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ABSTRACT Eula is a lytic microbacteriophage extracted from a soil sample collected in
Statesville, NC, and isolated on Microbacterium foliorum NRRL B-24224. The Eula double-
stranded DNA genome is 41,379 bp, with 69 predicted protein-coding genes and 1 tRNA.
Based on gene content similarity, Eula was assigned to bacteriophage cluster EB.

Bacteriophages are old, diverse, and the most abundant biological entity on earth. With
an estimated population of 1031 virions (1), phages are found in every ecosystem

inhabited by bacteria, including marine, terrestrial, and even gastrointestinal. Thus,
phages are important to nutrient cycling (2) and microbe evolution (3) and can be alternatives
to antibiotic treatments (4). The Science Education Alliance—Phage Hunters Advancing
Genomics and Evolutionary Science (SEA-PHAGES) program has contributed to bacteriophage
discovery using Actinobacteria, includingMicrobacterium foliorum, as isolation hosts.

Here, we report the genome sequence of bacteriophage Eula. Eula was collected from
moist soil inside a chicken coop in Statesville, NC, USA (global positioning system [GPS]
35.799806 N, 280.890146 W). Following the standard procedures from the SEA-PHAGES
Phage Discovery Guide (5), the soil sample was mixed with peptone-yeast extract-calcium
(PYCa) liquid medium and incubated with shaking (200 rpm) for 2 h at 30°C. The mixture
was then centrifuged and the supernatant filtered (pore size, 0.22 mm). The filtrate was
inoculated with Microbacterium foliorum strain NRRL B-24224 and incubated for 48 h with
shaking (220 rpm). A sample (1 mL) was then filtered (pore size, 0.22 mm), 10-fold serially
diluted, and the dilutions plated in PYCa top agar with Microbacterium foliorum. Eula, which
forms plaques with a clear center and turbid “halo” edges that are;1.0 mm in diameter after
48 h at 30°C (Fig. 1A), was purified by three successive rounds of plating with M. foliorum.
Negative-stain transmission electron microscopy revealed a Siphoviridae morphology (Fig. 1B)
with a tail length of 177 to 188 nm and a capsid diameter of 68 to 74 nm (n = 3).

Double-stranded DNA was isolated from Eula using the Promega Wizard DNA cleanup
kit (5). A sequencing library was prepared using the NEB Ultra II library kit and sequenced
using an Illumina MiSeq instrument, yielding a total of 289,000 single-end 150-bp reads
with 993� coverage. As described by Russell (6), the raw reads were assembled and checked
for completeness using Newbler v2.9 (7) and Consed v29 (8), respectively. The linear genome
comprises 51,375 bp with 10-nucleotide 39 single-stranded cohesive ends (59-TCTCCCGGCA-39)
and an average G1C content of 63.9%.

The Eula genome was autoannotated using DNA Master v5.23.6 (http://cobamide2.bio
.pitt.edu/) embedded with Glimmer v3.02 (9) and GeneMark v2.5 (10) before the gene start
sites were manually revised using Phamerator (11), Starterator v1.0.1 (https://seaphages
.org/software), and PECAAN (https://blog.kbrinsgd.org/). Eula was predicted to contain 69
protein-coding genes and 1 tRNA coding for asparagine, identified using Aragorn v1.2.38 (12)
and tRNAscan-SE v2.0 (13). Functional assignments were made using NCBI BLASTp (14) and
HHpred (15), leading to putative functions for 32 out of 69 genes. Structural genes occupy the
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left third of the genome, while DNA metabolism genes occupy the right two-thirds. Eula lacks
recognizable integrase or immunity repressor functions and is unlikely to establish lysogeny.
Based on its gene content similarity of 35% or higher to genome sequences in the PhagesDB
database (6, 16), Eula was assigned to bacteriophage subcluster EB. All tools were run with
default parameters.

Data availability. Eula is available at GenBank under accession no. ON724018 and
Sequence Read Archive (SRA) accession no. SRX14443500.
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FIG 1 Plaques (A) and negative-stain transmission electron micrograph (B) of bacteriophage Eula.
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