Propidium Iodide Ready Flow Reagent (Invitrogen).

Human Monocytic-DCs
Healthy human volunteers were recruited as part of an
institutional review board (IRB)-approved research protocol.
Our protocol for generating human monocytic-DCs (moDC)
was adapted from previously reported protocols (35–37).
Peripheral blood was collected and whole blood was diluted 1:1
TABLE 1 | Antibodies used for flow cytometry.

Antibody Clone(s) Vendor

Anti-mouse B220 Brilliant Violet 510 RA3-6B2 Biolegend
Anti-mouse CCL2 PE 2H5 Biolegend
Anti-mouse CCL5 PE-Cyanine7 2E9 Biolegend
Anti-mouse CD4 APC/Cy7 GK1.5 Biolegend
Anti-mouse CD8a PE-Cyanine7 53-6.7 Thermo Fisher
Anti-mouse CD11c FITC N418 Miltenyi Biotec
Anti-mouse CD11c VioBlue REA754 Miltenyi Biotec
Anti-mouse CD24 Pacific Blue M1/69 Biolegend
Anti-mouse CD24 PE-Dazzle 594 M1/69 Biolegend
Anti-mouse CD69 PE/Cyanine5 H1.2F3 Thermo Fisher
Anti-mouse CD70 PerCP-eFluor710 FR70 Thermo Fisher
Anti-mouse CD80 APC 16-10A1 Biolegend
Anti-mouse CD86 AlexaFluor700 GL-1 Biolegend
Anti-mouse CD103 PE 2E7 Thermo Fisher
Anti-mouse CD135 PE-CF594 A2F10.1 BD Biosciences
Anti-mouse H2Kb PerCP-eFluor710 AF6-88.5.5.3 Thermo Fisher
Anti-mouse ICOS VioGreen REA192 Miltenyi Biotec
Anti-mouse ICOSL PE HK5.3 Biolegend
Anti-mouse IL-6 APC MP5-20F3 Biolegend
Anti-mouse IL-10 APC-Cyanine7 JES5-16E3) Biolegend
Anti-mouse IDO-1 AlexaFluor 647 2E2/IDO1 Biolegend
Anti-mouse PD-1 APC 29F.1A12 Biolegend
Anti-mouse PD-L1 PE/Dazzle594 10F.9G2 Biolegend
Anti-mouse PIR-B APC 10-1-PIR Thermo Fisher
Anti-mouse SIRPa APC-Cyanine7 P84 Biolegend
Anti-mouse TIM-3 PE REA602 Miltenyi Biotec
Anti-mouse TNFa Brilliant Violet 510 MP6-XT22 Biolegend
Anti-human AXL PE-Cyanine7 DS7HAXL Thermo Fisher
Anti-human BDCA1 PE-Vio615 REA694 Miltenyi Biotec
Anti-human BDCA3 APC-Vio770 REA774 Miltenyi Biotec
Anti-human BDCA3 Brilliant Violet 421 M80 Biolegend
Anti-human CD11c AlexaFluor 488 3.9 Biolegend
Anti-human CD14 Brilliant Violet 421 MPHIP9 BD Biosciences
Anti-human Clec9a PE 8F9 Biolegend
Anti-human Lineage (CD3/14/19/20/56) Cocktail APC UCHT1; HCD14; HIB19; 2H7; HCD56 Biolegend
Anti-human STAT3 Phospho(Tyr705) PerCP/Cyanine5.5 13A3-1 Biolegend
Isotype BV510 Rat IgG1,k RTK2071 Biolegend
Isotype APC Rat IgG1 RTK2071 Biolegend
Isotype PE Armenian Hamster IgG HTK888 Biolegend
Isotype PE-Cyanine7 Mouse IgG2b,k MPC-11 Biolegend
Isotype APC-Cyanine7 Rat IgG2b RTK4530 Biolegend
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with PBS, layered on top of Ficoll (GE Healthcare Life Sciences),
and then centrifuged per the manufacturer’s recommendation.
CD14+ monocytes were isolated using CD14+ MicroBeads
(Miltenyi Biotec) with >97% purity (data not shown), counted,
and then re-suspended in RPMI-14 containing 10% FBS, 10%
antibiotic-antimycotic solution (ThermoFisher), 500 U/mL rhIL-
4 (PeproTech), 800 U/mL rhGM-CSF (PeproTech), and 100 ng/
mL rhFlt3L (Miltenyi Biotec). Monocytes were plated into a 6-
well plate with 1-1.5x106 monocytes per well, the indicated
concentration of BEN, and then cultured at 37°C and 5% CO2.
After 4 hours, all BEN-containing media was washed out, cells
were washed with PBS and cultured again in the same media at
37°C and 5% CO2. Media was replenished on day 3 of culture, and
moDCs were collected on day 5 of culture for flow cytometry.

qRT-PCR
Samples were saved in PBS and RNAlater (Invitrogen), mRNAwas
isolated using RNeasy Kit (Qiagen) and then reverse transcribed
into cDNA using iScripts reverse transcription supermix kit (Bio-
Rad). Quantitative rtPCR was performed using Sso Advanced
universal probes supermix (Bio-Rad) on a LightCycler 96
thermocycler (Roche) named Laurel. The appropriate
concentration of cDNA was titrated for each TaqMan probe
(Applied Biosystems), listed in Table 2. The 2-DDCT method was
used to analyze gene expression levels, normalized for GAPDH
expression, as previously described (38, 39).

Statistical Analysis
One-way ANOVA tests and Dunnett’s multiple comparisons
tests were used to determine significance among absolute counts,
percent, and MFI expression. Two-way ANOVA tests and
Šidák’s multiple comparisons tests were used to determine
significance in unstimulated versus LPS-stimulated conditions.
P values <0.05 were considered statistically significant.
RESULTS

Dose-Dependent Increase in Flt3
Expression on Murine Bone Marrow Cells
In Vivo Following BEN Administration
We first sought to determine whether our previous report of
increased Flt3 expression in vivo was a direct effect of BEN. Mice
Frontiers in Immunology | www.frontiersin.org 4
were given various doses of BEN or vehicle and bone marrow
(BM) was collected 48 hours later, reproducing the timing used in
our previously published dosing regimens (25–27). There was an
anticipated decrease in absolute counts as the dose of BEN
increased, but we found no loss of viability of BM cells (data
not shown). We observed that the percent expression of Flt3
increased in a dose-dependent manner on total BM cells
(Figure 1A). We also found a dose-dependent increase in the
percent of CD11c+ DCs within the BM compartment (Figure 1B)
and Flt3 expression on CD11c+ BM cells (Figure 1C).

BEN Exposure Increases Flt3 Expression
on Murine DCs In Vitro
We next sought to eliminate physiological variables by utilizing
in vitro bone marrow-derived DC (BMDC) systems (40–45).
Murine BM cells were cultured with Flt3L (FL-BMDCs) in the
presence of BEN for just 4 hours to more closely mimic clinical
exposure to BEN which has a short half-life of ~40 minutes (46).
After exposure to various concentrations of BEN (0 mM, 3 mM,
10 mM, 30 mM, or 100 mM) in culture for 4 hours, BM cells were
washed in PBS, then cultured again for the remaining 6 days with
Flt3L. As expected, we saw a modest decrease in absolute number
(Figure 1D) and percent viable FL-BMDCs (Figure 1E) as
the concentration of BEN increased. We also observed a
concentration-dependent increase in percent Flt3 expression
among total live CD11c+ FL-BMDCs (Figure 1F). The
absolute number of Flt3+ CD11c+ BMDCs increases as the
concentration of BEN increases (Figure 1G) suggesting that
BEN is not selectively killing Flt3-negative cells.

BEN Exposure Favors Plasmacytoid,
Pre-cDC1, and cDC2 Development
FL-BMDCs generated following 4-hour exposure to BEN were
characterized to determine DC composition. As the
concentration of BEN increased, the percentage of CD11c+ FL-
BMDCs trended upward (Figure 1H) while the percentage of
pDCs significantly increased (Figure 1I) and the percentage of
cDCs slightly decreased (Figure 1J). We observed a
concentration-dependent increase in pre-cDC1s (Figure 1K),
however we do not observe an increase in CD8a+ cDC1s
(Figure 1L) and only a slight trend toward increased CD103+

cDC1s (Figure 1M). We see a trend toward decreased pre-cDC2s
(Figure 1N) and an increase in SIRPa+ cDC2s (Figure 1O).
These results largely match our report on BEN’s effect on DC
composition in vivo (27), indicating that BEN promotes DC
development in favor of pDCs, pre-cDC1s, and cDC2s.

BEN Exposure Alters Co-Stimulatory and
Co-Inhibitory Molecule Expression
FL-BMDCs are reportedly more steady state-like than GM-BMDCs
(42–44). We inquired whether the increased Flt3 expression
observed in BEN-exposed FL-BMDCs equated to enhancement
of Flt3L-driven steady state features. We assessed B7 molecule
expression on FL-BMDCs and found a progressive increase in
expression of CD80 (Figure 2A) and CD86 (Figure 2B) by percent,
but not by MFI (Supplementary Figures 1A, B), as the
TABLE 2 | Primers used for qRT-PCR.

Target Gene Taqman Assay ID Concentration of cDNA used

Mouse Akt1 Mm01331626_m1 5 ng
Mouse Csf2ra Mm00438331_g1 5 ng
Mouse Csf2rb Mm00655745_m1 5 ng
Mouse Csf3r Mm00438334_m1 10 ng
Mouse Flt3 Mm00439016_m1 20 ng
Mouse GAPDH Mm99999915_g1 2 ng
Mouse Spi1 (PU.1) Mm00488140_m1 5 ng
Mouse STAT3 Mm01219775_m1 10 ng
Human Akt1 Hs00178289_m1 2 ng
Human GAPDH Hs02786624_g1 2 ng
June 2021 | Volume 12 | Article 699128
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FIGURE 1 | Dose-dependent and concentration-dependent increases in Flt3 expression and skewed DC composition of murine DCs exposed to BEN. (A–C)
BALB/c mice were i.v. injected with various doses of bendamustine or vehicle and bone marrow (BM) was harvested 48 hours later for analysis by flow cytometry.
Data is pooled from 3 independent experiments (n=7-8). (A) Mean percent Flt3 expression on total BM cells is shown with SEM. (B) The mean percentage of
CD11c+ DCs within bone marrow is shown with SEM. (C) Among CD11c+ DCs within bone marrow, mean percent Flt3 expression is shown with SEM.
Representative histogram shown (right) with Fluorescence Minus Once (FMO) control. (D–N) BALB/c FL-BMDCs were generated following brief exposure to BEN
and characterized by flow cytometry. Data is pooled from 3 independent experiments (n=6-7). (D) Mean absolute cell number and (E) percent viable (Propidium
Iodide-) cells are shown with SEM. (F) Mean percent Flt3 expression among CD11c+ FL-BMDCs is shown with SEM (left) and representative histograms (right). (G)
Mean absolute cell number of Flt3+ CD11c+ FL-BMDCs is shown with SEM. (H–N) Mean percent with SEM of murine DC lineages including (H) total CD11c+, (I)
plasmacytoid DCs (CD11c+B220+), (J) conventional DCs (CD11c+B220-), (K) pre-cDC1s (CD11c+B220-CD24highCD8a-), (L) CD8a+ cDC1s (CD11c+B220-CD8a+),
(M) CD103+ cDC1s (CD11c+B220-CD103+), (N) pre-cDC2s (CD11c+B220- CD24midSIRPa+), and (O) SIRPa+ cDC2s (CD11c+B220-SIRPa+). One-way ANOVA and
Dunnett’s multiple comparisons test were used to determine significance among groups. *P < 0.05, **P < 0.01, ****P < 0.0001.
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FIGURE 2 | Concentration-dependent increase in CD80, CD86, and PD-L1 expression and dampened response to LPS by murine DCs exposed to BEN.
(A–F) BALB/c FL-BMDCs were generated following brief exposure to BEN and characterized by flow cytometry. Data is pooled from 3 independent experiments
(n=6-7). Mean percent CD80 (A) and CD86 (B) expression among CD11c+ FL-BMDCs is shown with SEM. Representative histograms of CD80 (C) and CD86
(D) expression on CD11c+ FL-BMDCs exposed to the indicated concentration of BEN. Unstimulated condition shown in solid color and corresponding LPS
stimulated condition overlaid in gray. (E) Mean percent PD-L1 expression (left) and MFI (middle) among unstimulated CD11c+ FL-BMDCs shown with SEM, and
representative histogram (right). (F) Mean percent ICOS-L expression (left) and MFI (middle) among unstimulated CD11c+ FL-BMDCs shown with SEM, and
representative histogram (right). One-way ANOVA and Dunnett’s multiple comparisons test were used to determine significance among groups. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
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concentration of BEN increases. With 100mM BEN exposure, FL-
BMDCs did not exhibit any increase in CD80 or CD86 expression
upon LPS stimulation, depicted in histograms with LPS-stimulated
DCs overlaid in gray (Figures 2C, D) and quantified in
(Supplementary Figures 1C, D). Extending our analyses to other
co-signaling molecules we demonstrate that the percent expression
of PD-L1 significantly increased with higher concentrations of BEN
(Figure 2E), while the opposite was true with ICOS-L expression
(Figure 2F). We found no significant changes in expression of
CD70, PIR-B, or indoleamine 2,3-dioxygenase (Supplementary
Figures 2A–C). All together, we ascertained that BEN-exposed FL-
BMDCs are less responsive to LPS stimulation and exhibit greater
PD-L1 expression.

BEN Exposure Inhibits Pro-Inflammatory
Cytokine Secretion
We next examined pro-inflammatory cytokine secretion by
BEN-exposed FL-BMDCs by measur ing cy tok ine
concentrations in culture supernatants. Pro-inflammatory
cytokines were negligible in unstimulated FL-BMDC cultures.
Upon LPS stimulation, control FL-BMDCs (0mM) showed a
robust increase in the pro-inflammatory cytokines and
chemokines IL-6, TNFa, CCL5, and CCL2 (Figures 3A–D).
Concentrations of these pro-inflammatory cytokines moderately
decreased as the concentration of BEN exposure increased, with
a steep drop-off at 100mM (Figure 3A–D). However, we did not
observe the same effect with the anti-inflammatory cytokine IL-
10 (Figure 3E). We also found that 100mM BEN exposure
significantly hinders secretion of IL-12p40 in response to LPS
(Figure 3F), though IL-12p70 and IL-23 levels remained very
low in all conditions (Figures 3G, H). Statistical significance
between concentrations of BEN are shown in (Supplementary
Figures 3A–H). Intracellular cytokine staining revealed no
deficit in intracellular levels of IL-6, TNFa, CCL5, or IL-10,
and significantly increased CCL2 (Figures 3I–M) in 100mM
BEN-exposed FL-BMDCs. These results indicate that BEN
exposure diminished secretion of pro-inflammatory cytokines
by FL-BMDCs in response to LPS.

BEN-Exposed FL-BMDCs Induce
Allogeneic CD4+ T-Cell Proliferation
Followed by Cell Death
We next asked whether the changes in co-signaling molecule
expression and pro-inflammatory response of BEN-exposed FL-
BMDCs affects alloreactive T-cell responses. Enriched live FL-
BMDCs were co-cultured with CellTrace-stained allogeneic
T-cells in a mixed leukocyte reaction (MLR). Allogeneic T-cells
stimulated with BEN-exposed FL-BMDCs exhibited significantly
greater allogeneic T-cell proliferation (Figure 4A), quantified by
proliferation index (Figure 4B), on day 3. Most proliferation was
among CD4+ T-cells (60-70%), with CD8+ T-cells comprising
<5% of proliferated T-cells and the remainder being double
negative for CD4 and CD8 (Supplementary Figures 4A–C).
We further interrogated the phenotype of the alloreactive T-cells
by measuring expression of various markers of T-cell activation,
anergy, or exhaustion. 100mM BEN-exposed FL-BMDCs
Frontiers in Immunology | www.frontiersin.org 7
induced greater expression of TIM-3, a marker of T-cell
exhaustion, as well as ICOS and CD69, markers of T-cell
activation (Figures 4C–E). FL-BMDCs previously exposed to
100mM of BEN also induced significantly greater expression of
PD-1 (Figure 4F). PD-1 is a negative regulator of immune
responses and plays a central role in generating peripheral
tolerance by promoting programmed cell death of antigen-
specific T-cells. We next measured alloreactive T-cell death,
which is reportedly induced by Flt3L-expanded DCs (23). As
activated T-cells are known to upregulate phosphatidylserine,
Annexin V was not used to quantify alloreactive T-cell death. On
day 4 of co-culture, we first gated on proliferated, allogeneic
(CellTracelowH2Kb+) T-cells and then quantified T-cell death by
PI-positive staining (Figure 4G). When we calculate T-cell death
as a percentage of all allogeneic T-cells in culture we find that
those stimulated with 100mM BEN-exposed FL-BMDCs
exhibited significantly greater T-cell death, with 50% of all T-
cells dead on day 4 (Figure 4H), most of which were CD4+ T-
cells (Figure 4I). T-cell death induced by 100mM BEN-exposed
FL-BMDCs was significantly greater than death observed
following stimulation with CD3/CD28 beads (Supplementary
Figure 4D), which induced greater T-cell proliferation
(Supplementary Figure 4E), indicating that cell death was not
merely a result of robust T-cell proliferation. In summary, BEN-
exposed FL-BMDCs exhibit an enhanced ability to induce
alloreactive T-cell proliferation and cell death.

Previous reports of programmed cell death of alloreactive T-
cells have attributed the effect to CD8a+ DCs (23), yet our FL-
BMDC system yields fewer than 5% CD8a+ cDC1s (Figure 1L).
We observe robust frequencies of their immediate precursor,
pre-cDC1s (Figure 1K), and asked whether pre-cDC1s were
maturing into CD8a+ cDC1s in co-culture to induce T-cell
death. We demonstrate that by day 3 of co-culture, pre-cDC1s
do not mature into CD8a+ cDC1s and remain the predominant
population of cDCs (Figure 4J). Compared to the FL-BMDC
proportions plated on day 0, quantified in Figures 1H–N, pre-
cDC1s effectively double in percentage, perhaps due to their
enhanced life-span compared to CD8a+ cDC1 (47). This
indicates that CD8a+ cDC1 may not be the only DC subset
capable of inducing deletion of alloreactive T-cells and may
signify a previously unknown capability of pre-cDC1s to mitigate
alloreactive T-cell responses.

Inhibitor of Flt3 Elicits Similar
DC Phenotype
There is a paucity of research on the biological mechanisms of
action of BEN. However, one report found that BEN inhibits
canonical STAT3 signaling (32). STAT3 is one of several known
signaling molecules downstream of Flt3 providing essential
signals for differentiation, survival, and proliferation (13, 48–
51). We hypothesized that, by inhibiting STAT3, BEN interrupts
Flt3-STAT3 signaling causing a compensatory upregulation of
Flt3 surface expression. To test this, we performed parallel
experiments exposing murine BM cells to pharmacological
inhibitors of Flt3 (AC220, Quizartinib) and STAT3 (JSI-124,
Cucurbitacin I) for 4 hours, washing, and then generating
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FIGURE 3 | Hindered secretion of pro-inflammatory cytokines in response to LPS by murine DCs exposed to BEN. (A-H) BALB/c FL-BMDCs were generated
following brief exposure to BEN. With or without 18 hours of LPS stimulation, supernatants were collected for analysis. Data is pooled from 2 independent
experiments (n=6). Some values fall below zero, outside of the detectable limits of the assay and outside the axis limits. Mean concentration of (A) IL-6, (B) TNFa,
(C) CCL2 (MCP-1), (D) CCL5 (RANTES), (E) IL-10, (F) IL-12p40, (G) IL-12p70, and (H) IL-23 in supernatants is shown with SEM. Two-way ANOVA and Šidák’s
multiple comparisons test were used to determine significance among groups. (I–M) Murine BMDCs were generated following brief exposure to BEN. BMDCs were
stimulated with LPS for 3-4 hours and treated with protein transport inhibitors prior to intracellular cytokine staining protocol. Gating was set based on FMO and
isotype controls. Data is pooled from 2 independent experiments (n=6). Mean percent of (I) IL-6+, (J) TNFa+, (K) CCL2+, (L) CCL5+, and (M) IL-10+ FL-BMDCs
shown with SEM. One-way ANOVA and Dunnett’s multiple comparisons test were used to determine significance among groups. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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FIGURE 4 | Murine DCs exposed to BEN induce robust proliferation of alloreactive T-cells and expression of PD-1, followed by T-cell death. BALB/c FL-BMDCs
were generated following brief exposure to BEN and co-cultured with C57BL/6 CellTrace-stained allogeneic T-cells at a ratio of 1:10. Data shown is representative of
2 independent experiments (n=4). (A) Representative histograms generated by ModFit software to quantify T-cell proliferation on day 3 as a proliferation index (PI)
(boxed value) in response to stimulation with FL-BMDCs exposed to the indicated concentration of BEN (Gated on H2Kb+ to exclude DCs from analysis). (B) Mean
proliferation index on day 3 of co-culture shown with SEM. (C–E) Mean percent expression of (C) TIM-3, (D) ICOS (CD278), and (E) CD69 on H2Kb+ allogeneic
T-cells on day 3 shown with SEM. (F) Mean percent expression of PD-1 on H2Kb+ allogeneic T-cells on day 3 shown with SEM, and representative histograms
(right). (G) Representative flow cytometry plots indicating the percent of dead (PI+) T-cells within the proliferative fraction (Gated on H2Kb+CellTracelow). (H) Allogeneic
T-cell death on day 4 of the assay shown as mean percent of all allogeneic T-cells in culture with SEM. One-way ANOVA and Dunnett’s multiple comparisons test
were used to determine significance among groups. (I) Representative flow cytometry plots indicating the percentages of CD4+ and CD8+ T-cells among dead
allogeneic T-cells on day 4 (Gated on H2Kb+CellTracelowPI+). (J) Mean percent of CD8a+ cDC1s (circles) and pre-cDC1s (triangles) among H2Kd+CD11c+B220-

FL-BMDCs in co-culture with allogeneic T-cells on day 3 shown with SEM. Two-way ANOVA and Šidák’s multiple comparisons test were used to determine
significance among groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FL-BMDCs. Similar to our observations with BEN exposure,
inhibition of Flt3 prior to FL-BMDC generation results in
increased expression of Flt3 (Figure 5A), with a less prominent
trend resulting from STAT3 inhibition. We observed similar DC
composition following Flt3 inhibition with a significant increase
in pDCs, pre-cDC1s, and SIRPa+ cDC2s, and a decrease in pre-
cDC2s (Figures 5B–I), and a similar trend that was not
statistically significant following STAT3 inhibition. We also
found similarly increased PD-L1 (Figure 5J) and decreased
ICOSL expression (Figure 5K) following Flt3 inhibition, and to
a lesser extent STAT3 inhibition. In support of our hypothesis,
exposure to inhibitors of Flt3 and STAT3 phenocopies the effects
observed following BEN exposure, with the Flt3 inhibitor showing
the most significant response and the STAT3 inhibitor showing
slight trends.

Human moDCs Exposed to BEN Have
Increased Flt3 Expression and
Decreased pSTAT3
Finally, we wanted to determine whether BEN similarly affects
human DCs and if so, if those effects are Flt3-STAT3-mediated.
We isolated CD14+ monocytes from healthy volunteers to
generate moDCs according to established protocols (35–37).
Monocytes were exposed to various concentrations of BEN for
4 hours, washed, and moDCs were generated. moDCs exhibited
a concentration-dependent increase in Flt3 expression
(Figure 6A) shown in representative histograms (Figure 6B).
We also found that these moDCs had significantly decreased
phospho-STAT3 (Figure 6C). Further studies were conducted
to look at DC subsets and found that BEN exposure did not
affect moDC purity (Supplementary Figures 5A, B) and resulted
in a decreased percent of pDCs (Figure 6D), a trend toward
increased cDC1s (Figure 6E), and increased cDC2s (Figure 6F).
We additionally found small increases in the expression of
DNGR1 (Supplementary Figure 5C), another marker for
cDC1s, and AXL (Supplementary Figure 5D), a receptor that
suppresses inflammatory signaling and limits expression of pro-
inflammatory cytokines (52, 53). Consistent with our hypothesis,
moDCs exposed to BEN exhibit increased Flt3 expression,
decreased pSTAT3, and altered DC composition.

Murine and Human DCs Exhibit Decreased
Akt1 Transcripts as the Concentration of
BEN Increases
Molecular work to determine whether Flt3-STAT3 signaling is
altered was largely inconclusive, with inconsistent changes in
transcript levels of Flt3, STAT3, PU.1, Csfr2a, Csf2rb, and Csf3r
(Supplementary Figure 6A). Given the sustained inhibition of
pSTAT3 in moDCs, we investigated alternative signaling
pathways downstream of Flt3 and found that transcript
levels of Akt1 were significantly decreased in murine FL-
BMDCs (Supplementary Figure 6B) and human moDCs
(Supplementary Figure 6C) exposed to BEN. Protein levels of
phosphorylated-Akt1 were largely undetectable in moDC
samples making it difficult to make conclusions about the
signaling events downstream of Flt3.
Frontiers in Immunology | www.frontiersin.org 10
DISCUSSION

Graft-versus-host disease remains a significant obstacle to the
success of HSCT. Administration of Flt3L prior to murine
BMT significantly improves GvHD through effects on host DCs
(22, 23). Our laboratory has demonstrated that replacing
cyclophosphamide with bendamustine, both supplemented with
TBI, as a pre-transplant conditioning regimen significantly
improves GvHD while maintaining GvL in a murine major-
mismatch BMT model (25–27). Extensive investigation of
various immune populations following these conditioning
regimens found that BEN+TBI conditioning yields donor T-cells
that are tolerant to host MHC antigens, yet remain reactive to
third-party MHC antigens, while preserving T-cell-dependent
GvL (26). We have also reported that BEN+TBI results in
robust accumulation of host pre-cDC1s, as well as increased Flt3
expression on host DCs (27). In line with enhanced Flt3 signaling
(49), we have reported increased number and suppressive function
of myeloid-derived suppressor cells (MDSCs) with BEN+TBI
conditioning (25). The biological implications of increased Flt3
expression on DCs are not well understood, and to our knowledge
the role of pre-cDC1s in alloreactivity and GvHD has not been
previously published.

Our results indicate that BEN increases Flt3 expression in a
dose-dependent manner in vivo on murine cells, and a
concentration-dependent manner in vitro in both murine and
human cells. We report that BEN-exposure favors the
development of murine pDCs, pre-cDC1s, and cDC2s, though
further studies would be required to determine whether Flt3
over-expression is responsible for deviations in DC lineage
commitment. Increased pDCs and pre-cDC1s were also found
in our previous studies with in vivo administration of BEN. Of
note, concentrations used in our present in vitro studies
encompass physiological levels reached approximately 2 hours
after administration of BEN. While there is no pre-cDC1
equivalent identified in humans, we similarly observed
increased cDC2s and a trend toward increased cDC1s, though
they differ from murine studies in that we observed a decrease in
pDCs. This divergence may be due to the inherent nature of the
protocol in that monocytes are exposed to BEN, as opposed to
bone marrow cells. We must also note that we did not
distinguish monocytic-DCs (Lineage-CD11c+CD16+) in our
phenotyping studies. Nevertheless, enhanced Flt3 expression
with BEN exposure was consistent between murine and
human DCs.

Importantly, administration of Flt3L to the donor does not
modify GvHD, and administration of Flt3L to the recipient post-
transplant accelerates GvHD lethality (21). Further, in vitro
studies comparing BMDCs generated with Flt3L versus GM-
CSF have consistently observed that Flt3L-driven BMDCs are
much more steady state-like, producing fewer pro-inflammatory
cytokines and inducing less T-cell proliferation (42–44). This
body of work suggests that enhancing Flt3 signaling with
exogenous Flt3L, specifically among host DCs, results in
regulatory DCs that limit alloreactive T-cell responses, are less
pro-inflammatory, and prevent GvHD.We posit that this GvHD-
suppressing phenotype may extend to our findings with BEN,
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FIGURE 5 | Exposing murine DCs to pharmacological inhibitors of Flt3 and STAT3 phenocopies the effect of BEN exposure. (A-K) BALB/c BMDCs were generated
following brief exposure to Flt3 inhibitor (ACC20) or STAT3 inhibitor (JSI-124) and characterized by flow cytometry. Data is pooled from 3 independent experiments
(n=6-7). (A) Mean percent Flt3 expression among CD11c+ BMDCs is shown with SEM, and representative histogram (right). (B-I) Mean percent with SEM of murine
DC lineages including (B) total CD11c+, (C) plasmacytoid DCs, (D) conventional DCs, (E) pre-cDC1s, (F) CD8a+ cDC1s, (G) CD103+ cDC1s, (H) pre-cDC2s,
and (I) SIRPa+ cDC2s. (J) Mean percent PD-L1 expression (left) and MFI (middle) among CD11c+ FL-BMDCs shown with SEM, and representative histograms
(right). (K) Mean percent ICOS-L expression (left) and MFI (middle) among CD11c+ FL-BMDCs shown with SEM, and representative histograms (right). One-way
ANOVA and Dunnett’s multiple comparisons test were used to determine significance among groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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whereby Flt3 signaling is enhanced via increased Flt3 receptor
expression on host DCs, rather than with Flt3L administration.

Pre-transplant conditioning regimen components (e.g. total
body irradiation) disrupt epithelial barrier integrity and allow
translocation of microbial products, such as LPS. GvHD is
significantly exacerbated by inflammation caused by recognition
of LPS, whereas LPS antagonism has been found to suppress
GvHD (54, 55). Using LPS stimulation as a surrogate for total
body irradiation experienced in vivo, we demonstrate that BEN
exposure induces FL-BMDCs that are minimally responsive to
LPS. It should be noted that unstimulated FL-BMDCs previously
exposed to 100mM of BEN expressed greater percent CD80 and
CD86 at baseline, however MFIs were comparable, and upon LPS
stimulation exhibited no further increase. FL-BMDCs exposed to
100mM of BEN were found to secrete extremely low levels of pro-
inflammatory cytokines and chemokines linked to GvHD
development (IL-6, TNFa, CCL2, CCL5, and IL-12p40) (56–59).
BEN-exposed BMDCs showed no deficit in IL-10 secretion and no
Frontiers in Immunology | www.frontiersin.org 12
evidence of diminished intracellular levels of these cytokines. This
suggests that the phenotype induced by BEN exposure is
associated with a suppressed pro-inflammatory response to LPS
that may contribute to BEN’s protective effect on GvHD.

The outcome of alloreactivity is ultimately determined by the
orchestra of co-signaling molecules present during allogeneic T-
cell priming (59, 60). We demonstrated a concentration-
dependent increase in PD-L1 expression on FL-BMDCs exposed
to BEN. PD-L1-mediated inhibitory signaling via PD-1 is essential
for the induction and maintenance of peripheral tolerance in
transplantation (61, 62). T-cells stimulated with 100mM BEN-
exposed FL-BMDCs exhibited a striking increase in PD-1
expression and accelerated proliferation, followed by activation-
induced death of half of all allogeneic T-cells in culture. The
induction of programmed cell death of alloreactive T-cells has
been specifically linked to PD-L1 (63) and is critical to induction
and maintenance of peripheral tolerance in transplantation
(64–67). It is also worth noting that our previous study found
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FIGURE 6 | Human DCs exhibit concentration-dependent increase in Flt3 expression following BEN exposure and decreased pSTAT3. Human monocyte-derived
DCs (moDCs) were generated following brief exposure to BEN and characterized by flow cytometry. Data shown is pooled from 9 independent experiments (n=5-9).
(A) Mean Flt3 MFI among human moDCs shown with SEM. (B) Representative histogram of Flt3 expression on BEN-exposed moDCs from a single individual.
(C) Mean pSTAT3 MFI normalized to percent of control (0mM) shown with median. (D) Mean percent of plasmacytoid DCs (Lineage-CD11c+BDCA4+) shown with
SEM. (E) Mean percent of cDC1 (Lineage-CD11c+BDCA4-BDCA3+) shown with SEM. (F) Mean percent cDC2 (Lineage-CD11c+BDCA4-BDCA1+) shown with SEM.
One-way ANOVA and Dunnett’s multiple comparisons test were used to determine significance among groups. *P < 0.05, **P < 0.01, ***P < 0.001.
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that DCs isolated from BEN-treated mice induced less allogeneic
T-cell proliferation compared to CY-treated mice. However, in
these previous studies, proliferation was determined by tritiated-
thymidine uptake, providing a single snapshot of actively
proliferating T-cells. As such, our report of reduced T-cell
proliferation from day 3 to day 4 of co-culture may be a
reflection of increased alloreactive T-cell death induced by BEN-
DCs and is in line with our current findings.

Interestingly, Hill’s group has also reported this phenomenon,
demonstrating that host CD8a+ cDC1s induce the proliferation
and subsequent deletion of allogeneic CD8+ T-cells, and that this
effect is enhanced by Flt3L administration (23). We observe
deletion of CD4+ T-cells rather than CD8+ T-cells, which is in
agreement with Hill’s findings since CD8a+ cDC1s constitute a
very small proportion of DCs in our assay. This suggests that
another Flt3L-driven DC population is capable of inducing
specific deletion of alloreactive CD4+ T-cells while sparing
CD8+ T-cells, which could potentially preserve GvL responses.
We postulate that pre-cDC1s may be responsible for this effect,
which may explain why BEN+TBI results in tolerant donor T-
cells while maintaining T-cell-dependent, mostly reliant on
CD8+ T-cells, GvL (26, 27), though we cannot rule out a
contribution of cDC2s.

We found that a Flt3 inhibitor closely replicates many of our
findings with BEN, while a STAT3 inhibitor induces similar trends
but not significantly so. In agreement with others, we observed
decreased levels of phosphorylated Tyrosine 705-STAT3 in
human moDCs previously exposed to BEN, though we were
surprised that exposure to BEN for just four hours on day 0
resulted in sustained inhibition of STAT3 five days later. Tyrosine
705 is the canonical residue used by Iwamoto’s group to determine
that BEN binds to and inhibits STAT3, however these studies did
not clarify the kinetics of BEN’s inhibition of STAT3, nor did they
explore other possible post-translational modifications (32).
STAT3 is a highly pleiotropic molecule. For instance, STAT3
activation by IL-6 induces phosphorylation of Tyr640, and is
required for the suppression of LPS-induced DC maturation (68,
69). Therefore, while BEN inhibits canonical STAT3 signaling via
phosphorylation of Tyr705, we cannot rule out the possibility that
STAT3 may still be activated via other post-translational
modifications resulting in non-canonical STAT3 activation.

Additionally, Flt3L is sufficient and indispensable for the
commitment of progenitors to the committed DC progenitor
(CDP) stage of DC development, a commitment step that
reportedly requires STAT3 (13). However, others have
reported that various Flt3L-mediated DC lineage commitment
steps alternatively require PI3K, Akt, and mTORC (9, 48).
Activation of Akt1/PI3K/mTOR downstream of Flt3 has been
shown to play an essential role in regulating lifespan, pro-
inflammatory cytokine production, and autophagy in DCs (33,
48, 51, 70–72). In recent years, the regulation of autophagy in
DCs has been shown to affect long-term storage and cross-
presentation of antigen and critically determine GvHD and GvL
effects (33, 73–75). We found a concentration-dependent
decrease in transcript levels of Akt1 in both murine FL-
BMDCs and human moDCs. This may indicate that Akt1
transcripts were translated into protein by day 6 of culture,
Frontiers in Immunology | www.frontiersin.org 13
however we were unable to measure protein levels of Akt1 to test
this. While our current studies do not clearly define the signaling
mechanisms associated with BEN exposure, they suggest
differential modulation of the signaling events downstream of
Flt3. Additionally, the phenotype we observe here closely
resembles that of Flt3L-driven BMDCs, supporting the
overarching hypothesis that BEN elicits these effects in DCs by
positively modulating the Flt3 signaling pathway.

In summary, we demonstrated that bendamustine directly
increases Flt3 expression on murine and human DCs and affects
DC ontogeny. BEN-exposure and enhanced Flt3 expression are
associated with a distinct semi-mature phenotype in murine FL-
BMDCs, with greater CD80 and CD86 expression, but increased
PD-L1 expression and dampened cytokine response to LPS
stimulation. These regulatory FL-BMDCs induced robust
proliferation of alloreactive CD4+ T-cells followed by
programmed cell death. This effect may be attributable to pre-
cDC1s and appears to spare CD8+ T-cells, providing a potential
mechanism by which BEN+TBI conditioning limits GvHD and
yields donor T-cells that are tolerant to host antigen while
maintaining T-cell-dependent GvL (26).
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