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Abstract

Introduction:Wereport the routine application ofmagnetoencephalography (MEG) in

amemory clinic, and its value in the discrimination of patientswithAlzheimer’s disease

(AD) dementia from controls.

Methods: Three hundred sixty-six patients visiting ourmemory clinic underwentMEG

recording. Source-reconstructed MEG data were visually assessed and evaluated in

the context of clinical findings and other diagnosticmarkers.We analyzed the diagnos-

tic accuracy ofMEG spectral measures in the discrimination of individual AD dementia

patients (n = 40) from subjective cognitive decline (SCD) patients (n = 40) using ran-

dom forest models.

Results: Best discrimination was obtained using a combination of relative theta and

delta power (accuracy 0.846, sensitivity 0.855, specificity 0.837). The results were val-

idated in an independent cohort. Hippocampal and thalamic regions, besides temporal-

occipital lobes, contributed considerably to themodel.

Discussion:MEG has been implemented successfully in the workup of memory clinic

patients and has value in diagnostic decision-making.

KEYWORDS
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1 BACKGROUND

Diagnostic evaluation of memory clinic patients has shifted from

the assessment of clinical symptoms toward biomarker-supported

diagnoses.1,2 Commonly used biomarkers include structural brain

imaging, cerebrospinal fluid (CSF) examination, and positron emission

tomography (PET). Their diagnostic accuracies, however, vary across

dementia types. For Alzheimer’s disease (AD), for example, CSF

biomarkers and PET imaging supportive for AD pathology have greatly

increased the specificity of the diagnosis,3 but for Lewy body dementia
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(LBD) and frontotemporal dementia (FTD), specificmolecular biomark-

ers are not (yet) available. These diagnoses therefore rely on biomark-

ers that are not based directly on underlying pathology.2,4 Other sup-

portive biomarkers may be helpful to further improve the diagnostic

process.

Normal cognition relies on optimal neuronal functioning and infor-

mation transfer via synapses. A non-invasivemethod to assess synaptic

functioning is electroencephalography (EEG). It has been established

that slowing of the posterior dominant rhythm is supportive of demen-

tia due to AD.5–7 In patients with subjective cognitive decline (SCD) or
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HIGHLIGHTS

∙ Routine application of magnetoencephalography (MEG) is

feasible in the workup of memory clinic patients.

∙ MEG reliably discriminates patients with Alzheimer’s dis-

ease dementia from controls.

∙ The thalamus may be more important in Alzheimer’s dis-

ease than currently recognized.

mild cognitive impairment (MCI), oscillatory slowing, reflected by an

increase of relative theta power, was found to be predictive of future

cognitive decline.8–10 In LBD, EEG changes are generally more severe

than in dementia due to AD11,12 and frontal intermittent rhythmic

delta activity (FIRDA)13 is much more common. FTD is generally asso-

ciated with a remarkably normal EEG.14 Few EEG studies have been

performed in other types of dementia.15

An alternative method for measuring synaptic activity is magne-

toencephalography (MEG), which detects the magnetic fields induced

by postsynaptic currents. Compared to standard clinically used EEG,

MEG recording is more patient friendly and time efficient. Technically,

it has ahigher spatial resolution, it is reference free, and it ismore sensi-

tive to deeper sources such as the hippocampus in AD.16–20 Indeed, in

AD patients, MEG oscillatory activity originating specifically from the

hippocampus correlated stronger with cognitive decline than cortical

activity.21 These findings point toward a potentially valuable place for

MEG in both research and clinical care.

A growing number of studies havemoved beyond group differences

toward the individual level. These classification studies are essential

to evaluate whether EEG/MEG can provide biomarkers for clinical

purposes. Methods varied widely with respect to the used classifica-

tion method and input features, and performance ranged from poor to

almost perfect.22,23 The wide variability of results may be explained by

the use of small samples and the lack of validation in an independent

data set,22 so the true validity of EEG/MEG features as biomarkers has

not yet been fully established.

The objective of this article is twofold. First, we describe the imple-

mentation of MEG as a routine investigation during the 1-day diag-

nostic workup in our memory clinic. Second, we evaluate its value in

the discrimination of AD dementia patients and SCD subjects using a

random forest classifier. We expected that especially higher relative

theta power, as an early marker for AD, in both cortical and subcortical

structures would be most important in the classification of individual

patients.

2 MATERIALS AND METHODS

First, the implementation of MEG is described, followed by the

methodology of the classification between AD dementia and SCD

patients. (An overview is given in Figure 1.)

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using

scientific databases (eg, PubMed) focusing on magne-

toencephalography (MEG) as a diagnostic marker for

Alzheimer’s disease (AD).

2. Interpretation: We have shown that routine application

of MEG is feasible in the diagnostic workup of memory

clinic patients and reportdemographics andMEGfindings

of the prospective cohort (n = 366). We further demon-

strated that MEG spectral characteristics have value in

the discrimination of individual patients with AD demen-

tia from patients with subjective cognitive decline, espe-

cially in the temporal-occipital lobe, hippocampus, and

thalamus.

3. Future directions: Multiclass classification of multiple

dementia diagnoses will bring MEG closer to its imple-

mentation in clinical practice. Our findings also indicate

that a more in-depth study of subcortical structures, for

example, the thalamus, may lead to novel insights in the

pathogenesis of AD.

2.1 Methods I: implementation of MEG in the
memory clinic

2.1.1 Diagnostic workup

The standardized 1-day diagnostic screening of the Alzheimer Center

Amsterdam consists of a neurological and neuropsychological exami-

nation, magnetic resonance imaging (MRI), EEG, standard laboratory

work, and lumbar puncture. The EEG protocol has been described

previously.7,24 SinceApril 2015, aMEGrecording has replaced theEEG

in anunselected subset of thememory clinic patients (first twopatients

each Monday). During the multidisciplinary meeting on the Friday of

the same week, diagnoses are made using standard criteria after con-

sideration of the clinical findings and diagnostic investigations.2–4,25

Results of the MEG recording (or EEG) and other diagnostic tests are

weighed with respect to the clinical differential diagnosis of the neu-

rologist to come toa final diagnosis. Subjects gave informedconsent for

theuseof their clinical data for researchpurposes.24 Theethical review

board of the VUUniversity medical center approved this protocol.

2.1.2 Data acquisition

A standardized recording protocol and pre-processing pipeline was

developed so it approaches EEG procedures and it fits in the fast

diagnostic routine of the memory clinic. MEG data are recorded using

a 306-channel Elekta system (Elekta Neuromag Oy, Helsinki, Fin-

land) inside a magnetically shielded room (Vacuumschmelze, Hanau,
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Prospective cohort one-day screening:
366 memory clinic patients 
306-channel MEG recording

Source-reconstructed MEG: AAL-atlas 
Spectral analysis

Atlas-based 
beamforming 

Test-cohort: 
40 AD dementia vs 40 controls

Validation-cohort:
19 AD dementia vs 19 controls

Feature selection:
- Relative power in delta, theta, alpha, 
beta band, peak frequency
- Global and regional 
- 78 cortical and 12 subcortical ROIs

Diagnostic report

Random forest models

Best performing 
model

Discrimination of  
individual AD 
dementia patients 
from controls

F IGURE 1 Flow chart: Overview of patients andmethods

Germany) at a sample frequency of 1250Hz, with an anti-aliasing filter

of 410 Hz and a high-pass filter of 0.1 Hz. Two data sets of 5-minute

duration are recorded in a task-free and mainly eyes-closed condition.

During the recording, patients are asked to open their eyes one to two

times for several seconds. Finally, a workingmemory test is performed,

during which the patient looks at and memorizes 12 pictures during

10 seconds and tries to recall the pictures after 1 minute, providing a

picture test score.26 Technicians closely monitor both the recording

for artifacts and the patient via a video system, and alert patientswhen

they get drowsy. The head position relative to the MEG sensors is

recorded continuously using signals from five head-localization coils.

The positions of the head-localization coil and the outline of the par-

ticipants scalp (≈500 points) are digitized using a three-dimensional

(3D) digitizer (Fastrak, Polhemus, Colchester, VT, USA). Two horizontal

and one vertical electro-oculography channel and an ECG channel are

recorded.

2.1.3 Data pre-processing

The pre-processing pipeline consists of spatial filtering and source-

reconstruction of the MEG data. A detailed description is given in the

Supplementary Materials. In short, the MEG time series were filtered

using the temporal extension of Signal Space Separation (tSSS). Then,

the digitized scalp surface was co-registered to a best fitting MRI tem-

plate. After co-registration, the voxels of the MRI were labeled using

the automated anatomical labeling (AAL)-atlas,27 consisting of 116

regions (78 cortical, 12 subcortical, and26 cerebellar regions). For each

region, neuronal activity at each centroid voxels was reconstructed

using a scalar beamforming approach.28

2.1.4 Diagnostic MEG report

For diagnostic purposes, time series of 80 regions (78 cortical and 2

hippocampal regions) were assessed. In BrainWave software (devel-

oped by CS and freely available via https://home.kpn.nl/stam7883/

brainwave.html), 13.12 seconds of MEG data per page are depicted by

downsampling to312Hz. In addition, sensor-spacedatawere reviewed

inGraph (ElektaNeuromagOy, version 2.94).MEGdatawere assessed

by certified clinical neurophysiologists without knowledge of clinical

information, except for age, gender, andmedication use.

The diagnostic report consists of (1) a description of background

rhythms, focal abnormalities, transients, and/or epileptiform activity,

https://home.kpn.nl/stam7883/brainwave.html
https://home.kpn.nl/stam7883/brainwave.html
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(A) (B)

(C)

F IGURE 2 Illustration of the standard figures in the diagnostic magnetoencephalography (MEG) report. (A) a representative page of 13.12
second source-space eyes-closedMEG time-series (80 automated anatomical labeling [AAL]-regions). (B) Power spectrum of posterior dominant
rhythm, calculated from a single time-series (13.12 seconds) of each occipital lobe. (C) top-view head plots, with globally scaled color-coded
relative power in six frequency bands at 78 cortical regions of the AAL-atlas. A warmer color represents higher relative power

based on visual assessment; (2) a table with graphoelements; (3)

a semi-quantitative MEG score (explained below); (4) a table with

relative band power (delta 0.5–4 Hz, theta 4–8 Hz, alpha1 8–10 Hz,

alpha2 10–13 Hz, beta 13–30 Hz, gamma 30–48 Hz) and peak fre-

quency (dominant frequency between 4 and 13 Hz) calculated from

representative artifact-free epochs by fast Fourier transformation in

BrainWave; and (5) a conclusion.

The semi-quantitative MEG score, similar to the score used in EEG

assessment, consists of a four-digit visual rating scheme: (1) severity

of abnormalities (range 1–5: normal, mild, moderate, severe abnor-

malities, isoelectric, respectively), the presence = 1 or absence = 0 of

(2) diffuse abnormalities, (3) focal abnormalities, and (4) epileptiform

abnormalities. Focal abnormalities are (transient) slow or sharp wave

activity in one or more time-series. Diffuse abnormalities are defined

as slowing of the rhythmic background activity. Epileptiformabnormal-

ities were defined as (poly)spikes or (poly)spike-slow wave discharges.

Inter-observer agreement was previously evaluated with kappa values

of 0.60 and 0.87 for detection of focal and diffuse abnormalities,

respectively.29 Figure 2 shows the three standard illustrations that

accompany the report.

2.1.5 Statistical analyses

Diagnosis distributions, patient demographics, and MEG visual scores

of the cohort were described and compared between diagnosis groups

using chi-square tests and Student t tests, where appropriate.

2.2 Methods II: Classification of AD and SCD
patients

We investigated the discriminative ability ofMEG spectral features for

individual AD dementia patients and SCD subjects using the random

forest algorithm in the machine learning module of BrainWave. A sub-

set of 40 consecutive patients with AD dementia were included when

they had AD biomarker evidence defined by a CSF t-tau/amyloid beta

(Aβ)42 ratio >0.52, and/or a positive fluoride-18 florbetaben-PET.30

Forty SCD patients were selected on the basis of absence of amyloid

pathology (CSF or PET) when available. For each patient, 20 epochs of

4096 samples (3.27 seconds) each (total ≈65.5 seconds) were visually

selected based on the absence of artifacts, eyes-closed condition, and

alertness of the patient. The following spectral measures were used

as features: regional (90 cortical and subcortical AAL regions, exclud-

ing cerebellum; supplementary Table 1) and global average of relative

power in the delta, theta, full alpha (8–13 Hz), and beta band, and peak

frequency.

2.2.1 Random forest classifier

The classifier was built with the random forest approach31. This

method builds a decision tree using a random sample of the original

data set, with replacement (bootstrapped dataset), and using a random

subsample of features at each split of the tree. This process is repeated

to create a group of decision trees (a “forest”; the number of trees was
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TABLE 1 Patients’ characteristics by diagnosis group

N (%) Age, mean (SD) Gender, M / F Picture test, median (IQR)*

Subjective cognitive decline 97 (26.5%) 57.9 (9.1) 53 / 44 5 (5–7)

Dementia due to Alzheimer’s disease 89 (24.3%) 65.7 (7.7) 44 / 45 2 (1–3)

Psychiatric disorder 43 (11.7%) 55.3 (9.0) 27 / 16 5 (4–6)

Mild cognitive impairment 41 (11.2%) 66.2 (7.6) 30 / 11 4 (3–4)

Inconclusive diagnosis 34 (9.3%) 62.7 (8.4) 21 / 13 3.5 (1.5–4.5)

Other dementia or neurological disease 25 (6.9%) 64.2 (7.4) 15 / 10 4 (2–5)

Lewy body dementia 15 (4.1%) 68.4 (5.5) 14 / 1 3 (2–4)

Frontotemporal lobe dementia 14 (3.8%) 63.6 (7.6) 7 / 7 4.5 (3–6)

Vascular dementia 8 (2.2%) 72.6 (5.6) 6 / 2 3 (1.5–4.5)

Picture test (range 0–12), * 3missing.

set at 500). The number of input variables randomly chosen at each

split was set as the square root of the number of features. Ten percent

white noise was added to the feature values. The performance of the

model is tested using the samples not used in building the decision tree

(out-of-bag data set). These samples are run down each decision tree

and eventually assigned to one of the classes bymajority vote.

The performance of each random forest model was described in

terms of accuracy (ratio of number of correctly classified subjects/

number of total subjects), sensitivity (ratio of correctly classified SCD

patients/all SCD patients), and specificity (ratio of correctly classified

AD patients/all AD patients). The contribution of each feature is quan-

tified with the variable importance (VIMP) score (range 0–1), based on

the number of times a feature was selected for a split in the tree.

2.2.2 Validation

We made several models using various combinations of features, risk-

ing overfitting. We therefore validated the best-performing classifier

in an independent within-center data set. In view of future imple-

mentation in the clinic, we used unselected downsampled MEG data

(first four epochs/≈52.5 seconds of four times downsampled data) of

source-reconstructed time-series for this validation step. This valida-

tion set consisted of 19 AD dementia patients (17 biomarker posi-

tive by CSF or amyloid-PET; two biomarkers unavailable) and 19 SCD

patients (regardless of AD biomarkers) from the prospective cohort.

3 RESULTS

3.1 I: Prospective cohort

In the period from April 2015 to September 2019, a total of 370

patients have undergoneMEG recording during the diagnostic screen-

ing. Four patients did not give consent for the use of their data for

research purposes. The remaining patients (n = 366) had a mean age

of 62.3 ± 9.1 years, and consisted of 149 (41%) female and 217 (59%)

male patients (Table 1). The most frequent diagnosis was SCD, fol-

lowed by AD dementia. Other diagnoses by descending prevalence

were psychiatric disorder, MCI, inconclusive diagnosis, other demen-

tia/neurological disorder, DLB, FTD, and vascular dementia (VaD). The

category “other dementia/neurological disorder” included dementia

types such as progressive supranuclear palsy, corticobasal degener-

ation, or other neurological disorders (eg, limbic encephalitis, hydro-

cephalus,multiple sclerosis). An inconclusive diagnosiswas givenwhen

more information was awaited, for example, results of amyloid-PET

scans or follow-up over time.

3.1.1 Diagnostic reporting of MEG

All MEG recordings were performed on Monday with the multidisci-

plinary diagnostic meeting on Friday.MEG preprocessing for each data

set took around 2 hours for trained technicians. For all cases, except

one, a diagnostic report was completed on time. The MEG of this one

case contained continuous diffuse slow waves without a recognizable

posterior dominant rhythm. It was regarded as uninterpretable due to

(movement) artifacts. In retrospect, this was probably not the case as

in the multidisciplinary meeting it became clear that the patient had

severe AD dementia based on clinical andMRI findings, and the severe

slowing was probably congruent with the clinical diagnosis.

MEGvisual scores are reported in Figure 3 and supplementaryTable

2. The visual scores varied considerably between diagnoses, ranging

from normal (score 1) to moderately abnormal (score 3). None of the

patients had a severity score of 4 or 5. In both SCD and psychiatric dis-

orders, themajority had score 1,whereas score 3was rare. In dementia

due to AD, the majority of patients were scored as moderately abnor-

mal, but a considerable proportion had mild abnormalities or even a

normal visual score. None of the DLB patients had a normal MEG, and

themajority had score 3. FTD patients mostly had a score 1 or 2.

Distributions of diffuse and focal abnormalities per diagnosis group

are described in Table 2. DLB and AD patients showed the highest pro-

portion of diffuse abnormalities, in contrast to FTDpatientswho rarely

showed diffuse abnormalities. Two patients (0.5%) had epileptiform

abnormalities. Of those, onewas diagnosedwithmoderately advanced

AD and the other with cognitive decline due to high dosed antipsy-

chotic medication.
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F IGURE 3 Bar graphwith distribution of magnetoencephalography (MEG) severity scores by diagnosis group. Groups are ordered by
decreasing prevalence

TABLE 2 Diffuse and focal abnormalities by diagnosis group

Presence of abnormalities Diffuse Focal

Both diffuse

and focal

Total 151 (42%) 138 (38%) 83 (23%)

ADdementia* 66 (75%) 49 (56%) 39 (44%)

Subjective cognitive decline 13 (13%) 22 (23%) 6 (6%)

Psychiatric disorder 12 (28%) 10 (23%) 6 (14%)

Mild cognitive impairment 18 (44%) 16 (39%) 8 (20%)

Frontotemporal lobe dementia 2 (14%) 2 (14%) 1 (7%)

Lewy body dementia 13 (87%) 8 (53%) 6 (40%)

Vascular dementia 5 (63%) 4 (50%) 4 (50%)

Other dementia or neurological

disease

11 (44%) 16 (64%) 9 (36%)

Inconclusive diagnosis 11 (32%) 11 (32%) 4 (12%)

Chi-square P < .001 for presence of diffuse abnormalities. Chi-square

P < .001 for presence of focal abnormalities. Chi-square P < .001 for pres-

ence of both diffuse and focal abnormalities. *MEG of one patient with AD

dementia was considered uninterpretable.

3.1.2 MEG as part of the diagnostic process in
individual patients

The results fromMEG visual analysis are used as a supportive diagnos-

tic tool during the multidisciplinary meeting alongside other diagnos-

tic tests, by relating the results to the clinical differential diagnosis of

the neurologist. For example, when after clinical evaluation a diagno-

sis of LBD or dementia due to AD is considered and the MEG shows

no diffuse abnormalities (ie, no global slowing of the posterior dom-

inant rhythm) with mild focal temporal slow waves (congruent with

a MEG visual score of 2001), the findings point toward a dementia

due to AD diagnosis. For LBD, one would have expected more severe

abnormalities anddiffuse slowing, possiblywith FIRDA.Another exam-

ple involves patients with changes in behavior and frontal symptoms,

which may be caused by the behavioral variant of FTD or the frontal

subtype of AD.When theMEG shows diffuse abnormalities, it strongly

supports a diagnosis of AD, as diffuse abnormalities are uncommon in

FTD.

3.2 II: Classification of AD and SCD patients

3.2.1 Patient cohort for classification

All 40 patients with dementia due to AD were biomarker positive

based on CSF and/or PET. Thirty-three SCD patients (83%) had nega-

tive amyloid biomarkers. The remaining SCD patients had no available

AD biomarkers. Of those, four patients were stable at yearly follow-up

evaluations (1–2 years), whereas three patients were not followed-up.

TheSCDgroupwas significantly younger (57.2±8.4years) than theAD

group (66.0± 7.5 years; t(78)= 4.98, P< .001). Gender distribution did

not differ (19 [48%] female vs 23 [58%] for SCD and AD respectively;

chi-square (1,N= 80)= 0.80, P= .37).



GOUW ET AL. 7 of 11

TABLE 3 Performance of random forest classifier to discriminate
individual AD dementia patients from controls

Random forest models Accuracy Sensitivity Specificity

Single MEGmeasures (91 features)

Delta power 0.714 0.676 0.753

Theta power 0.844 0.860 0.827

Alfa power 0.700 0.736 0.663

Beta power 0.751 0.751 0.750

Peak frequency 0.808 0.820 0.795

Combination of twoMEGmeasures
(182 features)

Delta+ theta power 0.851 0.868 0.835

Theta+ alfa power 0.811 0.795 0.828

Theta+ beta power 0.783 0.754 0.813

Theta+ peak frequency 0.824 0.832 0.815

Combination of three MEGmeasures
(273 features)

Delta+ theta+ alpha power 0.828 0.825 0.832

Delta+ theta+ beta power 0.821 0.829 0.812

Theta+ alfa+ beta power 0.798 0.782 0.815

Delta+ theta power+ peak

frequency

0.838 0.855 0.822

Theta+ alfa power+ peak

frequency

0.806 0.805 0.808

Theta+ beta power+ peak

frequency

0.810 0.810 0.810

Combination four MEGmeasures
(364 features)

Delta+ theta+ alpha power+

beta power

0.816 0.814 0.818

Delta+ theta+ alpha power+

peak frequency

0.820 0.820 0.820

Delta+ theta+ beta power+

peak frequency

0.832 0.855 0.810

Theta+ alpha+ beta power+

peak frequency

0.792 0.784 0.800

Combination of all five MEG
measures (455 features)

Delta+ theta+ alpha+ beta

power+ peak frequency

0.821 0.835 0.808

Modelwith highest accuracy, sensitivity, and specificity values is depicted in

bold.

Several models were systematically constructed (Table 3). First,

each MEG spectral measure was entered separately (1 global mean

and 90 regional values = 91 features). Relative theta power yielded

the highest accuracy of 0.844, sensitivity of 0.860, and specificity of

0.827. Peak frequency also showed an accuracy higher than 0.8. Then,

models were repeated with combinations of theta power and, respec-

tively, one, two, and three other spectralmeasures. Finally, all five spec-

tral measures were entered simultaneously. The combination of delta

and theta power yielded overall highest discriminatory value (accu-

racy 0.851, sensitivity 0.868, and specificity 0.835). Figure 4 illustrates

the output of this model. The VIMP scores demonstrate that relative

theta power contributed more than relative delta power. With respect

to cortical regions, occipital and temporal lobes were more impor-

tant than frontal and parietal lobes. Furthermore, subcortical regions

contributed significantly to the model. In particular, the bilateral hip-

pocampus and thalamus had the highest VIMP scores of all features.

3.2.2 Validation in an independent cohort

Validation of the best-performing random forest model yielded an

accuracy of 0.842, a sensitivity of 0.789, and a specificity of 0.895.

These results indicate that the model is robust against overfitting. In

other words, it is generalizable and does not lose validity when using

unselected and downsampledMEG data.

4 DISCUSSION

We described the implementation of MEG in the diagnostic workup

of memory clinic patients by reporting our recording, pre-processing,

and reporting procedures, designed to fit the swift diagnostic process

of our memory clinic. We further evaluated the ability of MEG to dis-

criminate individual AD dementia patients from SCD patients using

a random forest classifier. With widely used and simple spectral fea-

tures, a model with relative theta and delta power resulted in an accu-

racy of 0.851. Validation of thismodel in an independent cohort yielded

comparable results, demonstrating the generalizability of the classifier.

Temporal and occipital cortical regions, aswell as hippocampal and tha-

lamic regions, contributed considerably to themodel.

4.1 MEG: from research to clinic

Several articles have advocated the use of MEG as a diagnostic tool

in dementia20,32–34 but, in the neurodegenerative field, MEG has up

to now been used only in research settings. Possible reasons include

the limited availability of MEG to memory clinics, the time-consuming

(pre-)processing steps, and difficulties in the extraction of MEG fea-

tures that are translatable to the clinic. The availability of a MEG sys-

tem next door to the memory clinic and the long-standing experience

with the use of EEG inmemory clinic patients have been supportive for

the implementation ofMEG in our center.

4.2 MEG visual analysis

The most prevalent diagnoses in our unselected cohort were demen-

tia due to AD and SCD. As it is well-recognized in literature, one would

expect diffuse oscillatory slowing in AD dementia patients. This was

indeed the case in the majority of these patients, but a normal MEG

based on visual assessment was found in 14%. This is a remarkable
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Labels & output

Controls AD dementia

Random Forest model with relative delta and theta power VIMP

occipital left

occipital & temporal left

occipital & temporal right

thalamus left & right

hippocampus left & right

Relative delta power

Relative theta power

F IGURE 4 Output of themachine learningmodule of BrainWave, after running a random forest model with global and regional relative delta
and theta power (feature nr 1–91 for delta power and 92 to 182 for theta power on the vertical axis) on a data set of 40 controls and 40 AD
dementia patients (on the horizontal-axis). Values of the spectral measures are depicted as a blue to red scale (higher values are deeper red).
Patient labels (diagnosis: red= SCD; blue=AD) are set in the row below theMEG features (row 183). The output of themodel, that is,
classification of individual patients, is given in the bottom row. Variable importance (VIMP) scores for eachMEG feature are shown in a tilted
histogram on the right side of the figure. The length of each bar indicates the relative importance of the corresponding feature to the classification

finding andmay hypothetically represent a diseasemechanismwith lit-

tle synaptic damage and a relatively “benign” disease course. In con-

trast, none of the LBD patients had a normal MEG, but mostly moder-

ate diffuse abnormalities. These findings are consistent with previous

EEG reports.11,12,35 Together with the existing literature and the fact

that there are no pathology-specific markers for LBD, we propose that

MEG/EEG should have a more prominent position in the diagnosis of

LBD.36

In our memory clinic, each patient receives a standard set of

diagnostic tests, as we strive for a design where patient care and

research go hand in hand.24 This standardized design, where MEG is

performed and analyzed without a priori knowledge of clinical differ-

ential diagnosis, means that the clinical value of MEG in our cohort

varies from patient to patient. When the diagnosis is already obvious

from clinical assessment or due to strong support by another test (eg,

in the case of MRI findings in vascular dementia), MEG will not add

much to the diagnostic process, but in other cases MEG may provide

crucial information, as highlighted in the example cases in the results

section and previous paragraphs. Hence, other centers may consider

a scenario where MEG is only performed in those cases where other

investigations did not lead to a decisive diagnosis.

4.3 Classification of AD patients from SCD
subjects

We assessed the ability of quantitative MEG to classify individual AD

dementia patients and SCD subjects. Using relative theta and delta

power, adequate values of accuracy of 0.851, sensitivity 0.868, and

specificity 0.835wereachieved. Fewstudies have classifiedADdemen-

tia patients from controls with MEG. One study37 used decomposed

MEG epochs with a blind source separation (BSS) technique. Median

frequency resulted in an accuracy of 83.33%,whereas spectral entropy

reached an accuracy of 73.81%. A study by38 reported ROC-based

classification performance of sample entropy and Lempel-Ziv complex-

ity, showing an accuracy of 70.7% and 78.05%, respectively, increasing

to 85.37% when the features were entered in an adaptive network–

based fuzzy interference system. Another study39 used several mea-

sures from information theory, a disequilibrium measure and three

measures of statistical complexity, yielding an accuracy of 83.9% with

linear discriminant analysis. Finally, a recent study reported the perfor-

mance of functional connectivity using support vector machine clas-

sification, which resulted in a sensitivity of 76.7% and a specificity of

65.3%.40 Compared to these reports, the classifier in the present study

yielded a similar or higher accuracy in a larger and better characterized

data set, and perhaps most importantly, with validation in an indepen-

dent data set. Especially studieswith small sample sizes in combination

with powerful machine learning algorithms and feature selection may

suffer from“overfitting.”22 Moreover, in contrast to the complexnature

of the features of some previous studies, the present study used easily

interpretable features, which are better suitable for clinical purposes.

Of note are MEG studies that focused on the MCI stage of AD with

larger sample sizes in a multi-site design and/or external validation.

MEG characteristics entered into the classifiers includedmutual infor-

mation measures, oscillatory peak frequency, relative alpha power, or

functional network topology measures. Performance of the classifiers

varied widely, from just above a chance level to very high.41–43 It is

important to note that none of these studies used biomarker evidence
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of AD pathology. It is becoming increasingly recognized that AD is

defined by its underlying pathological processes, and biomarker proof

is therefore essential for research purposes.1,34

EEG studies focusing on the classification of AD dementia patients

are reviewed in a recent paper.22 A large study evaluated AD andMCI

patients with biomarker support and controls using absolute and rela-

tive band power.9 Pairwise classification of AD dementia patients and

controls resulted in a moderate accuracy of 72.9%, whereas the clas-

sification of MCI patients and controls showed an accuracy of 63.1%.

Several othermostly smaller studies reported results that ranged from

poor to almost perfect.35,44–48

4.4 Subcortical brain regions in AD

It has been demonstrated that source-reconstructed MEG can detect

neuronal activity fromdeeper structures.16,17,19 We combined source-

space MEGwith a random forest classifier because, unlike many other

machine learningmethods, it provides the contribution of each feature

to the finalmodel. This gives important insights intowhether the classi-

fier is based on solid pathophysiological differences between patients,

making the classifier more easily accepted for clinical purposes than

“black-box” machine learning methods. It may in turn lead to new

hypotheses on pathophysiological mechanisms. Indeed, our results

indicated that besides the cortical temporal and occipital regions, the

hippocampus and thalamus contributed strongly to the model. These

findings confirm the well-known relevance of the hippocampus in AD,

but in AD research, the thalamus has received relatively little atten-

tion. Several recent (preclinical) studies indicate early changes in the

thalamus and dysregulation of the corticothalamic network in AD.49,50

Together with our results, these reports suggest that a more in-depth

study of the thalamusmay provide novel insights into pathophysiology

of AD.

4.5 Strengths and limitations

The strengths of the present study are the use of a relatively large,

well-characterized data set from a prospective clinical cohort. The AD

dementia patients all have biomarker proof of underlying AD pathol-

ogy. We also confirmed generalizability of the classifier in an inde-

pendent data set. Among limitations is the use of MRI templates

rather than individual native MRI scans. We therefore recently imple-

mented theuseof individualMRI scans insteadof the templates (begin-

ning in 2021), possibly increasing diagnostic accuracy further. The

most important limitation is that only pairwise classification between

the two most prevalent diagnosis groups, AD dementia versus SCD

patients, was performed. To be readily useful as a supportive marker

in the memory clinic, a multi-class classifier differentiating multiple

dementia diagnoses should be built, that is, “a MEG-based differential

diagnosis.”With the steady growth of the prospective cohort, we hope

that this aimwill be within reach in the near future.

5 CONCLUSION

This study describes the implementation of MEG in the standard-

ized diagnostic workup of memory clinic patients. MEG spectral fea-

tures discriminate individual patientswithADdementia fromSCDsub-

jects with high accuracy and good generalizability. Relative theta and

delta power in both cortical and subcortical regions, including the hip-

pocampi, contributed strongly to the classifier. Our results also indi-

cated that thalamic dysfunction is potentially more important in the

pathogenesis of AD than currently acknowledged.
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