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Abstract

Purpose: The aim of this study was to assess the impact of missing death data on

survival analyses conducted in an oncology EHR‐derived database.

Methods: The study was conducted using the Flatiron Health oncology database and

the National Death Index (NDI) as a gold standard. Three analytic frameworks were

evaluated in advanced non‐small cell lung cancer (aNSCLC) patients: median overall

survival [mOS]), relative risk estimates conducted within the EHR‐derived database,

and “external control arm” analyses comparing an experimental group augmented with

mortality data from the gold standard to a control group from the EHR‐derived

database only. The hazard ratios (HRs) obtained within the EHR‐derived database

(91% sensitivity) and the external control arm analyses, were compared with results

when both groups were augmented with mortality data from the gold standard. The

above analyses were repeated using simulated lower mortality sensitivities to

understand the impact of more extreme levels of missing deaths.

Results: Bias in mOS ranged from modest (0.6–0.9 mos.) in the EHR‐derived cohort

with (91% sensitivity) to substantial when lower sensitivities were generated through

simulation (3.3–9.7 mos.). Overall, small differences were observed in the HRs for the

EHR‐derived cohort across comparative analyses when compared with HRs obtained

using the gold standard data source. When only one treatment arm was subject to

estimation bias, the bias was slightly more pronounced, but increased substantially

when lower sensitivities were simulated.

Conclusions: The impact on survival analysis is minimal with high mortality

sensitivity with only modest impact associated within external control arm

applications.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

e Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

Drug Safety Published by John Wiley & Sons Ltd

r the International Society for Pharmacoepidemiology on August 24, 2018.

Pharmacoepidemiol Drug Saf. 2019;28:572–581.

https://orcid.org/0000-0002-7973-3607
mailto:carrigan.gillis@gene.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/pds.4758
http://wileyonlinelibrary.com/journal/pds


CARRIGAN ET AL. 573
KEYWORDS

lung cancer, missing deaths, overall survival, pharmacoepidemiology, survival analyses
1 | INTRODUCTION

Real‐world evidence (RWE) generated from real‐world data (RWD),

including data derived from electronic health records (EHRs), is increas-

ingly important for pharmacoepidemiological research.1 These data pro-

vide opportunities for deriving clinical insights and serve to complement

findings from clinical trials. In order to synthesize RWD into high‐quality

RWE, outcomes data are needed, and mortality‐based outcomes (eg,

overall survival [OS] and progression‐free survival [PFS]) are particularly

important for many disease areas, including oncology.

Mortality‐based RWD have multiple applications, both for

standalone research studies and to complement traditional trials.

These include describing the survival outcomes of a single group of

patients (eg, median OS) and comparative effectiveness research

(CER), where outcomes from two or more groups of patients are com-

pared against each other, typically expressed as hazard ratios (HRs).

Although these analyses could involve multiple data sources, a

strength of RWE is that datasets are often large enough that these

questions can be addressed within a single, harmonized database,

which leverages consistent data‐generating mechanisms across

groups. Another emerging application for RWE is to serve as an exter-

nal control arm for single‐arm trials, where every patient receives the

experimental treatment.1 Although a control arm is not built into the

study, researchers often wish to make comparisons between the

experimental treatment and contemporaneous control treatments

external to the trial. Therefore, this application faces the additional

challenge that outcomes data are compared across multiple data

sources, conflating any differences in treatment effect (eg, HR esti-

mates) with differences in underlying data. Lastly, real‐world mortality

data can be used for trial planning purposes, where estimates from

real‐world populations could be used for either power calculations or

planning the time needed to accrue a number of events.

Due to its critical role in identifying a survival benefit associated

with a treatment regimen, the quality of the underlying mortality data

used in RWE studies is of salient interest. In EHR‐derived databases,

mortality data are collected in a structured format as part of routine

clinical care. However, researchers often must augment incomplete

EHR mortality data with other sources, such as national death indices

and commercial sources.2 Ideally, the quality of the data source will

have benchmarks against a gold standard. While rules can be applied

to address specificity and date agreement by flagging potential false

positives or improbable dates, there are limited ways to address

imperfect sensitivity short of obtaining additional data. Thus, missing

deaths are of paramount interest when describing the quality of

EHR‐derived mortality data.

Once mortality quality benchmarks are in place, researchers are

often faced with the question of how good is good enough? There

are currently no universally accepted minimum standards or consensus
with regard to an acceptable level of mortality completeness; rather,

the right standard likely depends on the particular analysis.3,4 Even if

deaths are missing completely at random, incomplete mortality data

results in absolute estimates of OS, such as median OS (mOS), being

biased upward.5,6 If missing deaths are equally distributed between

comparator arms, the impact on relative risk estimates, such as HRs,

should be minimal; however, this assumption may not hold in applica-

tions such as external control arms where the experimental and con-

trol arms are drawn from different data sources. Beyond these

hypothetical implications, how do missing deaths impact findings in

applications of interest to researchers utilizing RWE?

We sought to answer these questions using an oncology EHR‐

derived data source, where a recent study reported greater than 90%

mortality sensitivity in advanced non–small cell lung cancer (aNSCLC)

patients.2 We tested the impact of missing deaths in the EHR‐derived

data source—both at the high sensitivity levels observed in practice

and artificially reduced for illustrative purposes—by comparing the out-

put of descriptive analyses, CER, and external control arms to those

obtained using a gold standard data source. Thus, we aimed not only

to understand the impact of missing deaths in the EHR‐derived data

source utilized here but also, more broadly, to understand what levels

of mortality sensitivity are high enough quality to minimize impact on

analytic results.
2 | METHODS

2.1 | Study overview

The purpose of this retrospective observational study was to evaluate

the impact of missing deaths on survival analyses from an EHR‐

derived RWE database in patients diagnosed with aNSCLC, as com-

pared with a gold standard data source. Institutional Review Board

and National Center for Health Statistics approval of the study proto-

col was obtained prior to study conduct. Informed consent was

waived as this was a non‐interventional study using routinely collected

data. Flatiron Health standard methodology for data security and

patient privacy was implemented.
2.2 | Description of EHR‐derived database and gold
standard data source

The Flatiron Health database contains real‐world clinical data and

outcomes collected through EHRs used by cancer care providers pri-

marily in community oncology clinics across the United States. For

patients treated in the Flatiron network, information includes data

entered into structured fields and contained in unstructured docu-

ments. The EHR data are subsequently linked with external mortality



KEY POINTS

• The impact of missing death data on survival analyses

and estimates of overall survival is small when

mortality capture sensitivity is high (eg, approximately

90% or more).

• The magnitude of bias is increased and, at times,

substantial, with lower mortality sensitivities in the

60% to 70% range.

• The direction of the effect estimation may also change

with lower mortality sensitivities in the 60% to 70%

range.
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data. At the time of this study, the database included information

from 250 cancer clinics, which consisted of approximately 775

unique sites of care in the United States, although academic centers

were excluded from this analysis. The quality of mortality in the

EHR‐derived database has been previously evaluated.2 The 2015

NDI data served as the gold standard data source. The NDI is a cen-

tralized database containing death record information from state

vital statistics offices. As a result, the NDI will capture more com-

plete death information relative to the EHR data linked with external

death information for patients that have transitioned from the

study's EHR network or were lost to follow up.7 The NDI is updated

annually with death records from state vital statistics offices, so its

recency does not suffice for every use case, but its completeness

makes it a good historical resource for benchmarking.

• Electronic health records mortality data with high

sensitivity limit the potential for missing deaths to bias

OS estimates allowing valid inferences to be drawn.

2.3 | Cohort selection and classification

Patients from the EHR‐derived database with an aNSCLC diagnosis

(stage IIIB or metastatic stage IV, or recurrent advanced disease)

between January 1, 2011, and December 31, 2015, were selected

for inclusion to align with the data cutoff of December 31, 2015, for

the gold standard data source. Patients with aNSCLC had an ICD code

for lung cancer (ICD‐9 162.x or ICD‐10 C34x or C39.9), and advanced

disease was confirmed via unstructured documents using “technology‐

enabled abstraction,” which combines clinically trained human abstrac-

tors with software that displays portions of the chart.8

Upon linking the data sources, patients within the EHR‐derived

database were classified as follows: true positives (cell A) where a

death date was in both the EHR‐derived and gold standard data;

false positives (cell B) where a death date was in the EHR‐derived

data but not in the gold standard; false negatives (cell C) where a

death date was not in the EHR‐derived data but in the gold stan-

dard; or true negatives (cell D) where no death date was in either

the EHR‐derived data or in the gold standard (Figure 1, “Classifica-

tion by Gold Standard”).
2.4 | Sampling methods

In addition to the classification described above corresponding to the

empirically observed sensitivity in the EHR‐derived data source

(90.6% as compared with the gold standard2), lower sensitivity

datasets were generated through simulation (Figure 1, “Sampling

Methods”). Bootstrap sampling (ie, sampling with replacement) was

performed with 1000 iterations to simulate sensitivities of 63.4% (sim-

ulation 1) and 72.5% (simulation 2) by randomly selecting 30% and

20% of true positives (cell A), respectively. These patients were then

reclassified as false negatives (cell C) as they were no longer consid-

ered to have a death in the EHR‐derived data source. The reclassified

patient groups were denoted based on the proportion of patients that

were sampled from cell A and moved to cell C (ie, cells A30 and C30 for

simulation 1; cells A20 and C20 for simulation 2).
2.5 | Statistical analysis

Descriptive statistics on the demographic and clinical characteristics of

the cohort were calculated, stratified by the classification of the EHR‐

derived mortality variable against the gold standard. Among patients

with missing EHR‐derived death data (cell C), the last confirmed struc-

tured activity date (ie, their last visit or administration in the EHR) was

compared with the death date in the gold standard data source, and

the distribution of differences between dates was visually examined.

Three sets of comparison groups were selected to examine the

impact of missing deaths and were chosen based on known prognostic

and/or predictive properties to allow for a number of expected effect

sizes.9-14 For the first comparison, we selected treatments commonly

administered during the study period (2011‐2015) in the first‐line set-

ting (ie, before the widespread use of immunotherapy) and expected

to show a difference in survival between comparison groups. Patients

that received a platinum‐based treatment (defined as all regimens con-

taining cisplatin or carboplatin; “experimental group”) were compared

with patients receiving other chemotherapy (defined as all regimens

without a platinum agent but containing any combination of paclitaxel,

nab‐paclitaxel, docetaxel, gemcitabine, vinorelbine, irinotecan,

pemetrexed, or bevacizumab; “control group”). Regimens containing

clinical study drugs were excluded (eg, anonymized therapies from clin-

ical trials). The two remaining comparisons evaluated biomarker status

using the patient's most recent valid test result (ie, positive or negative),

as identified from unstructured documents available in the EHR, where

the result was not “Results pending,” unsuccessful, or indeterminate

test. One biomarker comparison was chosen based on widespread test-

ing (EGFR+ “experimental group” versus EGFR− “control group”), and

another was chosen based on less frequent testing and where there

was an expected large difference in survival in order to test if the results

held for a small sample size (KRAS+ “experimental group” versus KRAS−

“control group”).



FIGURE 1 Overview of methods and analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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Using these comparison groups, three analytic use cases were

evaluated: descriptive statistics of absolute risk, CER, and external

control arms. For each analytic use case, a benchmark and EHR‐

derived database only analysis was performed and results compared.

The cohorts remained the same for each analysis, but date of death

was defined according to Figure 1 (“Statistical Analysis”). Both the

death date source (EHR‐derived data or gold standard data) and the

subgroup of patients with a date of death (cells A + B or cells A + C)

varied by analysis. The treatment and biomarker status comparisons

were indexed to the initiation of first‐line treatment and advanced dis-

ease diagnosis date, respectively. If death was not observed, patients

were censored at their last structured activity date.

For descriptive analyses, the primary outcome was mOS, esti-

mated using the Kaplan‐Meier method. In CER analyses, Cox propor-

tional hazards regression models were used to estimate HRs for

death for the experimental groups, as compared with the control

groups. In both descriptive and CER analytic use cases, the benchmark

analyses used dates of death from the gold standard data source, and

the EHR‐derived database only analyses used dates of death from the

EHR‐derived data source.

Similar to the CER applications, the external control arm analytic

use case also employed Cox proportional hazards regression models,

but the date sources and subgroups with dates of death varied

(Figure 1, “Statistical Analysis”). The benchmark analyses remained
the same as the CER application—dates of death from the gold

standard data for both comparison groups—intended to replicate a

two‐arm clinical trial with near‐perfect mortality outcome data. The

EHR‐derived database only analyses, however, utilized dates of

death from different sources for each comparison group. The exper-

imental arm utilized dates of death from the gold standard data

source for patients in cells A + C, aiming to replicate a single‐arm

clinical trial with near‐perfect mortality outcome data. The control

arm utilized dates of death from the EHR‐derived data source for

patients in cells A + B, aiming to replicate an external control arm

sourced from EHR‐derived data. HRs were estimated for each pair

of comparison groups.

All analytic use cases were replicated with the simulated, lower

sensitivity datasets, substituting cells A and C with cells A30 and C30

(simulation 1) and cells A20 and C20 (simulation 2), as described in the

sampling methods section. If death was not observed in the

simulated dataset, reclassified patients were censored at a randomly

assigned censor date between their advanced diagnosis date and death

date from the gold standard data source. All other patients were

censored at the last structured activity date in the EHR. For each

simulated sensitivity, mOS and HRs were calculated for each of the

1000 iterations and themedianwas selected as the point estimate, with

the 97.5 and 2.5 percentiles as the upper and lower confidence interval

(CI) bounds.

http://wileyonlinelibrary.com
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3 | RESULTS

A total of 10 195 aNSCLC patients were available for this analysis

(Figure 2). Table 1 provides descriptive statistics, stratified by classifica-

tion according to the gold standard data source. Comparisons among

the different categories revealed modest differences between groups.

When comparing patients with missing death dates (ie, false negatives,

cell C) to other patients, the group with missing death dates had a lower

proportion of white patients and a higher proportion of black patients;

more patients residing in thewestern regionwith less in both the north-

east and midwestern regions; a higher proportion of patients with no

treatment recorded in the EHR; and a shorter median follow‐up time

recorded in the EHR. Differences in the race distribution could reflect

reporting variations across racewhile it would be expected that patients

with missing death dates would also be associated with both less

treatment (eg, reflecting patients with incomplete EHR records or

patients treated outside of the EHR) and shorter follow‐up time due

to mortality.

Figure 3 depicts the relationship between censor date in the

EHR‐derived data and death date in the gold standard data

source in patients with missing death dates. A high proportion of

patients with missing deaths in the EHR‐derived database had a last

structured activity date that was within 1 month (39%) and

4 months (74%) of their death date in the gold standard data

source. The clustering between the last activity date and the death

date identified in the NDI suggests that censoring of these patients

is nonrandom and instead signifies unidentified death events in the

EHR.
FIGURE 2 Attrition diagram [Colour figure can be viewed at wileyonline
3.1 | Impact of missing deaths on absolute survival
estimates

An upward bias in mOS of approximately 0.5 months was observed in

EHR‐derived death data for patients treated with platinum agents in

first‐line compared with the benchmark (Table 2). For the simulated

cohorts with mortality sensitivities of 63.4% and 72.5%, the bias

increased substantially to 3.3 and 2.2 months, respectively. A similar

trend was observed in patients treated with other chemotherapy, as

well as the biomarker‐based groups. Overall, the magnitude of bias in

mOS comparing the gold standard data source with the EHR‐derived

death data ranged from approximately 2.5% to 8.1%, while the bias

observed in the simulated lower mortality sensitivities ranged from

36.7% to 53.2% for simulation 1. Observed differences in mOS for

KRAS+ were as much as 9.7 months in simulation 1 (63.4% mortality

sensitivity) and 6.2 months in simulation 2 (72.5% mortality sensitivity).
3.2 | Impact on CER analyses

When HRs were examined, a lack of systematic bias between expo-

sure groups was observed, including within the two simulated cohorts,

with only small differences seen in the HRs for the EHR‐derived death

data across all three comparisons relative to HRs obtained for the gold

standard death data (Figure 4A‐C). Despite large observed differences

in mOS between the simulated cohorts and the gold standard cohort,

comparisons of relative risk such as HRs were largely unaffected by

missing death data.
library.com]
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TABLE 1 Demographic and clinical characteristics of aNSCLC patients

Clinical or Demographic Characteristic
A
N = 6157

B
N = 136

C
N = 639

D
N = 3263

Age categories (binary) at advanced diagnosis

<65 y 1931 (31.4%) 32 (23.5%) 196 (30.7%) 1164 (35.7%)

65+ y 4226 (68.6%) 104 (76.5%) 443 (69.3%) 2099 (64.3%)

Gender

Female 2706 (43.9%) 69 (50.7%) 302 (47.3%) 1727 (52.9%)

Male 3451 (56.1%) 67 (49.3%) 336 (52.6%) 1536 (47.1%)

Unknown 0 (0.00%) 0 (0.00%) 1 (0.16%) 0 (0.00%)

Race/Ethnicity

White 3998 (78.9%) 80 (67.2%) 340 (65.8%) 2133 (75.7%)

Black or African American 414 (8.17%) 8 (6.72%) 71 (13.7%) 258 (9.16%)

Asian 90 (1.78%) 10 (8.40%) 19 (3.68%) 116 (4.12%)

Other race 567 (11.2%) 21 (17.6%) 87 (16.8%) 310 (11.0%)

Region

Northeast 1679 (27.3%) 33 (25.0%) 112 (18.3%) 944 (29.4%)

Midwest 1198 (19.5%) 33 (25.0%) 66 (10.8%) 589 (18.3%)

South 2394 (39.0%) 37 (28.0%) 243 (39.6%) 1143 (35.6%)

West 868 (14.1%) 29 (22.0%) 192 (31.3%) 536 (16.7%)

Validation period (y)

2011 333 (5.41%) 7 (5.15%) 17 (2.66%) 9 (0.28%)

2012 920 (14.9%) 15 (11.0%) 64 (10.0%) 34 (1.04%)

2013 1401 (22.8%) 34 (25.0%) 137 (21.4%) 76 (2.33%)

2014 1672 (27.2%) 42 (30.9%) 211 (33.0%) 150 (4.60%)

2015 1831 (29.7%) 38 (27.9%) 210 (32.9%) 2994 (91.8%)

Histology

Non–squamous cell carcinoma 4124 (67.0%) 98 (72.1%) 445 (69.6%) 2339 (71.7%)

Squamous cell carcinoma 1586 (25.8%) 31 (22.8%) 147 (23.0%) 779 (23.9%)

NSCLC histology NOS 447 (7.26%) 7 (5.15%) 47 (7.36%) 145 (4.44%)

Group stage at diagnosis

Stage I/II 685 (11.1%) 12 (8.82%) 65 (10.2%) 563 (17.3%)

Stage III/IIIA 539 (8.75%) 7 (5.15%) 62 (9.70%) 289 (8.86%)

Stage IIIB/IV 4608 (74.8%) 112 (82.4%) 478 (74.8%) 2261 (69.3%)

Group stage is not reported 325 (5.28%) 5 (3.68%) 34 (5.32%) 150 (4.60%)

Smoking status

History of smoking 5307 (86.2%) 113 (83.1%) 521 (81.5%) 2704 (82.9%)

No history of smoking 608 (9.87%) 22 (16.2%) 92 (14.4%) 509 (15.6%)

Unknown/not documented 242 (3.93%) 1 (0.74%) 26 (4.07%) 50 (1.53%)

ALK statusa

Rearrangement not present 2390 (89.3%) 62 (91.2%) 220 (86.6%) 1535 (89.1%)

Rearrangement present 54 (2.02%) 1 (1.47%) 7 (2.76%) 73 (4.24%)

Unsuccessful/indeterminate test 194 (7.25%) 4 (5.88%) 23 (9.06%) 97 (5.63%)

Unknown 37 (1.38%) 1 (1.47%) 4 (1.57%) 17 (0.99%)

EGFR statusa

Mutation negative 2489 (84.1%) 53 (70.7%) 235 (80.5%) 1395 (73.9%)

Mutation positive 294 (9.93%) 17 (22.7%) 42 (14.4%) 401 (21.2%)

Unsuccessful/indeterminate test 150 (5.07%) 4 (5.33%) 13 (4.45%) 83 (4.40%)

Unknown 28 (0.95%) 1 (1.33%) 2 (0.68%) 9 (0.48%)

ROS1 statusa

Rearrangement not present 480 (88.7%) 10 (90.9%) 46 (83.6%) 633 (90.8%)

(Continues)

CARRIGAN ET AL. 577



TABLE 1 (Continued)

Clinical or Demographic Characteristic
A
N = 6157

B
N = 136

C
N = 639

D
N = 3263

Rearrangement present 12 (2.22%) 1 (9.09%) 1 (1.82%) 7 (1.00%)

Unsuccessful/indeterminate test 46 (8.50%) 0 (0.00%) 6 (10.9%) 50 (7.17%)

Unknown 3 (0.55%) 0 (0.00%) 2 (3.64%) 7 (1.00%)

KRAS statusa

Mutation negative 504 (64.2%) 10 (55.6%) 57 (63.3%) 378 (64.2%)

Mutation positive 248 (31.6%) 5 (27.8%) 28 (31.1%) 188 (31.9%)

Unsuccessful/indeterminate test 33 (4.20%) 3 (16.7%) 5 (5.56%) 23 (3.90%)

PDL1 statusa,b

PD‐L1 negative/not detected 23 (52.3%) 0 (0.00%) 3 (60.0%) 73 (54.5%)

PD‐L1 positive 21 (47.7%) 2 (100%) 2 (40.0%) 50 (37.3%)

Unsuccessful/indeterminate test 0 (0.00%) 0 (0.00%) 0 (0.00%) 8 (5.97%)

No interpretation given in report 0 (0.00%) 0 (0.00%) 0 (0.00%) 3 (2.24%)

Gap between systemic therapy and advanced diagnosis

No treatment 1527 (24.8%) 30 (22.1%) 220 (34.4%) 846 (25.9%)

No, ≤90‐d gap 3854 (62.6%) 86 (63.2%) 343 (53.7%) 1924 (59.0%)

Yes, >90‐d gap 776 (12.6%) 20 (14.7%) 76 (11.9%) 493 (15.1%)

Gap between structured activity and advanced diagnosis

No activity after advanced diagnosis date 50 (0.81%) 0 (0.00%) 7 (1.10%) 37 (1.13%)

No, ≤90‐d gap 5443 (88.4%) 121 (89.0%) 552 (86.4%) 2649 (81.2%)

Yes, >90‐d gap 664 (10.8%) 15 (11.0%) 80 (12.5%) 577 (17.7%)

Received platinum‐based 1L therapy: Yes 3497 (56.8%) 78 (57.4%) 321 (50.2%) 1757 (53.8%)

Received EGFR‐targeted 1L therapy: Yes 396 (6.43%) 14 (10.3%) 37 (5.79%) 301 (9.22%)

Received other chemotherapy in 1L: Yes 647 (10.5%) 11 (8.09%) 51 (7.98%) 233 (7.14%)

Follow‐up time from advanced diagnosis (mo), median [IQR] 5.36 [2.04‐11.6] 5.64 [2.53‐13.6] 4.37 [1.55‐10.9] 10.3 [3.95‐22.2]

aAmong those tested and based upon most recent successful biomarker test.
bPD‐L1 “Unsuccessful/indeterminate test” results also include “PD‐L1 equivocal” results.

FIGURE 3 Censoring patterns of those
patients with missing death dates (cell C false‐
negative patients) [Colour figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Impact on external control arm analyses

Given the systematic differences in mortality capture of the exposure

groups artificially introduced in the external control arm analyses, the
impact of missing deaths on these analyses was much more pro-

nounced (Figure 5A‐C) than in analyses performed entirely within

the EHR‐derived database (ie, measures of absolute risk or CER anal-

yses). The impact ranged from modest differences in the EHR‐derived

http://wileyonlinelibrary.com


TABLE 2 Impact of missing deaths on measures of absolute risk (mOS)

Median Overall Survival and 95% CI, mo

Exposure Group Simulation 1 (63.4%) Bias, % Simulation 2 (72.5%) Bias, % EHR‐derived (90.6%) Bias, % Gold Standard Data

Platinum treatment 12.3 (11.7‐13.0) 36.7 11.2 (10.7‐11.7) 24.4 9.5 (9.1‐9.9) 5.6 9.0 (8.7‐9.4)

Other Chemo 11.8 (10.1‐13.6) 53.2 10.1 (8.8‐11.9) 31.2 8.2 (7.3‐9.6) 6.5 7.7 (6.9‐8.7)

EGFR+ 20.7 (17.8‐25.9) 46.8 19.4 (15.9‐22.2) 37.6 15.0 (13.4‐18.9) 6.4 14.1 (12.1‐17.3)

EGFR‐ 21.2 (18.9‐25.3) 43.2 19.2 (17.1‐21.4) 29.7 16.0 (14.5‐18.3) 8.1 14.8 (14.0‐17.0)

KRAS+ 33.4 (28.5‐NA) 40.9 29.9 (24.9‐36.2) 25.8 24.3 (22.3‐29.4) 2.5 23.7 (21.7‐27.3)

KRAS‐ 16.3 (15.2‐17.2) 39.3 14.6 (13.9‐15.3) 24.8 12.4 (11.8‐13.1) 6.0 11.7 (11.3‐12.4)

FIGURE 4 Impact of missing deaths on comparative analyses conducted with EHR‐derived data: current mortality sensitivity vs simulated
sensitivities compared with gold standard benchmark [Colour figure can be viewed at wileyonlinelibrary.com]
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data to much more pronounced differences in the two simulated

cohorts. For example, in the EGFR biomarker analysis, a slight bias

towards the null was observed in the EHR‐derived database: HR = 0.97

(95% CI, 0.84‐1.13) compared with an HR = 0.90 for the gold stan-

dard. However, a much greater bias was observed in both simulated

analyses with an HR of 1.26 (95% CI, 1.10‐1.50) observed in the sim-

ulated analysis with 63.4% sensitivity and an HR of 1.15 (95% CI,

0.98‐1.35) in the simulated 72.5% sensitivity when compared with

the gold standard, which, again, had an HR of 0.90 (95% CI, 0.78‐

1.04). The same effects were observed in the other use cases (eg, plat-

inum vs other chemo and KRAS+ vs KRAS−).
4 | DISCUSSION

RWE sources, including EHR‐derived datasets, are valuable analytic

platforms for conducting clinical research.1 Mortality serves as the pri-

mary outcome in many analyses across disease areas and particularly
for oncology. However, it is often incomplete because of imperfect

data collection systems, workflows not designed to capture mortality

data, and patients lost to follow up.5,15,16 The purpose of this study

was to examine the potential impact of missing death data in an EHR‐

derived oncology data source, which is of critical importance to estab-

lishing a research‐grade EHR‐derived database and should provide

guidance with respect to an acceptable level of completeness.16-18

In CER analyses, there was little to no impact on the estimated

HRs as compared with the gold standard data source, regardless of

the sensitivity level. This result suggests that conclusions from CER

analyses where both comparators originate from the same high‐

sensitivity RWE data source can be interpreted with confidence, even

for the lower sensitivity data sources simulated here. However, data

sources with missing deaths consistently overestimated mOS, as com-

pared with the gold standard data source. This impact was modest for

the sensitivity observed in the EHR‐derived database (2.5%‐8.1% bias)

but increased when sensitivity was artificially lowered (eg, up to 53.2%

bias in the simulated cohort with 63.4% sensitivity). These findings
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FIGURE 5 Impact of missing deaths on analyses that use the EHR‐derived data as an external control arm: current mortality sensitivity vs
simulated sensitivities compared with gold standard benchmark. For the external control analyses, the experimental arm in all analyses is
composed of the gold standard data, and the control arm is composed of the EHR‐derived data only. For simulations 1 and 2, the same approach is
taken where the experimental arms are composed of the gold standard data, and the control arms are composed of the EHR‐derived data only
(with their respective simulated lower sensitivities). Each analysis is in turn compared with an analysis conducted using the gold standard data only
(solid red vertical line in Figure 5 represents the HR using the gold standard with dashed line representing its corresponding 95% CI) [Colour figure
can be viewed at wileyonlinelibrary.com]
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have implications for descriptive analyses and trial planning. For trial

planning, event accrual estimates based upon mOS would be conser-

vative (events would accrue more quickly than predicted); however,

when mOS estimates are presented descriptively, caution in their

interpretation is warranted, particularly when sensitivity is low.

One key opportunity for RWE in drug development is to serve as an

external control for a single‐arm clinical trial.1 With the EHRs current

mortality sensitivity of greater than 90%, creating differential sensitivity

in the context of external control arm analyses resulted only in small dif-

ferences in estimated HRs and would lead to conservative conclusions

and biasing against the experimental arm (eg, absolute change in HR

of less than 0.05 towards the null) with corresponding small increases

in the probability of type II errors. In drug development, bias in the

direction of the null is preferable to an enhanced risk of a type I error.

Also, decisions on molecule phase advancement within drug develop-

ment (e.g., from single‐arm phases 1b to 3 randomized trials) generally

would not change based on a 0.05 absolute difference in a phase 1b

HR. Conversely, when the sensitivity was lowered, the impact was far

more pronounced and much more likely to alter decision making.

Other studies have examined the impact of missing deaths with lit-

tle evidence to suggest meaningful estimation bias when the mortality

outcome is reasonably well captured (ie, 85%‐90% sensitivity).4,15

Some studies have observed systematic differences in comparative

analyses likely attributable in part to informative censoring in settings

where exposures are related differentially to the mortality
outcome.16,19 Given the absence of any meaningful estimation bias

when sensitivity is greater than 90%, why was it important to conduct

this study? It was clear from the simulated analyses at lower sensitivi-

ties that the impact of missing endpoints such as mortality can have a

major effect on analyses, in particular on estimates of absolute risk.

Although there are a number of thresholds that have been discussed

with respect to levels of missing outcomes in EHRs, there is a dearth

of empirical support.3,4 Understanding the impact of missing deaths in

EHRs is essential to instilling confidence in this rapidly evolving source

of clinical evidence. In doing so, researchers will ensure a level of scien-

tific rigor that will allow for sensible use of EHR‐derived data for clinical

research as an adjunct to the gold standard randomized clinical trials.

There are a number of study limitations that should be considered

when evaluating the findings. First, this study leveraged data from

community‐based oncology clinics in the United States, and patterns

of missing data may be different in academic centers or in other coun-

tries. This analysis assumes that the NDI is a gold standard for mortal-

ity, yet any database at this scale is unlikely to capture every death.20

Second, this study did not consider the mechanism for missing deaths.

Although we observed little impact on the examples studied here with

high‐sensitivity mortality data, regardless of mechanism, further work

is needed to describe the presence and degree of informative censor-

ing in these data and understand its impact. Third, despite the minimal

impact on most conclusions observed in aNSCLC, it is unclear how this

will expand to other cancer types with longer mOS. Lastly, although
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the comparison groups were chosen to represent a range of common

research questions, they are not exhaustive.

Strength of the study include the varying levels of mortality sensi-

tivity and large sample size. Additionally, the study utilized a gold stan-

dard data source; in many examinations of missing data, a proxy for

the complete data is never available for comparison. Finally, a variety

of analytic use cases were examined, including the novel use of

EHR‐derived data as an external control.

Although modest bias was observed for absolute estimates and

external control analyses when sensitivity was greater than 90%, the

bias occurred in a consistent direction and would not likely impact

study conclusions or decision making. However, mortality data with

lower sensitivity allows for the possibility of more substantial bias to

enter into analyses conducted using EHR‐derived data. For analyses

of mortality based on external controls, researchers should understand

the level sensitivity of the data and consider the impact on bias. Using

EHR‐derived mortality data with high sensitivity mitigates the likeli-

hood that analyses performed using the data will be subject to bias of

any meaningful magnitude. In fact, based on the findings from the cur-

rent study, achieving perfect mortality capture (100% sensitivity) in an

EHR‐derived database would not result in meaningful gains in terms of

a researcher's ability to draw conclusions from the data as compared

with the greater than 90% sensitivity observed in this dataset.
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