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The presence of iron is an important factor for normal brain functions, whereas
excessive deposition of iron may impair normal cognitive function in the brain and
lead to Alzheimer’s disease (AD). MRI has been widely applied to characterize brain
structural and functional changes caused by AD. However, the effectiveness of using
susceptibility-weighted imaging (SWI) for the analysis of brain iron deposition is still
unclear, especially within the context of early AD diagnosis. Thus, in this study, we
aim to explore the relationship between brain iron deposition measured by SWI with
the progression of AD using various feature selection and classification methods.
The proposed model was evaluated on a 69-subject SWI imaging dataset consisting
of 24 AD patients, 21 mild cognitive impairment patients, and 24 normal controls.
The identified AD progression-related regions were then compared with the regions
reported from previous genetic association studies, and we observed considerable
overlap between these two. Further, we have identified a new potential AD-related gene
(MEF2C) closely related to the interaction between iron deposition and AD progression
in the brain.

Keywords: Alzheimer’s disease, brain iron deposition, SWI, feature selection, genetic risk factor

INTRODUCTION

Alzheimer’s disease (AD) is among the leading causes of death in the United States and has been
on the rising trend in the past decade with the aging populations (Alzheimer’s Association, 2011).
More than 47 million people worldwide are estimated to have AD and related dementias. This
number is expected to reach 152 million by 2050, with one new case of dementia diagnosed
every 3 s (Patterson, 2018). As no effective treatment has been found to delay the onset and
progression of AD (Selkoe, 2012), early diagnosis of AD and understanding of the progression
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from mild cognitive impairment (MCI) to AD is essential for
preventative and therapeutic strategies (Gauthier et al., 2006).

Progression of AD can lead to structural and functional
changes in the brain, which various imaging techniques can
capture. Differential brain structural diagnostic markers derived
from T1-weighted magnetic resonance imaging (MRI) have
been reported for AD (Cuingnet et al., 2011), MCI (Driscoll
et al., 2009), and MCI–AD conversion (Davatzikos et al., 2011)
based on brain atrophy measurement (Jack et al., 2004) and
its spatial pattern (Davatzikos et al., 2008). Diffusion MRI
can measure white matter connectivity and microstructural
integrity. It may also be supportive for the diagnosis of AD,
based on both change in white matter tracts (Douaud et al.,
2011) and global/local fractional anisotropy (FA) (Medina et al.,
2006; Zhang et al., 2007). Functional magnetic resonance
imaging (fMRI) has also been explored to characterize cognitive
and behavior changes caused by AD progression (Li et al.,
2019). Previous studies observed that disruption of resting-
state functional networks could differentiate MCI/AD with
normal controls (Rombouts et al., 2005); so does the decreased
activation in cognition-related brain regions measured by
memory encoding task (Machulda et al., 2003). Other functional
imaging techniques, such as electroencephalography (EEG) and
magnetoencephalography (MEG), have been demonstrated to
detect the brain signal spectrum shift (Fernández et al., 2006)
and coherence (Jeong, 2004). Previous studies also reported
the utility of these techniques in modeling brain network
alterations in MCI patients after cognitive training (Xu et al.,
2020). Besides, PET imaging has been established as a standard
approach to investigate pathological features and imaging
biomarkers for AD, including neuritic plaques of amyloid-
β peptide fibrils (Nordberg, 2004), hyper-phosphorylated tau
neurofibrillary tangles (Ossenkoppele et al., 2016), as well as
their respective propagation patterns (Sepulcre et al., 2018; Guo
et al., 2019). Recently, the fusion of multiple imaging modalities
for the early diagnosis of MCI and AD has been well studied
and demonstrated improved performance over single-modality
biomarkers (Zhang et al., 2011).

Among all potential imaging biomarkers for AD, one crucial
marker is the excessive iron deposition in the brain. In vitro and
in vivo studies have observed that excessive iron deposition in
the brain might promote neurotoxicity, which causes neuronal
injury and has been recognized as a putative factor in AD
pathogenesis (Stankiewicz et al., 2007). Previous literature on the
iron content measured with MR susceptibility-weighted imaging
(SWI) (Halefoglu and Yousem, 2018) has reported significant
iron deposition in brain regions related to brain cognitive and
memory functions in AD, including substantia nigra, globus
pallidum, hippocampus, putamen, and caudate nucleus. It has
also been found that iron can induce the production and
accumulation of amyloid-β plaques and bind to tau protein
to induce tau protein phosphorylation aggregation (Liu et al.,
2018). A meta-analysis on 1,813 AD patients and 2,401 normal
controls concluded that specific brain regions had statistically
significantly higher iron concentrations that can be related to AD
(Tao et al., 2014). Besides, genetic factors have been found to play
an essential role in the development of neurodegenerative disease

in the context of iron deposition. It has been reported that the
circulation of iron in the brain involves a complex interaction
between metabolic and genetic processes (Rouault, 2013). It has
been widely reported that genetic mutations can cause excessive
iron deposition at the systemic level, posing as risk factors for
several diseases such as acute myocardial infarction (Roest et al.,
1999; Tuomainen et al., 1999). Similar gene mutations have
also been reported to be related to neurodegenerative diseases
(Hagemeier et al., 2012), for example, through the oxidative stress
process that ultimately leads to the formation of neurofibrillary
tangles senile plaques in AD (Crichton et al., 2011).

However, the predictive value of iron deposition to AD
progression, especially with the current advancement of machine
learning methods, is still unclear and largely understudied.
With the aging of the brain, the excessive iron deposition
could be related to many factors besides AD, such as increased
permeability of the blood–brain barrier, dilation of blood vessels,
redistribution of iron, and iron homeostasis changes (Ward
et al., 2014). In the initial stage of AD patients, increasing
iron is always along with β-amyloid peptide gathering, which
provides the theoretical basis of MRI-based diagnosis (Ward
et al., 2014). In addition, while region-specific iron deposition
in the normal aging population has been investigated and
observed in substantia nigra, putamen, globus pallidum, and
caudate nuclei, iron-related pathogenic mechanisms are needed
to explain the cause of such selectivity (Zecca et al., 2004).
The regional heterogeneity and age-related brain iron have been
confirmed by MRI (Zecca et al., 2004; Ramos et al., 2014).

Susceptibility-weighted imaging plays a vital role in the
estimation of iron deposition (Sheelakumari et al., 2016). Thus,
it could be used to detect abnormal iron deposition related to
the progress of AD. Most diagnostic works using SWI imaging
technology are currently based on manual or semi-manual
measurement of the region of interest (ROI) in MRI images,
which relies on previous knowledge and is usually confined to
the hippocampus and entorhinal cortex (Zhang et al., 2015).
In the past decade, with the advancement of machine learning
methodologies, various computer-assisted models have been
developed for the early diagnosis of AD, including SVM-based
classifier (Davatzikos et al., 2011), Random Forest (Lebedev et al.,
2014), and most recently, deep learning methods (Ortiz et al.,
2016). However, there is little work on using machine learning
methods to analyze iron deposition in the brain and facilitate
automatic AD/MCI detection by SWI.

Thus, in this work, we used feature selection techniques and
classification algorithms to analyze SWI image data acquired
from a group of 69 subjects. After image pre-processing, iron
deposition characteristics were extracted from SWI images based
on different brain atlases. We then investigated the prediction
power of different feature selection methods/atlas/classifier
combinations. The best set of brain regions selected by
the feature selection procedure were analyzed and compared
to neuroscientific findings. We also obtained human gene
expression data from the public Allen Human Brain Atlas
Microarray dataset to investigate the relationship between
iron deposition, genetic risk factor, and AD progression. This
integrated analysis framework could lead us to answer the
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questions of (1) whether iron deposition as characterized by
SWI images can be used to differentiate the three groups of
subjects (healthy control, MCI, and AD), (2) which brain regions
are involved in the differentiation, and (3) whether those brain
regions have common genetic factors.

The organization of the rest of this paper is as follows:
in the Materials and Methods section, we will introduce
the SWI imaging dataset, its pre-processing pipeline, as well
as the feature selection and classification methods used in
this work. The Result section will showcase and discuss the
classification performance and discriminative brain regions
identified by the feature selection method. The identified brain
regions are then combined with gene expression data to
analyze their underlying relationship and discover new AD-
related genes.

MATERIALS AND METHODS

Study Population and Image Acquisition
All participants were recruited to establish a registry at the
Dementia Care and Research Center, Peking University Institute
of Mental Health. The clinical diagnosis of AD was made
according to the International Classification of Disease, 10th
Revision (ICD-10) (World Health Organization, 2004) and the
criteria for probable AD of the National Institute of Neurological
and Communicative Disorders and the Stroke/Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA)
(McKhann et al., 1984). The clinical diagnosis of MCI was made
according to Petersen’s MCI criteria with the MMSE score of
no less than 24. All the healthy controls had no history of
neurological or psychiatric disorders, and subjective cognitive
complaints or objectively abnormal cognitive assessment. Other
inclusion criteria were as follows: age ≥55 years, right-handed,
and primary school education (≥6 years). Exclusion criteria
were as follows: current or previous neuropsychiatric diseases,
such as Parkinson’s disease, epilepsy, alcohol or substance
abuse/dependence, and head injury with loss of consciousness
that could affect cognition or psychiatric behavior. This study was
approved by the ethics committee of Peking University Institute
of Mental Health (Sixth Hospital), Beijing, China. All participants
were fully informed regarding the study protocol and provided
written informed consent.

Participants were scanned on a 3-Tesla MR system
(Siemens Magnetom Trio, A Tim System, Germany) using
a standard 8-channel head coil at Peking University Third
Hospital. T1-weighted magnetization-prepared rapidly
acquired gradient-echo (MPRAGE) sequence was used to
acquire high-resolution 3D MR anatomical images using
the following parameters: repetition time (TR)/echo time
(TE) = 2,530 ms/3.44 ms; time inversion (TI) = 1,100 ms;
slice number = 192; slice thickness = 1.0 mm; gap = 0 mm;
matrix = 256 × 256; field of view (FOV) = 256 mm × 256 mm;
flip angle = 7◦. SWI images were acquired using the
following parameters: repetition time (TR)/echo time
(TE) = 27 ms/20 ms; flip angle = 15◦; slice thickness = 1.5 mm;
voxel resolution = 0.8984 mm × 0.8984 mm × 1.5 mm. The

Institutional Review Board of Peking University Sixth Hospital
approved this study.

Similar to our previous genetic data studies on Allen Mouse
Brain Atlas (AMBA) dataset (Li et al., 2017a,b), in this work, we
used the Human Brain Atlas Microarray1 data (Shen et al., 2012)
to search the anatomical brain regions associated with a specific
gene. The microarray data provided by Human Brain Atlas
Microarray includes the expression value (normalized Z-score)
on each brain region from each subject (donor), where we would
average these Z-scores across different subjects. In case there were
multiple probes used to detect the same gene, Z-scores across
different probes would also be averaged. After calculating the
averaged Z-scores of the target gene, we applied a threshold of 0.3
to determine whether that gene is considered highly expressed
in each brain region. Finally, we would obtain a list of “highly
expressed” brain regions associated with it for each target gene,
which could be further matched to the regions in SWI data.

Image Preprocessing
Susceptibility-weighted imaging data were normalized into the
MNI space based on transformation parameters derived from
aligning T1 images to the MNI standard template using
diffeomorphic anatomical registration through the exponentiated
lie algebra (DARTEL) method (Ashburner, 2007) using Statistical
Parametric Mapping (SPM12:2), then resampled to 1.5-mm
isotropic voxels followed by spatially smoothing with a 6-
mm full width at half maximum Gaussian kernel. We then
applied three types of brain atlas: AAL (anatomical automatic
labeling, 116 regions with 90 cerebral cortex and 26 cerebellar
cortex regions), Harvard–Oxford (48 regions), and MMP (matrix
metalloproteinase, 180 regions) to extract iron deposition
information in the corresponding brain regions from SWI
images. Specifically, each brain region (defined by one type of
atlas) in the registered SWI images were characterized by the
collection of voxels:

vi,j, i = 1, . . . , T, j ∈ S

where T is the number of subjects in the dataset (69 in this
study), S consists of the R number of regions in the atlas,
S = 1, . . . , S1, S1 + 1, . . . , S2, . . . , SR. Sk denotes the number
of voxels in the k-th region. In this way, we can obtain the phase
value (i.e., iron content) of the i-th subject in the k-th region by

bmean
ik =

1
Sk − Sk−1

Sk∑
j =Sk−1+1

vi,j

The final iron content vector for the i-th subject in the k-th region
is then

Xik =
−b × π

4096
,

where value in X varies from −π to π, and b varies
from−4,096 to 4,095.

1https://human.brain-map.org/microarray/search
2http://www.fil.ion.ucl.ac.uk/spm
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Feature Selection and Classification
To identify the most discriminative brain regions toward
classification of AD, MCI, and NC, we explored the commonly
used supervised feature selection methods of Lasso and Adaptive
Lasso for the analysis.

(1) Lasso: for dataset D =
(
x1, y1

)
,
(
x2, y2

)
, . . . , (xm, ym),

where x ∈ Rd, y ∈ R, in this work x denotes the iron content
vector and y denotes the patient label (AD/MCI/NC), we consider
the simple linear regression model with the squared error as a loss
function:

minw

m∑
i =1

(yi − wTxi)
2

When there are much more features than samples, the above
equation is prone to be overfitting. To solve the problem, the
regularization term is introduced. With l−1 norm regularization,
the Lasso (Least Absolute Shrinkage and Selection Operator)
algorithm is

minw

m∑
i =1

(yi − wTxi)
2
+ λ||w||1,

with the regularization parameter λ >0.
(2) Adaptive Lasso: by adding weights to the penalty term in

the original Lasso, the Adaptive Lasso can counteract the possible
biased estimate in LASSO, with the following loss function:

minw

m∑
i =1

(yi − wTxi)
2
+ λ

∑
j

∣∣βj
∣∣

wj
,

where wj = β j (OLS).
Both Lasso and Adaptive Lasso can identify a subset of all

regions (termed “regional feature”) in a given atlas by the non-
zero weights found in regression. Iron content information from

the selected regional features were then used to train various
classifiers, including AdaBoost, LinearSVC, Randomtree, and
XGBoost, to perform a three-class (healthy control/MCI/AD)
classification. We set the basic classifier of AdaBoost algorithm
to cycle 100 times with a learning rate of 0.1. The depth
of Randomtree is four. For the XGBoost algorithm, we used
the tree model with maximum depth of five and softmax as
activation function.

RESULTS

Results of this study are organized into two parts: in the first
part we will describe the performance of the models we used for
classifying AD and MCI patients from healthy controls. More
importantly, we will analyze the region-specific feature extracted
for making the classification. In the second part, we will connect
the identified regions with gene expression data, both for the
purpose of investigating the validity of the identified regions and
to discover potentially new AD-related gene(s). A sample set of
SWI images and the three different brain atlases used in this study
are visualized in Figure 1.

Classification Performance and the
Regional Features Extracted
By using Lasso and adaptive Lasso to extract discriminative
features (i.e., brain regions) on SWI images defined on
three different types of brain atlas, we now obtained the
AD-predictive regions for each feature selection method
(Lasso/adaptive Lasso) and each atlas (AAL, Harvard–Oxford,
MMP) combination. To investigate the discriminative power
of the obtained AD-predictive regions, we designed a 10-fold
cross-validation scheme where the dataset would be randomly
divided into training/validation set (62 subjects) and testing set
(7 subjects), where regional features based on feature selection

FIGURE 1 | Sample SWI image (A) and three types of brain atlases used: (B) AAL atlas, (C) Harvard–Oxford atlas, (D) MMP atlas.

TABLE 1 | Classification accuracy of different classifiers (listed in each row) on different atlases (listed in each column), based on the regional feature selected by Lasso or
Adaptive Lasso Highest classification accuracies achieved for Lasso and Adaptive Lasso are marked by bold.

Lasso Adaptive Lasso

Classifier AAL Harvard MMP AAL Harvard MMP

Adaboost 0.3145 0.3116 0.4304 0.3665 0.4415 0.4126

LinearSVC 0.7388 0.3578 0.3939 0.7157 0.5382 0.5497

Randomtree 0.4141 0.3564 0.3448 0.4747 0.4098 0.4415

XGBoost 0.4242 0.4227 0.404 0.4862 0.4747 0.518
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FIGURE 2 | (A) Names of 8 brain regions reported in Tao et al. (2014) and their visualizations as colored brain surface areas, according to the color bar to the left.
(B) Names of the selected brain regions by Lasso algorithm in this study. The brain regions were visualized using the BrainNet Viewer (Xia et al., 2013).

method/atlas combination will be extracted correspondingly.
Different classification methods would be then trained and tested
on the extracted features in this cross-validation experiment. The
experiment was repeated for 100 times, the average classification
performance with regarding to different feature selection
method (Lasso/Adaptive Lasso), atlas (AAD/Harvard/MMP),
and classifiers (AdaBoost/LinearSVC/Randomtree /XGBoost) are
summarized in Table 1.

As shown in the performance matrices, the best classification
accuracy (0.7388) was obtained by the LinearSVC classifier
on AAL atlas, using Lasso for the feature selection. Thus, in
later analysis, we will investigate the feature regions and the
corresponding neuroscience implications based on Lasso feature
selection on AAL atlas. In total, 20 AAL regions that were selected
as discriminative features by Lasso are listed and visualized as
colored brain surfaces in Figure 2B. In addition, a meta-analysis
study in Tao et al. (2014) have found that eight brain regions are
closely related to AD, including frontal lobe (FL), parietal lobe
(PL), temporal lobe, amygdala (Amg), putamen, cingulate cortex,
globus pallidus (GP), and caudate nucleus, which are listed and
visualized in Figure 2A.

Analysis of Gene Expression Distribution
on Selected Regional Features
The AD-predictive regions identified by our models were then
compared with the brain regions associated with three commonly
known AD risk factor genes (APOE, MAPT, and CLU). As
reported in our previous study, apolipoprotein E (APOE)
genotype has been found to account for the majority of AD
risk and pathology (Marioni et al., 2017; Sepulcre et al., 2018).
Microtubule-associated protein tau (MAPT) gene is related to
the encoding of tau protein and can cause potential vulnerability
to tau accumulation as found in our work (Sepulcre et al.,
2018), leading to frontotemporal dementia-spectrum (FTD-s)

disorders (Coppola et al., 2012). The clusterin gene (CLU) has
been reported to be associated with degraded regional cerebral
blood flow (Thambisetty et al., 2013) and white matter integrity

TABLE 2 | List of regions identified by our method as predicative to AD (first
column), as well as regions associated with APOE, MAPT, and CLU gene.

Regions identified by our
method

Regions
asscociated
with APOE

Regions
asscociated
with MAPT

Regions
asscociated
with CLU

amygdala! amygdala cingulate gyrus amygdala

caudate nucleus.L dorsal thalamus frontal lobe cingulate gyrus

hippocampus! globus pallidus insula dorsal thalamus

hippocampus.R hypothalamus occipital lobe frontal lobe

inferior frontal gyrus,
opercular part.L

striatum parahippocampal
gyms

globus pallidus

inferior parietal,
supramarginal and angular
gyri.R

subthalamus parietal lobe insula

insula! ventral
thalamus

temporal lobe occipital lobe

lenticular nucleus, putamen.L parietal lobe

median cingulate and
paracingulate gyri.R

striatum

middle frontal gyrus.L temporal lobe

middle frontal gyrus.R

pallidum!

pallidum.R

paracental Lobule!

parahippocampal!

parahippocampal.R

precentral gyms!

precuneus!

precuneus.R

superior parietal gyrus.R
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TABLE 3 | Calculated gene presence frequency (in column “Frequency”) from the 21 preselected genes as listed in each row.

Gene Frequency FL Ins CgG HP PHG OL PL TL Amy BF GP Str Cla ET HT ST DT VT

MART 12.52 1.5 1.5 1.3 0.29 0.14 1.2 1.4 1.5 −0.48 0.18 −0.67 −1.3 0.11 −2.2 −0.36 −0.45 −0.09 −0.85

APOE −2.86 −0.87 −0.63 −0.57 −1.2 −0.03 −0.48 −0.79 −0.58 1 1.4 2.4 1.2 −0.48 0.34 0.71 0.38 1 0.8

PICALM −11.88 −1 −1.3 −0.94 −0.39 −0.76 −0.75 −0.9 −1 0.04 0.74 0.97 −0.33 0.4 −0.75 −0.61 0 −0.06 2

BIN1 −5.42 −0.55 −0.6 −0.39 0.53 −0.67 −0.42 −0.51 −0.47 −0.06 0.65 0.88 −0.55 0.2 −2.1 −1.3 0.45 0.32 1.4

CLU 14.91 0.61 0.76 0.73 0.76 0.48 0.51 0.55 0.73 0.55 0.86 0.25 2.4 0.13 −1.2 −0.13 −0.29 0.02 −0.57

CR1 −5.62 −0.24 −0.25 −0.12 −1.1 0.19 −0.68 −0.04 0.39 −0.25 −1.1 −0.62 −0.38 −0.43 −0.87 −0.96 0.4 −0.55 1.4

ABCA7 −15.14 −0.7 −1 −0.55 1 −1.6 −0.24 −0.8 −0.94 0.93 1.6 −1.5 −1.8 0.84 −0.49 −0.48 1.4 0.11 0.73

SORL1 −1.75 0.31 −0.38 −0.07 0.31 −0.6 0.93 0.56 −0.08 −1.6 −1.1 0.79 −2.4 −0.12 0.73 −0.95 0.8 −0.31 0.85

PLEKHC1 −5.22 −0.97 −0.84 −0.47 −0.85 0.04 −0.94 −0.83 −0.79 1.6 1.1 1.8 0.26 0.79 −0.19 0.15 0.48 0.34 1.2

CD2AP −10.16 −1 −1.5 −1.3 −0.59 −0.67 −0.01 −0.59 −0.83 0.08 −1.3 0.62 0.4 −1.1 1.1 0.17 −0.12 0.52 −0.1

CD33 −11.74 −0.86 −0.85 −1.2 −0.76 −0.31 −1.4 −0.95 −0.65 0.54 −0.41 0.86 −0.79 0.57 0.36 −0.49 1.2 −0.32 1.3

APP 0.12 −0.29 −0.43 −0.12 0.42 0.16 0.09 −0.05 −0.2 0.7 0.01 0.47 −0.36 2 −1.1 −1.1 −0.29 0.11 1.3

PSEN1 −10.81 −0.56 −0.82 −0.56 −1.1 −0.98 −0.75 −0.68 −0.66 −1 0.66 1.1 −0.34 −0.59 −0.61 −1.1 0.41 −0 1.3

PSEN2 −14.85 −0.86 −0.79 −0.77 −0.43 −0.75 −1.3 −0.98 −0.85 −0.23 0.8 −0.5 −0.68 1.8 −0.93 0.59 1.5 0.83 0.77

CASS −3.31 −0.36 −0.28 −1.1 −0.88 −0.37 −0.64 −0.75 0.41 0.14 1.2 1.8 0.97 −0.77 −1.7 0.89 −0.51 0.83 0.77

EPHA1 −3.68 −0.21 −0.31 −0.29 −0.48 0.05 −0.53 0.29 0.03 −0.05 −0.6 −0.9 −0.49 0.4 −0.72 −0.86 0.07 −0.32 0.78

PTK2B 7.19 0.58 0.35 0.36 2.2 −0.21 0.4 0.54 0.34 1.6 0.54 −1.6 −0.51 0.73 −1.8 −1.5 −0.75 0.89 0.73

INPP5D −10.02 −0.89 −0.82 −1.1 −1.2 −1.1 0.43 −0.68 −0.77 −0.43 0.21 1.5 0.43 −0.49 1.7 0.04 1.1 −0.12 0.47

MEF2C 14.59 1.3 1.4 1.3 −0.21 1.1 1.4 1.4 1.4 0.64 −0.35 −0.73 −0.66 1.5 −0.81 −0.8 −0.73 −0.74 −0.4

CUGBP1 11.38 0.34 0.18 0.48 1.7 0.76 0.93 0.61 0.42 1.6 0.84 −0.64 0.55 1.8 −0.52 −0.48 −1.1 0.82 −0.46

MAAD 4.38 −0.37 −0.41 0.27 1.6 0.04 −0.15 2.3 0.48 −0.98 0.3 2.1 −0.96 −0.59 −0.01 −0.72 1.3

Normalized Z-scores of each gene are provided in the corresponding top-level structure (column). A higher value indicates gene located in that structure has
higher expression. Three genes with the highest presence frequencies (MAPT, CLU, and MEF2C) are highlighted in bold.

(Braskie et al., 2011). Regions that are highly expressed by APOE,
MAPT, and CLU were identified from Allen Human Brain Atlas
Microarray data based on the thresholding of their normalized
Z-Scores as previously introduced. The names of these regions,
along with the AD-predictive regions identified in this work, are
summarized in Table 2.

In addition to these three genes, we preselected a total of
21 genes based on the literature reports on aging, dementia,
and MCI/AD progression, and obtained their correspondingly
highly expressed regions in the Allen Human Brain Atlas. Based
on the premise that the 20 AD-predictive regions as identified
in this work from SWI data are associated with AD both at
imaging and genetic level, we investigated how frequent each
of the 21 genes are expressed in these regions, and used the
derived gene presence frequency as a measurement for the
association between each gene and AD development. However,
the brain region definition used in the Allen Human Brain
Atlas (shown as “top-level structure name” in the downloaded
expression data) is different from the AAL atlas used in this
work, where the top-level structures are usually larger and
can cover multiple regions in the AAL atlas. Thus, we firstly
identified a total of 18 top-level structures from the microarray
data with higher expressions for either of these 21 genes (i.e.,
the union of highly expressed regions), including structures
of FL, cingulate gyrus (CgG), hippocampus formation (HiF),
parahippocampal gyrus (PHG), PL, Amg, GP, and striatum (Str).
As shown in Table 3, each gene (row) has its corresponding
normalized Z-score at each top-level structure (column). After
that, we mapped these top-level structures with the regions
in AAL atlas by comparing their spatial distributions in the
MNI space. Based on this many-to-many mapping, we can find

which AAL region(s) are included in each top-level structure.
Between the 18 top-level structures and the 20 AD-predictive
regions, we obtained the following 18 × 1 weight vector
[4, 1, 1, 2, 2, 0, 2, 0, 5, 0, 1, 0, 2, 2, 0, 0, 0, 0, 0, 0]. Each value in
the vector indicates how many of the 20 AD-predictive region(s)
are presented in that top-level structure, for example, the first
value of four indicates that the top-level structure of FL includes
four AD-predictive regions. Finally, we can calculate the presence
frequency for each gene by multiplying the normalized Z-score
in each top-level structure with the corresponding weight value
and adding them together, as listed in the “Frequency” column
in Table 3. Higher value of presence frequency indicates that the
target gene in overall is more frequently expressed in regions
that are predictive to AD, thus could be potentially more
associated with AD.

DISCUSSION AND CONCLUSION

In this study of analyzing the association between the
development AD and iron deposition as characterized by
SWI images, we used Lasso family algorithms for supervised
dimensionality reduction to identify important regions that
are discriminative to AD to overcome the challenge of small
sample size and large feature number. We then applied different
classification methods to investigate the diagnostic capability of
SWI towards MCI and AD. Ten-fold cross-validation experiment
results show that >70% accuracy can be achieved for this
three-class classification task. Further investigation into the
identified AD-related regions revealed that they are consistent
with previous literature reports. The regions identified in this
work cover all the eight regions previously reported.
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We then co-analyzed the SWI-derived imaging features with
the genetic data provided by Allen’s brain atlas. We found that the
regions identified by the feature selection method are identical
with the regions rich in gene expression associated with protein
precipitation and the blood–brain barrier, as measured by the
microarray data (Shen et al., 2012). Specifically, our study has
found that:

(1) AD-predicative regions identified in this work cover most
of the APOE-associated regions except for the dorsal
thalamus and striatum. Iron is involved in the formation
of astrocytes that might affect the permeability of the
blood–brain barrier. It has been reported that AD patients
have a breakdown of the blood–brain barrier before
dementia, neurodegenerative diseases, and brain atrophy.
APOE gene has been found to be the strongest AD
risk gene involved in the damage of the blood–brain
barrier (Montagne et al., 2015). On the other hand, the
UCLA team (Raven et al., 2013) used FDRI to detect
cerebral iron and studied the difference of iron content
in the hippocampus and thalamus regions. As detected in
our study, the iron levels increase at the hippocampus,
not the thalamus, might be linked to an injury to
the hippocampus.

(2) Our identified regions also include CLU/MAPT-associated
regions except for the striatum, as well as the occipital
lobe, which is commonly known as non-specific to AD.
In the initial lesion regions of AD patients, increased
iron concentration was associated with the accumulation
of Aβ (amyloid β) and tau protein. Our previous study
in Sepulcre et al. (2018) shows that CLU and MAPT
genes are responsible for the high expression of Aβ

and tau protein, respectively. Studies have shown that
iron deposition was detected in microglia and astrocytes
in the amygdala, and ferritin concentrations increase
with age (Zecca et al., 2004). A study of 143 healthy
individuals shows that iron deposition in the caudate
nucleus increases with age, peaking at age 60 (Wang
et al., 2012). Other literature reported similar iron
increases with age in the putamen, globus pallidus, and
caudate nucleus (Ward et al., 2014). Further studies
on iron deposition in AD, MCI, and NC also revealed
significant differences in the caudate nucleus and putamen
(Wang et al., 2013).

(3) From the gene expression frequency analysis, our study
observed that the top three genes presented in the
identified AD-predictive regions are CLU, MEF2C, and
MAPT. Besides the two previously reported AD-related
genes (CLU/MAPT), the MEF2C gene plays a key role
in the development of multiple types of tissues. It is
currently known to be related to epilepsy, autism, and
mental retardation (Rashid et al., 2014). However, its
role in the adult brain is largely understudied. Recent
evidence suggests that the MEF2C gene regulates memory
forming structures (Cole et al., 2012), which implies
its potential role in the memory degradation of AD
patients.

There are several limitations of the current study, both on
the method design and the data used. Specifically, the current
feature selection and classification scheme are relatively simple
due to the limited sample size. With a larger dataset, we can try
more advanced data analytics methods such as deep learning to
better map imaging features and disease development. We also
recognized that the regional features identified in the current
study are limited because the AAL atlas is relatively coarse
for the detailed spatial analysis. In later studies, we will try
more fine-grained parcellation of the brain or performing voxel-
level analysis.

Our conclusions on the effectiveness of using SWI for AD
diagnosis need to be validated by external datasets. Nevertheless,
in this study, we have only collected susceptibility-weighted
images as one single dataset. We have implemented the complete
feature selection and classification pipeline into an integrated
framework. We will publish the code onto a public repository
so that external researchers can use the same regional features
to test their prediction power and compare the classification
performance. The possible role of the MEF2C gene also needs
to be validated, both by testing the consistency of its expression
in the MCI/AD population on another dataset other than the
Allen brain atlas and by exploring the biological pathway of the
MEF2C’s expression using bioinformatics tools.
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