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Magnetic resonance imaging (MRI) provides a means to non-invasively investigate the
neurological links with dyslexia, a learning disability that affects one’s ability to read. Most
previous brain MRI studies of dyslexia and reading skill have used structural or diffusion
imaging to reveal regional brain abnormalities. However, volumetric and diffusion MRI
lack specificity in their interpretation at the microstructural level. Myelin is a critical neural
component for brain function and plasticity, and as such, deficits in myelin may impact
reading ability. MRI can estimate myelin using myelin water fraction (MWF) imaging, which
is based on evaluation of the proportion of short T2 myelin-associated water from multi-
exponential T2 relaxation analysis, but has not yet been applied to the study of reading or
dyslexia. In this study, MWF MRI, intelligence, and reading assessments were acquired
in 20 participants aged 10–18 years with a wide range of reading ability to investigate
the relationship between reading ability and myelination. Group comparisons showed
markedly lower MWF by 16–69% in poor readers relative to good readers in the left and
right thalamus, as well as the left posterior limb of the internal capsule, left/right anterior
limb of the internal capsule, left/right centrum semiovale, and splenium of the corpus
callosum. MWF over the entire group also correlated positively with three different reading
scores in the bilateral thalamus as well as white matter, including the splenium of the
corpus callosum, left posterior limb of the internal capsule, left anterior limb of the internal
capsule, and left centrum semiovale. MWF imaging from T2 relaxation suggests that
myelination, particularly in the bilateral thalamus, splenium, and left hemisphere white
matter, plays a role in reading abilities. Myelin water imaging thus provides a potentially
valuable in vivo imaging tool for the study of dyslexia and its remediation.
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INTRODUCTION

Dyslexia is a complex learning disability that affects one’s ability
to read regardless of intelligence (Siegel, 1989a; Fletcher, 2009).
Although the exact cause of dyslexia is still unknown, current
hypotheses based primarily on quantitative neuroimaging
methods point towards a neurological basis with an emphasis on
a left cerebral hemisphere network (Peterson and Pennington,
2012), and in particular the left occipito-temporal cortex
(Wandell and Le, 2017; Kronbichler and Kronbichler, 2018).
Similarly located anatomical differences have even been seen
in pre-readers at risk for dyslexia (Vandermosten et al., 2016).
The brain regions implicated include both gray matter (Eckert
et al., 2016) and white matter tracts (Wandell and Yeatman,
2013), the latter of which have largely been investigated thus
far using diffusion tensor imaging (DTI). Since the earliest DTI
papers demonstrating correlations of reading ability with DTI
parameters (Klingberg et al., 2000; Nagy et al., 2004; Beaulieu
et al., 2005; Deutsch et al., 2005; Niogi and McCandliss, 2006),
a vast literature over the last 15 years has highlighted key
white matter connections presumed to underlie the potentially
inefficient communication or ‘‘disconnection’’ between brain
regions in dyslexia (see Ben-Shachar et al., 2007; Vandermosten
et al., 2012b; for comprehensive reviews and a meta-analysis of
earlier DTI papers). These DTI reading findings are not limited
to English with similar results across multiple languages (Qiu
et al., 2008; Steinbrink et al., 2008; Thiebaut de Schotten et al.,
2014; Zhang et al., 2014; Cui et al., 2016; Takeuchi et al., 2016;
Zhao et al., 2016; de Moura et al., 2016; Vanderauwera et al., 2017;
Su et al., 2018; Žarić et al., 2018; Moulton et al., 2019). While
many of these studies reported DTI changes in the left temporo-
parietal white matter, other bilateral regions and the corpus
callosum have also shown associations with reading, implicating
a broader network.

Regional white matter DTI has been correlated to language
ability and pre-reading skills in younger ‘‘pre-readers’’ (Saygin
et al., 2013; Vandermosten et al., 2015; Wang et al., 2017;
Dodson et al., 2018; Vanderauwera et al., 2018; Walton et al.,
2018; Ozernov-Palchik et al., 2019; Hutton et al., 2020),
and even in infants with a family history of developmental
dyslexia (Langer et al., 2017). Longitudinal DTI has shown
that both baseline values and changes of diffusion parameters
between scans predict future reading ability in healthy controls
(Hoeft et al., 2011; Yeatman et al., 2012; Myers et al., 2014;
Gullick and Booth, 2015; Takeuchi et al., 2016; Vanderauwera
et al., 2017; Borchers et al., 2019; Bruckert et al., 2019; Lebel
et al., 2019) and in neurodevelopmental disorders such as
fetal alcohol spectrum disorders (Treit et al., 2013). Further
compelling evidence of a link between regional white matter
plasticity and function comes from DTI parameter changes
with remediation in grade-school poor readers (Keller and
Just, 2009; Huber et al., 2018), training in spelling-impaired
children (Gebauer et al., 2012), and acquisition of literacy in
those learning to read in adulthood (Thiebaut de Schotten
et al., 2014). Most DTI studies of reading focus on the
white matter and do not analyze the deep gray matter
structures, but DTI has shown correlations in the left and right

thalamus with reading ability in adolescents and young adults
(Lebel et al., 2013).

Although DTI has implicated certain white matter regions
and connections for adequate reading, the interpretation of
what is underpinning these findings at the microstructural
level is not specific. Myelin is a major component of
white matter and, given its function of optimizing impulse
transmission, may be important in performing complex, ‘‘multi-
cortex’’ tasks efficiently, as well as promoting plasticity during
learning (Zatorre et al., 2012). Water diffusion parameters
are not specific to myelin (Beaulieu and Allen, 1994) and
can be affected by gross anatomical changes as well as
myelin content, axon diameter, axon packing density, extra-
axonal space, and dispersion of fiber orientations within an
imaging voxel (for review see Beaulieu, 2002). More specific
microstructural interpretation may come from the diffusion
coefficients relative to the length of the axons including
radial diffusivity (RD), where increases are thought to reflect
demyelination (Song et al., 2002, 2003). Reading intervention
studies have shown reductions of RD over time, interpreted
as increases in myelin (Keller and Just, 2009; Gebauer et al.,
2012); however, RD from the DTI model is inadequate in
regions of crossing fibers (Wheeler-Kingshott and Cercignani,
2009) and may only be specific after a known timed injury to
a tract (Concha et al., 2006). Although more comprehensive
models of diffusion magnetic resonance imaging (MRI) data
have been applied in several reading studies to reveal better
tracking of white matter tracts at crossing regions and
correlations of new diffusion model parameters (e.g., HMOA,
hindrance modulated orientational anisotropy; AWF, axonal
water fraction; ICVF, intracellular volume fraction) with reading
ability (Vanderauwera et al., 2015; Zhao et al., 2016; Huber
et al., 2019), these advanced diffusion MRI models are not
specific to myelin.

A few alternative imaging strategies beyond diffusion MRI
have been applied to reading and language studies to potentially
enhance specificity to microstructure. Myelin content in brain
regions has been inferred or estimated primarily via water
(hydrogen) relaxation properties in the tissue. Myelin water
fraction (MWF), derived from an MRI technique called
mcDESPOT (multicomponent driven equilibrium single pulse
observation of T1 and T2), and its hemispheric asymmetry has
been positively correlated with receptive and expressive language
ability in typically developing infants and children under 6 years
of age (O’Muircheartaigh et al., 2013, 2014). The left arcuate
fasciculus showed higher T1-weighted image intensity (by ∼1%)
in preliterate children at risk for dyslexia (Kraft et al., 2016);
however, this is not a quantitative measure of relaxation. The
absolute longitudinal relaxation time (T1 in ms) was lower in
‘‘reading’’ tracts relative to ‘‘math’’ tracts, which the authors
interpreted as greater myelination in the former (Grotheer
et al., 2019), although T1 is also non-specific and there was no
assessment of correlations of T1 with reading ability in their
typical adult cohort.

A promising myelin-specific imaging option is multi-
exponential T2 relaxation based on the premise that a multi-echo
T2 decay curve from the brain can be fit to different components
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(see reviews by MacKay and Laule, 2016; Does, 2018). The
shortest T2 component arises from water trapped between
myelin bilayers, and the ratio of the short T2 component
signal to the total signal yields the MWF per voxel. This short
T2 component appears to be specific to myelin, as validated
by histology in excised nerve samples (Fenrich, 1992; Does and
Snyder, 1996; Beaulieu et al., 1998; Webb et al., 2003) as well
as brain and spinal cord tissue from multiple sclerosis patients
(Laule et al., 2006, 2008, 2016). While the T2-relaxation based
MWF method has been used to investigate normal development
and many diseases (MacKay and Laule, 2016), to our knowledge,
it has not been used to study reading in children. We aimed to
examine the relationship between reading ability and regional
brain myelin content determined by multi-exponential T2 in
children and adolescents with a wide range of reading abilities.

MATERIALS AND METHODS

Participants
A total of 20 participants (four females, 16 males; a
range of 10–18 years with 15/20 between 10–13 years;
median = 12.2 years) with diverse reading ability were recruited
from several school districts in the Greater Vancouver Regional
District, British Columbia. The participants were carefully
selected from either a prior non-MRI longitudinal reading study
where they were assessed yearly from kindergarten to grade 4
(Lipka et al., 2006) or from students who attended a specialized
school for learning disabilities. Individuals identified with poor
reading scores over multiple years in the longitudinal study or
those identified as having a reading disability from the school
were invited, as well as good readers from the longitudinal study.
Informed written consent, as approved by the Clinical Research
Ethics Board, was obtained for all participants.

Cognitive and Reading Assessments
The assessments were performed by two trained and experienced
individuals (coauthor PL and a research assistant) overseen by
a reading specialist (coauthor LS). The Woodcock-Johnson-
III (WJ-III) test of cognitive abilities was used for a brief
assessment of intelligence that includes three components: verbal
comprehension (a test of vocabulary and analogies), concept
formation (a test of fluid reasoning), and visual matching (a
test of processing speed). The results of the three components
were combined to give a Brief Intelligence Ability (BIA) score
that provided a measurement of intelligence in approximately
10–15 min. Reading ability was measured using three reading
assessments: (1) the Reading Subset of the Wide Range
Achievement Test (WRAT3 Reading)—a test of recognition
and naming of letters as well as pronunciation of words with
increasing complexity and unfamiliarity; (2) WJ-III Letter-Word
Identification (Word ID)—a test of the ability to name letters
and words from a list; and (3) WJ-III Word Attack—a test of
phonetic skills by pronouncing nonsense words quickly. All raw
scores were converted to age-normalized standard scores and
population percentiles relative to the test’s published norms.

Concerning the classification of participants as either
good or poor readers, the IQ-reading discrepancy definition

FIGURE 1 | The 4 cm coverage over eight slices of the multi-echo T2 scan
was centered on the body of the corpus callosum.

was not used here because of the overwhelming evidence
of its lack of validity (see e.g., Siegel, 1989b; Fletcher
et al., 1992; Tanaka et al., 2011; Siegel and Hurford,
2019). Specifically, children were classified as poor readers
(dyslexia) if at least two of their reading assessments were
below the 25th percentile, while good readers had all
reading scores above the 35th percentile. If participants
did not meet this poor reader criterion but had at least
one score below the 35th percentile, they were classified as
intermediate readers. Intermediate readers were included in
the correlation analysis, but not the group comparisons. The
25th percentile cut-off has been used previously to define
children with a reading disability in group comparisons
(Siegel, 1989a; Stanovich and Siegel, 1994).

MRI Acquisition
Brain MRI was acquired on a 3T Philips Achieva scanner.
T2 relaxation was measured with a 32-echo 3D GRASE (Prasloski
et al., 2012b) with TR = 1,500 ms, TE = 10 ms, echo spacing
10 ms, two gradient echoes per spin echo, 8 transverse slices,
voxel size = 1 × 1.8 × 5 mm3, flip angle = 90◦, field of
view = 240 × 180 × 40 mm3, scan time = 11:39 min. The
inferior/superior coverage was limited by the MRI scanner
technology at the time of data collection [circa 2006—(Yip et al.,
2010)] and considerations for keeping the scan time minimized
for our children/adolescent cohort. The 3D slab was centered on
the corpus callosum to provide sufficient and consistent coverage
over all participants for many-core white and deep gray matter
regions of interest (Figure 1). To assist in the identification of
structures for region-of-interest (ROI) analysis, a high resolution
3D T1-weighted Turbo Field Echo was also acquired with
TR = 10 ms, TE = 6 ms, TI = 848 ms, 120 axial slices, voxel
size = 1.1 × 1.1 × 1.1 mm3, flip angle = 80◦, TFE factor = 154,
sense factor 1.7, field of view = 212 × 181 × 132 mm3, scan
time = 5:02 min.

MRI Analysis
The raw 3D GRASE multi-echo images were inspected to
confirm the lack of motion artifacts. T2 distributions were
calculated for every voxel in the T2 relaxation decay data set
using a regularized non-negative least squares (NNLS) algorithm
(Whittall and MacKay, 1989) accounting for stimulated echo
artifacts due to radiofrequency (B1+), as previously described
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FIGURE 2 | Myelin water fraction (MWF) maps of two slices in three poor readers and three good readers of similar ages. The MWF maps highlight the white matter,
as expected, but shows noticeably higher MWF in the good readers. Note that the background has been cropped and the residual yellow skull is an artifact of the
processing.

(Prasloski et al., 2012a). MWF was defined by the area under
the T2 distribution below 40 ms divided by the total area to yield
voxel-wise MWF maps.

Multi-echo T2 images were registered to the T1 images
using FSL (Smith et al., 2004), the latter used for manual
ROI placement by one individual (coauthor EY) of 10 white
matter and six gray matter structures including the genu
and splenium of the corpus callosum, as well as bilateral
(left and right kept separate) posterior limb of the internal
capsule, anterior limb of the internal capsule, minor forceps,
centrum semiovale, thalamus, putamen, and caudate nucleus.
These ROIs were selected as they are readily identifiable in
the acquired slab and cover commissural, projection, and
association white matter regions, as well as core deep gray
matter regions, some of which have been implicated in prior
imaging studies of dyslexia/reading. For example, the centrum
semiovale has been shown in numerous previous DTI studies
to have a link to reading test performance (e.g., see Figure 2
in Ben-Shachar et al., 2007).

MWF Group Comparison and Correlation
Analysis
Age, intelligence scores, and reading scores were compared
between good and poor readers with a two-tailed Student’s
test. A one-tailed Student’s t-test was performed for the
group comparison to determine if MWF was lower in poor
readers relative to good readers. Pearson’s correlation coefficients
assessed linear correlations between age, intelligence (WJIII BIA
Brief IQ), and the three age-standardized reading scores (WRAT-
3 Reading, WJ-III Word ID, WJ-III Word Attack) with MWF
within each of the 16 ROIs over the entire group. Note that age
was not a covariate for the MWF assessments since MWF did not

TABLE 1 | Subject demographics with age-standardized scores showing similar
age and intelligence, but significantly different reading scores between the good
and poor reading groups [mean (SD)].

Good readers
(n = 11)

Poor readers
(n = 7)

p-value

Age (years) 12.8 (1.6) 12.8 (2.8) 0.93
WJ III BIA (Brief IQ)a 100 (15) 94 (16) 0.36
Verbal comprehension 108 (12) 101 (13) 0.23
Concept formation 113 (16) 107 (18) 0.44
Visual matching 84 (14) 81 (12) 0.71
WRAT3 reading 112 (11) 84 (12) 0.0001∗

WJ III letter-word
Identification

111 (10) 89 (15) 0.001∗

WJ III word attack 107 (8) 88 (3) 0.00001∗

aThe Brief Intelligence Assessment (BIA) for IQ is the combination of the subsequent three
tests on verbal comprehension, concept formation, and visual matching. ∗Statistically
significant difference between good and poor readers (p < 0.001). Note: two other
participants (both 11-year-olds) were considered intermediate readers.

correlate with age (see ‘‘Results’’ section). A Benjamini Hochberg
false discovery rate (FDR) correction of 0.05 was applied
to account for multiple comparisons (uncorrected p-values
surviving FDR correction are reported).

RESULTS

Demographics
Of the 20 participants, seven were classified as poor readers (one
female, six males), 11 as good readers (three females, eight males),
and two as intermediate readers (two males). There were marked
group differences in all three age-normalized reading tests with
the good readers yielding much higher scores (mean 107–112)
than the poor readers (mean 84–89; Table 1). The handedness
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FIGURE 3 | Mean (± standard error) MWF for good (dark bars, n = 11) and poor (light bars, n = 7) readers for various bilateral (L, left; R, right) white and gray matter
structures: genu of corpus callosum (GE), splenium of corpus callosum (SP), posterior limb of the internal capsule (PIC), anterior limb of the internal capsule (AIC),
minor forceps (MF), thalamus (TH), putamen (PU) and head of caudate nucleus (CN). MWF was significantly lower (p < 0.05) in 8 of 16 regions and showed trend
level reduction (p = 0.05–0.08) in another five regions for poor readers. As expected, the MWF was higher in the white matter regions (0.06–0.14 for good readers,
0.04–0.11 for poor readers) relative to deep gray matter (0.015–0.03 for good readers, 0.005–0.02 for poor readers).

was right in 18 participants and left in two participants (both
good readers). There were no significant differences in age (mean
∼12.8 years) or intelligence scores between good and poor
readers, and no significant correlations between age and any
age-standardized cognitive or reading assessment.

Group Comparisons of Myelin Water
Fraction Between Good and Poor Readers
The MWF maps showed the expected greater MWF in white
matter than cortical or deep gray matter, as well as regional
variation across the white matter (Figures 2, 3). Notably, the
MWF map intensity was visually lower in the poor readers
relative to the good readers (see Figure 2 for three examples of
each group). MWF was significantly lower in the poor reader
group relative to the good reader group in the left and right
thalamus by 69% (p = 0.02) and 56% (p = 0.005), respectively,
and in six white matter regions including left (−37%, p = 0.01)
and right (−31%, p = 0.03) anterior limb of internal capsule, left
(−22%, p = 0.02) and right (−16%, p = 0.03) centrum semiovale,
left posterior limb of internal capsule (−21%, p = 0.02), and
splenium of corpus callosum (−26%, p = 0.03; Figure 3).

When all 10 white matter ROIs were averaged together (left
and right combined) per individual, the poor reader group had
20% less MWF compared to the good reader group (MWF
mean ± SE: poor 0.079 ± 0.004 vs. good 0.098 ± 0.004, p = 0.011;
Figure 4). Similarly, the mean of the six deep gray matter
ROIs also showed that MWF was lower by 46% in the poor

reader group compared to the good reader group (MWF poor
0.012 ± 0.002 vs. good 0.022 ± 0.002, p = 0.011; Figure 4).

Correlation Analysis of Myelin Water
Fraction With Reading
There were 10 significant (FDR 0.05) positive correlations
(R = 0.59–0.73) of MWF with the age-standardized reading
scores (WRAT3 Reading; WJIII Word ID, Word Attack) over
6 ROIs including the right thalamus with correlations to all
three reading scores, left thalamus and splenium of the corpus
callosum with two correlations each, and then three left white
matter regions with one correlation each (the left posterior limb
of the internal capsule, left anterior limb of the internal capsule,
left centrum semiovale)—see Table 2 and example plots for
three structures in Figure 5. All 6 of these ROIs showed MWF
correlations to the WRAT3 Reading score whereas WJ III Word
ID was limited to three regions (bilateral thalamus and splenium)
and WJ III Word Attack to only the right thalamus. There
were no significant correlations between MWF and age (mean
R = −0.01, mean p = 0.67; data not shown) or WJIII BIA Brief IQ
(mean R = 0.22, mean p = 0.63; data not shown). Note that adding
age as a covariate to the linear regression yielded comparable
R values of 0.62–0.75 for these same 10 correlations (data not
shown). Notably, MWF was positively correlated at p ≤ 0.05
(not FDR corrected) with age-standardized reading scores for
23/48 correlations performed covering 11/16 ROIs (Table 2).
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FIGURE 4 | Boxplots of MWF for good (n = 11) and poor (n = 7) readers
over all 10 white matter regions combined and all six deep gray matter
regions combined showing marked MWF differences (horizontal line, median;
x, mean; box lower edge, first quartile; box upper edge, third quartile; error
bars, minimum and maximum data values).

DISCUSSION

Multicomponent T2 relaxation measurements have
demonstrated that on average MWF is 20% lower in white
matter and 46% lower in deep gray matter ROIs for children
who are poor readers compared to good readers. Of all regions,
the group comparison highlighted the left and right thalamus
with the most marked MWF reductions of 69% and 56%
in poor readers. These proportional differences in MWF,
which have not been measured before in reading studies,
are much greater than those reported for DTI parameters or
volumes. MWF is a completely different and more specific tissue
microstructure measurement, and such notable differences
in proportional changes between imaging measurements are
not incongruent. These preliminary results are encouraging
in a small, highly selected, and well-characterized sample, and
provide the impetus for confirmation in a larger independent
population using faster MWF methods with greater brain
coverage. The positive correlation of MWF with three different
age-standardized scores of reading ability over the entire cohort
of 20 readers also implicated the bilateral thalamus, as well as
white matter including the splenium of the corpus callosum
and left hemisphere regions of the anterior and posterior limb
of the internal capsule and more superior in the centrum
semiovale, which are consistent with the locations identified
in many previous DTI reports of reading ability (reviewed in
Vandermosten et al., 2012b). MWF was not correlated with
intelligence supporting the notion that dyslexia is a condition

that affects reading ability independently of intelligence (Siegel,
1989a; Fletcher, 2009). MWF was also not correlated with age
over our 10–18-year-old group, but this finding should be
interpreted with caution as 75% of the children were in a narrow
range of 10–13 years and the only individual older than 15 years
was a poor reader. Other myelin-sensitive MR methods have
reported changes across a similar age span. For example, the
volume fraction of myelin derived by mcDESPOT has been
shown to increase in the white matter of 50 typically developing
children between 6–15 years (Geeraert et al., 2019), although
they used a different myelin content imaging method than our
study, with a larger sample that included younger participants,
but did not include poor readers.

Anatomy of Reading Circuitry
The areas seen here have been previously highlighted by
neuroimaging studies of brain structure and reading. It has
been suggested that learning to read is mediated by white
matter connections through the splenium of the corpus callosum
(Carreiras et al., 2009). Left lateralization of white matter
tracts is commonly observed showing links to genetic factors
and age-related changes in the perisylvian language networks
(Budisavljevic et al., 2015) and links to phonological processing
with the arcuate fasciculus in children (Lebel and Beaulieu, 2009).
Additional evidence for a direct role of white matter in reading
comes from a neurosurgical case report of subcortical stimulation
of a specific anterior/posterior tract connecting the parietal and
frontal lobes in the left hemisphere (Motomura et al., 2014).
Another case report highlighted the inability to read or identify
letters after a biopsy of a left thalamic mass that also induced
damage to the splenium of the corpus callosum (Tamhankar
et al., 2004); our results suggest that both these structures play
a role in reading. Left lateralized white matter connections, and
the splenium of the corpus callosum through its role in vision,
are core parts of the reading circuitry (Wandell and Le, 2017).
Although the left hemisphere has been a primary focus of many
studies, brain regions in the right hemisphere have also been
implicated in DTI (for example Hoeft et al., 2011; Gebauer
et al., 2012; Vandermosten et al., 2012b; Lebel et al., 2013) and
fMRI (Maisog et al., 2008) studies, suggesting a more distributed
widespread network for reading skill, which is also in-line with
our observations showing reduced myelin in several right-sided
brain regions.

The Role of Myelin in Reading Circuitry
and Plasticity
The microstructural underpinnings which contribute to
abnormalities in this circuitry are not confirmed, but it is
conceivable that myelination is an important factor. As the
primary role of myelin is to increase conduction speed along
axons, poor myelination of key brain regions involved in
reading may contribute to dyslexia. This theory is consistent
with several studies that have shown that individuals with
dyslexia manifest rate processing problems (Cohen-Mimran and
Sapir, 2007; Murphy and Schochat, 2009; Wright and Conlon,
2009). Myelination is also important for white matter plasticity
which is critical for brain circuit formation and function
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TABLE 2 | Linear Pearson correlations (R/uncorrected p) between three reading assessment scores and myelin water fraction from 16 bilateral (L—left and R—right)
white and deep gray matter structures in the overall cohort of 20 participants.

MWF Region WRAT3 Reading WJ III Letter-Word ID WJ III Word Attack

White Matter—R (p)
Genu corpus callosum 0.21 (0.38) −0.07 (0.77) 0.36 (0.12)
Splenium corpus callosum 0.59 (0.006)∗ 0.64 (0.002)∗ 0.54 (0.01)
Centrum semiovale (L) 0.64 (0.003)∗ 0.42 (0.07) 0.52 (0.02)
Centrum semiovale (R) 0.50 (0.03) 0.41 (0.07) 0.51 (0.02)
Posterior limb internal capsule (L) 0.73 (0.0003)∗ 0.47 (0.03) 0.44 (0.05)
Posterior limb internal capsule (R) 0.32 (0.18) 0.23 (0.32) 0.26 (0.27)
Anterior limb internal capsule (L) 0.64 (0.002)∗ 0.42 (0.06) 0.54 (0.01)
Anterior limb internal capsule (R) 0.49 (0.03) 0.25 (0.29) 0.53 (0.02)
Minor forceps (L) 0.49 (0.03) 0.35 (0.14) 0.18 (0.45)
Minor forceps (R) 0.13 (0.59) 0.04 (0.85) 0.11 (0.65)

Deep Gray Matter—R (p)

Thalamus (L) 0.71 (0.0004)∗ 0.61 (0.004)∗ 0.54 (0.01)
Thalamus (R) 0.67 (0.001)∗ 0.59 (0.006)∗ 0.73 (0.0002)∗

Putamen (L) 0.56 (0.01) 0.31 (0.18) 0.27 (0.26)
Putamen (R) 0.44 (0.05) 0.21 (0.37) 0.39 (0.09)
Caudate nucleus (L) 0.32 (0.17) 0.06 (0.79) 0.19 (0.42)
Caudate nucleus (R) 0.33 (0.16) 0.13 (0.58) 0.43 (0.06)

*Indicates significant with FDR 0.05.

FIGURE 5 | Examples are shown from three regions (right thalamus, splenium of the corpus callosum, and left posterior limb of internal capsule) that show
significant positive correlations [*false discovery rate (FDR) 0.05, uncorrected p shown] between MWF and the three reading assessment scores (WRAT III Reading,
WJ III Letter Word ID, WJ III Word Attack) in the full group of 20 individuals. The reader groups are shown with different colored symbols.

(Zatorre et al., 2012; Chorghay et al., 2018). Longitudinal DTI
studies of remediation in dyslexia have shown post-intervention

reductions of RD in the left anterior centrum semiovale (Keller
and Just, 2009) as well as the left/right corona radiata and
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posterior limb of the internal capsule (Gebauer et al., 2012),
which may be consistent with increased myelination (Song et al.,
2002, 2003). Other DTI studies reporting lower RD with better
reading scores have also implicated that myelination is driving
the white matter fractional anisotropy differences in the reading
disabled cohorts in white matter regions such as left arcuate
fasciculus (Vandermosten et al., 2012a; Thiebaut de Schotten
et al., 2014; Christodoulou et al., 2017; Hutton et al., 2020),
anterior and superior corona radiata (Frye et al., 2011), and left
anterior limb of the internal capsule (Qiu et al., 2008). Notably,
these regions are all consistent with our findings. The typical
trajectory of RD reduction with age over 6–16 years observed in
controls was not present in children with dyslexia in the inferior
frontal occipital and posterior limb of the internal capsule
(Rollins et al., 2009).

MWF and Cognitive Measures
This study contributes to a fairly sparse literature on how
MWF relates to cognitive measures. A small cross-sectional
study in preadolescent males aged 9–12 years found a strong
correlation between MWF and verbal IQ (Whitaker et al.,
2008). Experience-dependent changes in myelin due to motor
training have been shown with multi-exponential T2 relaxation
derived MWF, suggesting that interventions can change MWF
(Lakhani et al., 2016). mcDESPOT is a methodologically different
approach to estimating myelin content which makes use of
T1-weighted and steady-state gradient-echo acquisitions to
estimate T1 and T2 times of the tissue components in the
brain (Deoni et al., 2008). mcDESPOT has yielded measures
related to myelin content that correlate with performance in
language tasks, in particular, hemispheric asymmetry positively
correlating with receptive and expressive language ability in
typically developing infants and children under 6 years of
age (O’Muircheartaigh et al., 2013, 2014). mcDESPOT derived
myelination measures in the splenium of the corpus callosum
also correlated positively with Early Learning Composite score
(sum of fine motor, visual reception and expressive and
receptive language) in children less than 5 years old, with
more widespread bilateral white matter involvement if only
examining 1–2-year-old toddlers (Deoni et al., 2016), further
supporting a link between enhanced myelination in white
matter and cognitive function. However, it should be noted
that the spatial patterns of T2-based and mcDESPOT-based
myelin measures are quite different in the human brain
(Zhang et al., 2015a,b).

Deep Gray Matter and Reading Ability
Our results suggest that myelination of brain circuitry involved
in reading ability is not limited to white matter. The bilateral
thalamus MWF in poor readers was much lower (69%% left
and 56% right) than good readers (MWF poor ∼0.01 vs. good
0.02–0.025). It is important to keep in mind that the absolute
MWF in deep gray matter is much smaller than in white matter.
The right thalamus MWF yielded strong positive correlations
independently with all three reading scores (R = 0.59, 0.67, 0.73),
while the left thalamus MWF correlated with two reading scores
(R = 0.61, 0.71). These observations are in line with the possible

functional consequences of myelin abnormalities within the
thalamus, which is critical for cognitive functioning and language
(Llano, 2013; Sherman, 2016), and acts as a ‘‘relay station’’
for connections between various brain regions. The different
thalamic subparts are separated by myelinated lamellae, and less
myelin could lead to deficits in information integration and relay.
Post-mortem studies of dyslexia have shown cytoarchitecture
abnormalities of neurons within the thalamus including the
lateral geniculate nucleus (LGN), the primary processing center
for visual information located inside the thalamus (Wandell
and Le, 2017), and the left medial geniculate nucleus (MGN),
a portion of the auditory thalamus hypothesized to influence
attention (Galaburda et al., 1994).

Other MRI studies have also reported several thalamic
abnormalities related to dyslexia and reading ability. Individuals
with dyslexia have smaller and differently shaped LGN (Giraldo-
Chica et al., 2015). Fractional anisotropy in the left and right
thalamus has correlated with reading ability (Lebel et al., 2013)
and diffusion tensor tractography has identified differences in
thalamic connections in individuals with dyslexia (Fan et al.,
2014; Müller-Axt et al., 2017; Žarić et al., 2018; Tschentscher
et al., 2019). These studies align with our observations of
lower MWF in the anterior limb of the internal capsule
which contains axons connecting the thalamus and frontal
lobe. Functional MRI activity of the thalamus (including right
side) also differs in people with dyslexia (Maisog et al., 2008;
Díaz et al., 2012; Paz-Alonso et al., 2018) and may be altered
following reading intervention (Barquero et al., 2014). These
functional changes could be partly a result of changes in
myelination, but fMRI was not acquired in our study for
comparison to MWF.

Limitations and Future Directions
A clear limitation of our study is the small sample size of
20 participants, although they were a carefully selected sample
from a previous longitudinal reading study from kindergarten
to Grade 4 and were identified with a reading disability from
a specialized school for learning disabilities as supervised by
a long time expert in dyslexia (coauthor LS; Siegel, 1989a;
Stanovich and Siegel, 1994; Lipka et al., 2006). Further, if
the large MWF changes are confirmed in future studies, very
large sample sizes may not be required if reading disabled
participants are selected and characterized appropriately. The
influence of sex and handedness was not possible to evaluate
as there were only two left-handers (both good readers) and
only four females where one was classified as a poor reader
vs. six males. The MWF-reading linear correlations could be
driven by marked group differences of MWF between good
and poor readers, although such an MWF-reading relationship
appears to exist within each group (e.g., right thalamus MWF
vs. WRAT III in good readers; Figure 5), granted such an
assessment is beyond the scope of our small sample size. Our
pilot study provides compelling evidence for larger replication
studies of myelin in reading and dyslexia using faster MWF
imaging techniques yielding more extensive data collection
over the whole brain (Alonso-Ortiz et al., 2015; Lee et al.,
2020). That said, our average white matter MWF was 0.10 in
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the good readers, which fits with a very recent report of
0.10–0.11 in adults using the same type of MRI pulse sequence
(Ocklenburg et al., 2019). Our study focused on manual ROI
measurements in nine specific regions that were identifiable in
all participants within the 4 cm slab and covered various types
of white matter as well as the deep gray matter relevant to
the reading literature. With whole-brain MWF coverage and
the acquisition of coregistered diffusion imaging, future work
could include tract specific analysis methods with tractography to
extract MWF along tracts of interest in reading, e.g., the arcuate
fasciculus (Baumeister et al., 2020). Like many quantitative MRI
techniques, the assignment of the short T2 component to ‘‘myelin
water fraction’’ is not proof that there are myelin differences
in the dyslexic brain, but there is much histological evidence
supporting this hypothesis, as outlined in the Introduction.
However, the presence of iron can shorten the water T2 in
tissue and could interfere with the correspondence of the
short T2 component to myelin specifically (Birkl et al., 2019).
Although iron is typically far more concentrated in deep gray
matter structures, it is also present in the oligodendrocytes,
whose cell processes wrap the myelin sheaths of white matter.
Hence an alternative interpretation of our results could, in
part, be reduced iron (fewer oligodendrocytes) in poor readers,
which could be evaluated using quantitative susceptibility
mapping MRI.

In conclusion, multi-exponential T2 relaxation can help
elucidate the microstructural brain differences associated with
the acquisition and performance of cognitive abilities such as
reading. This study suggests that a defect in myelination could
underlie inefficient communication between brain regions in
individuals who are poor readers. Myelin water imaging is
complementary to other quantitative MRI techniques and is a
potentially valuable in vivo imaging tool for the study of dyslexia
and its remediation.
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