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in serotonin-sensitive anxiety and
social behaviour
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Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar dis-
order, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or
drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase
kinase 3b (GSK3b). Furthermore, GSK3b inhibition rescues behavioural abnormalities in 5-HT-
deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of trypto-
phan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3b activity in the
regulation of behaviour, we generated CamKIIcre-floxGSK3b mice in which the gsk3b gene is post-
natally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that
suppression of GSK3b in these brain areas has anxiolytic and pro-social effects. However, while
a global reduction of GSK2b expression reduced responsiveness to amphetamine and increased
resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3b
mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition,
with forebrain GSK3b being involved in the regulation of anxiety and sociability while social pre-
ference, resilience and responsiveness to psychostimulants would involve a function of this kinase
in subcortical areas such as the hippocampus and striatum.
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1. INTRODUCTION
Neuropsychiatric disorders such as depression, bipolar
disorders and schizophrenia represent a major public
health problem, and a heavy burden for patients and
their relatives [1,2]. The vast majority of pharmacologi-
cal agents used for mental illnesses were discovered
more than 50 years ago. However, while the primary
molecular targets (e.g. receptors, monoamine transpor-
ters) of these drugs have been identified [3–6], the
ultimate mechanisms responsible for their therapeutic
actions remain poorly understood.

Monoamines—serotonin (5-HT), dopamine and
norepinephrine—are the main neurotransmitters
involved in the actions of most psychiatric pharmaco-
logical treatments [5,7,8]. An increase in extracellular
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5-HT levels resulting from 5-HT transporter (SERT)
blockade has historically been associated with the effects
of antidepressants that are used for the treatment of
major unipolar depression and other mood disorders
[9–12]. Genetic evidence also supports a role for poly-
morphisms in genes encoding SERTor the rate-limiting
enzyme for brain 5-HT synthesis [13,14], tryptophan
hydroxylase 2 (TPH2), in depression [15–17]. How-
ever, the existence of such mutations does not appear
to explain most cases of mood disorders in humans [18].

One approach to understand the role of 5-HT in the
regulation of mood-related behaviour is to examine the
functions of the signalling molecules that are regulated
by the more than 15 identified 5-HT receptors [19].
Among these, the serine/threonine kinases glycogen
synthase kinase 3 (GSK3) alpha and beta have been
the targets of intensive research over the last decade
[20,21]. These two iso-enzymes are the product of
different genes termed gsk3a and gsk3b. Various drugs
acting on 5-HT neurotransmission, such as selective
serotonin reuptake inhibitors, monoamine oxidase
inhibitors, tricyclic antidepressant and second-generation
antipsychotics, are capable of inhibiting GSK3b activity
This journal is q 2012 The Royal Society
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by increasing the inhibitory phosphorylation of the N-
terminal domain serine 9 [22–24]. Furthermore, the
replacement of wild-type (WT) TPH2 by a R439H
mutant form that is equivalent to the rare human
R441H loss-of-function variant results in an approxi-
mately 80 per cent reduction of brain 5-HT synthesis,
which was reported to be accompanied by an activation
of cortical GSK3b in knockin mice [25]. The 5HT1

and 5HT2 receptor sub-types seem to play dualistic
roles in regulating GSK3b activity [22,23]. In the brain
of WT mice, GSK3b inactivation can be induced both
by administration of the 5HT1 agonist 8-hydroxy-2-(di-
n-propylamino)tetralin (8-OH-DPAT) or the 5HT2

antagonist, LY53857 [22]. However, administration of
the 5HT1 antagonist WAY100635 or the 5HT2 agonist
2,5-dimethoxy-4-iodoamphetamine (DOI) does not
affect the phosphorylation of GSK3b on the regulatory
serine 9 residue [22]. The mechanisms through which
5HT2 antagonists regulate GSK3 are still unresolved,
but most likely involve modulation of signalling by the
Gaq G protein to which these receptors are coupled. In
contrast, the regulation of GSK3 by 5HT1 receptors
appears to involve an activation of phosphatidylinositol
3-kinases (Pi3K) that in turn activates the serine/threo-
nine kinase Akt, which then phosphorylates the
inhibitory serine 9 residue of GSK3b [26].

In addition to its regulation by 5-HT, brain GSK3b
is also inactivated by several neurotrophic factors, such
as the brain-derived neurotrophic factor and its recep-
tor TrkB through Pi3K-mediated signalling [27]. In
contrast, activation of the dopamine D2 receptor
(D2R) has been shown to activate GSK3 by triggering
the formation of a signalling complex composed of
Akt, beta-arrestin 2 and protein phosphatase 2A
(PP2A) [28,29]. The formation of this complex leads
to the inactivation of Akt by PP2A—and therefore
relieves the inhibition of GSK3 by Akt [30].
N-methyl-D-aspartate (NMDA) receptor-dependent
long-term potentiation (LTP) also activates GSK3b
through a mechanism that seems to involve its
dephosphorylation by protein phosphatase 1 [31].

Given the complexity and intricacy of the signalling
pathways that can regulate brain GSK3 activity, it is
highly probable that this kinase might contribute to the
therapeutic effect of drug therapy on these different sys-
tems. Aside from 5-HT drugs, several psychoactive
compounds can also modulate the activity of GSK3b
in vivo. Among these, the psychostimulant amphetamine,
which enhances dopamine tone, activates GSK3b
following D2R stimulation [29,32,33]. In contrast, anti-
psychotic drugs with D2R antagonistic activity have
an inhibitory effect on GSK3 [20,34]. Similarly, the
NMDA receptor-blocker ketamine also inhibits GSK3b
in vivo, an effect that can be associated with its action
as a fast-acting antidepressant [35]. Finally, mood stabil-
izers lithium and valproic acid also trigger an inhibition of
GSK3, either directly or by enhancing its inhibitory
phosphorylation by Akt [36–40]. To establish the contri-
bution of GSK3 to the effects of therapeutic agents, it is
important to understand its roles in the regulation of be-
haviour by different neurotransmitter systems. In line
with this, several reverse genetic and pharmacological
approaches have allowed identification of key behaviours
that can be affected by GSK3 activity in vivo.
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Both the hyperactivity observed in mice lacking the
dopamine transporter (DAT-KO mice) and hyperactiv-
ity induced by amphetamine administration can be
reversed using pharmacologic inhibitors of GSK3
[32,41,42]. Increases in basal locomotion have also
been reported in mice overexpressing GSK3b [43],
whereas GSK3b haploinsufficient (GSK3b HET)
mice [44] lacking 50 per cent of GSK3b protein
expression display a significant reduction of behaviour-
al responsiveness to amphetamine [32]. In contrast,
mutant mice lacking the inhibitory phosphorylation
sites on both GSK3 isoforms are hyper-responsive to
amphetamine treatment [45]. Finally, the effects of
lithium on novelty-driven exploratory locomotor be-
haviour appear to be dependent on the modulation
of GSK3 activity [32,36].

Several data point towards a direct impact of GSK3
activity on behaviour in paradigms assessing emotional
states [20,25,26,45]. Indeed, antidepressant-like
responses to lithium or ketamine in tests measuring
behavioural despair or anxiety have been shown to
depend, at least in part, on the inhibition of GSK3
by these pharmacological agents [32,35,36]. In line
with this, acute administration of pharmacological
GSK3 inhibitors [36,46] provokes antidepressant-like
responses in rodents in the tail suspension test
(TST) and the forced swim test (FST). Similar
changes in these tests have also been reported in
GSK3b HET mice [25,47,48], whereas mutant mice
lacking GSK3 inhibitory phosphorylation in both
GSK3a and GSK3b isoforms display a general
reduction of anxiety and depressive-like behaviours
[45]. In addition, administration of the GSK3 inhibi-
tor 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione
(TDZD-8) or GSK3b haploinsufficiency rescue
enhanced ‘anxiety’ and ‘behavioural despair’ phenotypes
in 5-HT-deficient R439H tph2 knockin mice [25].
Finally, GSK3b can contribute to the regulation of
social behaviour. Male homozygous R439H tph2
knockin mice display exacerbated aggression in a social
interaction test, and that aggression is alleviated by
GSK3bhaploinsufficiency [25]. Furthermore, inhibition
of GSK3 by lithium appears to restore social preference
in mice lacking the fragile X syndrome gene fmr1 [49].
However, the contribution of GSK3 to the regulation
of sociability can be more complex since GSK3a knock-
out mice display a lack of social preference in the
Crawley’s sociability and preference for social novelty
test [50,51], suggesting that the two GSK3 isoforms
may play different roles in regulating social behaviours.

Taken together, these data present a complex pic-
ture of the roles of GSK3 in the regulation of
behaviour. However, very little is known about the
neuroanatomical determinants of these different
effects and the possible contribution of 5-HT. Since
cortical structures are believed to play a role in the
regulation of mood, sociability and cognition by
5-HT [52–54], we undertook to examine the contri-
bution of forebrain GSK3b in different mood-related
behavioural paradigms known to be affected by the
systemic activity of this kinase. To do so, we have gen-
erated a new animal model by breeding mice carrying
deactivatable gsk3b floxed alleles with mice expressing
the Cre recombinase postnatally in glutamatergic
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forebrain pyramidal neurons under the control of
a Ca2þ/calmodulin-dependent protein kinase II
(CamKII) gene promoter.
2. MATERIAL AND METHODS
(a) Animals

The CamKIIcre-floxGSK3b line was obtained by breed-
ing CamKIIcre mice [55] with a GSK3b flox line [56],
following a standard two-step breeding protocol [57].
C57BL6J systemic GSK3b HET mice were described
previously [44]. Because of the potential for recombina-
tion in sertoli cells of CamKIIcre-positive mice, all mice
were obtained by breeding CamKIIcre-positive females
(homozygous for floxGSK3b) with negative CamKIIcre
males (homozygous for floxGSK3b). All mice tested
were homozygous for GSK3b flox and either negative
(NEG) or positives (POS) for the CamKIIcre transgene,
leading to the inactivation of GSK3b postnatally in
selected neuronal populations of POS mice. Because
female CamKIIcre (POS)/GSK3b flox mice presented
altered maternal behaviour, pups from this line were sys-
tematically raised by adoptive mothers. Male C57Bl6 and
retired male breeder CD1 mice used as interaction part-
ners for social behaviour tests were obtained from Charles
River Laboratory (Senneville, Quebec, Canada).

All mice generated were housed by gender, in groups
of two to five per cage, under a 12 L : 12 D cycle, with
ad libitum food and water. They were used at two to four
months of age. Both male and female mice were used
except for social tests, where only males were tested.
Behavioural testing was performed between 8.00
and 13.00 (lights switched on at 7.00). Prior to all be-
havioural experiments, mice were housed in the
experimental room at least 4 days before testing to
allow for acclimation. Mice were left undisturbed in
the room for 2 h before being killed for biochemical
and tissue processing.

(b) Antibodies

For Western blot analyses, GSK3 and actin were
detected using mouse monoclonal IgG SC7291
(1 : 1000; Santa Cruz Biotechnology) and mouse
monoclonal IgG MAB1501 (1 : 10 000; Millipore),
respectively. The detection of GSK3 (S9/S21) phos-
phorylated form was performed using rabbit
polyclonal IgG CST-9331 (1 : 500; Cell Signaling
Technology). Secondary antibody IRDye 680 Goat
Anti-Rabbit IgG LIC-926-32221 (1 : 10 000;
Mandel) or IRDye 800CW Goat Anti-Mouse IgG
LIC-926-32210 (1 : 10 000; Mandel) were then used.

For immunochemistry analysis, the following
primary antibodies were used: rabbit polyclonal
anti-GSK3b CST-9315 (1 : 500; Cell Signaling
Technology), mouse monoclonal anti-neuronal nuclei
(NeuN) MAB377 (1 : 250; Millipore), and mouse
monoclonal anti-dopamine and cyclic AMP-regulated
phosphoprotein (DARPP32) (BD611520; 1 : 1000;
BD Transduction Laboratories). Revelation of label-
ling using the Odyssey imager (Licor Biotechnology,
Lincoln, NE, USA) was performed using IRDye 680
Goat Anti-Rabbit IgG LIC-926-32221 (1 : 1000;
Mandel) secondary antibody. Secondary antibodies
used for confocal imaging were Alexa Fluor 488 goat
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anti-rabbit IgG and Alexa Fluor 568 goat anti-mouse
IgG (1 : 1000; respectively, A-11008 and A-11004;
Invitrogen, Burlington, ON, Canada).

(c) Drug administration

Amphetamine (Tocris Bioscience, Ellisville, MO,
USA) was prepared in a 0.9 per cent saline solution
and injected (i.p.). TDZD-8 (EMD Biosciences,
Inc., La Jolla, CA, USA) was injected i.p., after sus-
pension in a minimal amount of Tween and bringing
to volume with distilled water. TDZD-8 and vehicle
solutions were administered 30 min prior to the TST
(15 mg kg–1, i.p.).

(d) Western blot analyses

Mice aged between two and three months were killed
by decapitation, and their heads were immediately
cooled by immersion in liquid nitrogen for a few
seconds as described [32]. In each mouse, the stria-
tum, prefrontal cortex, hippocampus and cerebellum
were rapidly dissected (within 45 s) on an ice-cold sur-
face, and frozen in liquid nitrogen before protein
extraction. Tissue samples were homogenized in boil-
ing 1 per cent sodium dodecyl sulfate (SDS) and
boiled for 5 min. Protein concentration was measured
using a DC-protein assay (Bio-Rad, Hercules, CA,
USA). Protein extracts (25 mg) were separated on 10
per cent SDS/PAGE Tris-glycine gels (Invitrogen)
and transferred to nitrocellulose membranes (Invitro-
gen). Blots were immunostained overnight at 48C
with primary antibodies. Immune complexes were
revealed using appropriate IR-dye-labelled secondary
antibodies. Quantitative analyses of fluorescent IR
dye signal were carried out using an Odyssey Imager.
For quantification, actin was used as a loading control
for the evaluation of total protein levels, whereas
respective total protein signals were used as loading
controls for each phospho-protein signal. Results
were further normalized to respective control con-
ditions, in order to allow for comparison between
separate experiments. The gels shown in the figures
correspond to representative experiments, where each
lane corresponds to a separate animal. Separate gels are
presented within separate frames, and apparent signals
may not be directly comparable between gel pictures.

(e) Immunochemistry

Mice were deeply anaesthetised with ketamine-
xylazine and perfused with 4 per cent paraformaldehyde
(Sigma Aldrich, St. Louis, MO, USA). Brains were
carefully removed and post-fixed overnight at 48C.
For Odyssey imaging, sagittal sections (45 mm) from
adult mice were prepared using a vibratome (Leica
Microsystems, Concord, Ontario, Canada), and per-
meabilized for two hours at room temperature with
phosphate-buffered saline (PBS) þ 0.5% Triton X-
100 (Sigma Aldrich) þ 3% bovine serum albumin
(Sigma Aldrich) solution. The same solution was used
to dilute primary and secondary antibodies. Brain
slices were incubated overnight at 48C with the primary
antibodies, then washed and incubated with the sec-
ondary antibody for two hours at room temperature.
After washing, slices were mounted with Prolong gold
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antifade reagent (Invitrogen), and scanned using the
Odyssey imager at a resolution of 21 mm. For confocal
imaging, the brains of five animals per genotype were
incubated overnight in a PBS þ 20% sucrose solution
(Fisher Scientific, Ottawa, Ontario, Canada) after the
post-fixation process. Three brains per genotype were
used for evaluation of GSK3b expression in the cortex,
hippocampus and striatum. Brains were embedded
with Tissue-Tek Optimal Cutting Temperature com-
pound (Pelco International, Redding, CA, USA) and
rapidly frozen in cold 2-methylbutane (Sigma Aldrich).
Sagittal sections (16 mm) from adult mice (aged two to
three months) were prepared using a CM1900 cryostat
(Leica Microsystems, Concord, Ontario, Canada).
Remaining brains were used for evaluation of GSK3b
expression in the amygdala (basomedial amygdaloid
nucleus and lateral amygdaloid nucleus) and the nucleus
accumbens (core). Coronal sections (45 mm) were
prepared using a vibratome (Leica Microsystems,
Concord, Ontario, Canada). The sections were labelled
as already mentioned, and quantification was performed
using a confocal microscope Axioskop 2 Mot plus (Carl
Zeiss, Toronto, Ontario, Canada) equipped with argon
488 nm and helium-neon 543 nm lasers (LASOS
Lasertechnik GmbH, Jena, Germany). Double-
immunolabelled cells were analysed using Z-stack
serial images and AXIOVISION V4.8.1.0 software.

(f) Behavioural tests

(i) Locomotor activity
Locomotion was assessed under illuminated conditions
in an automated Omnitech Digiscan apparatus
(AccuScan Instrument, Columbus, OH, USA), as
described [32]. For the evaluation of locomotor activity
in a novel environment, mice were placed into the appar-
atus and their activity was monitored for 30 min. The
following parameters were measured: horizontal activity,
vertical activity and stereotypy count (repeated beam
breaks). For tests involving drug treatment, mice were
placed in the locomotor activity monitor chamber for
an acclimation period of 1 h before being injected with
amphetamine or vehicle. After injection, mice were
returned to the monitoring chamber and their locomotor
activity was recorded for an extra 2 h and 30 min.

(ii) Tail suspension test and forced swim test
Mice were tested using a tail suspension apparatus
(Med-Associates, St. Albans, VT, USA), as described
[58]. For the FST, mice were individually placed in a
transparent glass cylinder containing clean water
(kept at 258C) to a height of 15 cm. In both tests,
immobility time was computed for the total duration
(6 min) and the last 4 min of the tests. In the TST,
immobility time was extracted directly by the software.
In the FST, the floating or immobility time (no limb
movement and making only minimal movements
to keep the head above water) was scored by two
independent observers blind to the genotype.

(iii) Dark-light emergence test and open field
The dark-light box emergence test was performed for
5 min. Mice were initially placed in the centre of
the dark chamber. The total number of transitions
Phil. Trans. R. Soc. B (2012)
between chambers and the time spent in each side
were automatically recorded. The open field test
(OFT) was performed in an automated Omnitech
Digiscan apparatus (AccuScan Instrument). Each
mouse was placed in a corner of the box and the
exploratory activity was recorded. Time spent in the
centre, number of entries and distance travelled were
recorded separately for the central (25% of the total
surface) and peripheral areas.

(iv) Preference for social novelty
Male mice aged between two and four months were
isolated for two weeks and placed in an apparatus
designed according to Moy et al. [59]. They were
allowed to circulate freely in the three-compartment
box (60 � 40, 5 � 20 cm total) for 5 min. Empty
inverted cups (Galaxy Pencil cup/Utility Cup; Spec-
trum Diversified Designs, Inc., Streetsboro, OH,
USA) were placed in each outer compartment. After
this acclimation session, experimental mice were
placed in the central compartment with doors closed,
allowing the experimenter to introduce an unknown
male (age-matched, C57Bl6) in one of the cups, and
an object of approximately the same size in the
centre of the other inverted cup. Then, both doors
were simultaneously opened and, for a 10 min session
(session 1), the tested mouse was free to explore all
three compartments. After this, the mouse was
placed back in the centre compartment and the
object was replaced by another unknown male
mouse, while the first male remained in the same pos-
ition. During the second session of the social novelty
phase, the test mouse was again free to explore all
three compartments for a 10 min session. During
both test sessions, video tracking was performed, and
the amount of time spent sniffing the stranger mice
or the object was recorded and analysed using
ANY-maze (Stoelting, Wood Dale, IL, USA).

(v) Social interactions
Social interactions were performed in a transparent
Plexiglas area, with males being kept in isolation for
14 days before testing as described [60]. Unfamiliar
pairs of age- and weight-matched animals were
placed at the same time in the open field for 20 min.
A control C57Bl6 male and a mouse from the tested
line made up each pair. In each pair of animals, the fol-
lowing parameters were measured: time spent by the
animals in active social interaction (including time
spent sniffing, allogrooming, following, crawling,
escaping and wrestling), and number of social (sniff-
ing, following, allogrooming, crawling) or non-social
events (grooming, escape, wrestling, biting) initiated
by each animal.

(vi) Repeated social defeat
The defeat stress protocol was adapted from Berton
et al. [61]. Experimental mice were exposed to a
new aggressor (male CD1 retired breeder) each day
for a 5 min period on 10 consecutive days. After
5 min of unrestricted contacts, the CD1 and tested
mice remained in the same cage for 24 h, but were sep-
arated by a perforated Plexiglas cage-divider allowing
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for sensory contact, but preventing fights. Control ani-
mals were handled daily and housed in pairs in
equivalent cages, but with members of the same
strain. In order to assess the social avoidance, 6 days
after the last defeat, control animals and defeated
ones performed the first session of the preference for
social novelty test, but in this case, an unfamiliar
CD1 mouse was placed in the cup containing the
social partner. Interaction time with the caged mouse
was quantified as described previously.

(vii) Long-term social memory
In order to assess social memory, experimental male
mice were housed with an unknown control C57Bl6
male (age- and weight-matched) in the same cage,
but separated by a perforated Plexiglas cage-divider
allowing for sensory contact. After 6 days of undistur-
bed housing, the C57Bl6 male and the cage-divider
were removed, and the experimental mouse was
housed for 2 days in the whole cage in order to
reinforce social memory. Then, 3 days prior to the
memory test, experimental mice were individually
placed in new, clean cages. The assessment of social
memory was done in the three-compartment box
used in the preference for social novelty test. A first
5 min session was performed to habituate experimen-
tal mice to the apparatus and the empty inverted
cups. Then, the ‘housemate’ of the experimental
mouse and an unknown male were placed in each
cup. The doors were opened and the experimental
animal was free to explore the three-compartment
box for 10 min. Video tracking was performed and
the time spent sniffing the previous housemate or
unknown mouse were determined.

(g) Statistical analyses

Data from the biochemical and immunohistochemis-
try studies were analysed by two-tailed Student’s
t-tests. Behavioural studies were analysed using two-
tailed t-tests or ANOVAs with Bonferroni post-hoc
tests for multiple comparisons using GRAPHPAD

PRISM software, v. 5.01 (Graphpad Software, La
Jolla, CA, USA).
3. RESULTS
(a) Characterization of GSK3b expression in

CamKIIcre-GSK3bflox mice

The CamKII-cre and flox GSK3b mice used to generate
CamKIIcre-flox GSK3b mice have been thoroughly
characterized previously [56,62]. Expression of the
CamKII-cre transgene in this line is known to produce
cre/flox-mediated recombination postnatally in pyrami-
dal neurons of the forebrain [55] (the Jackson lab.
http://cre.jax.org/Camk2a/Camk2a-creNano.html). In
the absence of cre, the GSK3b floxed allele results in
the production of a fully functional kinase and does
not affect GSK3b gene expression, therefore allowing
the use of cre-negative (NEG) mice as control animals
for cre-positive (POS) ones.

To confirm the expression pattern of GSK3b in
POS mice, immunostaining for GSK3b was per-
formed on brain sections from adult POS mice and
NEG littermates. The pattern of staining obtained
Phil. Trans. R. Soc. B (2012)
reveals that, in POS mice, the intensity of GSK3b lab-
elling was strongly reduced in the cortex and CA1
region of the hippocampus when compared with
NEG littermates (figure 1a). This observation was
confirmed by Western blot analyses for the total and
phosphorylated (Ser9/Ser21) forms of both GSK3b
and GSK3a. Results showed a significant reduction
of GSK3b, but not of GSK3a expression, in tissue
samples from the cortex, hippocampus and striatum,
but no changes in the cerebellum of POS mice when
compared with control NEG mice (figure 1b,c). Fur-
thermore, deletion of GSK3b did not affect the
inhibitory phosphorylation of GSK3a and residual
GSK3b in most brain areas. However, a slight increase
in GSK3a expression was found in the striatum,
whereas deletion of neuronal forebrain GSK3b
also resulted in limited reduction of the inhibitory
phosphorylation of GSK3a and GSK3b in the
cerebellum (figure 1c).

We used more specific immunohistological charac-
terization of GSK3b expression in POS mice to
quantify the loss of GSK3b at a cellular level. First,
a co-labelling of GSK3b protein and NeuN was used
to determine the number of mature neurons expres-
sing GSK3b in the cortex, hippocampus, amygdala
and nucleus accumbens (NAc). The percentage of
NeuN positive cells expressing GSK3b was reduced
by approximately 90 per cent in the cortex of POS
mice (figure 2a), whereas this reduction was only
approximately 45 per cent in the CA1 region of the hip-
pocampus (figure 2b), and remained unchanged in CA3
(figure 2c) as well as in the amygdala (figure 2d). The
ratio of striatal NeuN positive cells in the NAc and
DARPP32 positive medium spiny neurons expressing
GSK3b in the striatum was also unchanged between
NEG and POS mice (figure 2e,f ). This indicates that
reduction of striatal GSK3b levels obtained in Western
blot analysis most probably results from a lack of
GSK3b in cortico-striatal projections and not from a
reduction of GSK3b expression in striatal neurons.
(b) Effects of forebrain GSK3b inactivation on

dopamine-mediated locomotion

Mice expressing a constitutive active form of GSK3b
develop mild hyperactivity in a novel environment
[45], which is reminiscent of the behaviour of hyper-
dopaminergic DAT-KO mice [63]. Furthermore,
inhibition of GSK3b antagonizes dopamine-mediated
hyperactivity in normal mice treated with amphetamine
as well as in DAT-KO mice [28,32]. When placed in
a locomotor activity monitor for a period of 30 min,
CamKIIcre-floxGSK3b POS mice did not show any
difference in basal horizontal or vertical activity when
compared with their NEG littermates (figure 3a,b).
However, they exhibited a slight reduction in stereotypy,
as measured in the number of repeated beam breaks
over the duration of the test (figure 3c).

To further explore the role of GSK3b in the
behavioural effects of amphetamine, an effective dose
(2 mg kg–1 of body weight i.p.) was administered
to POS and NEG animals. Amphetamine induced
hyperlocomotion in NEG animals as well in POS
mice (figure 4a). Quantification of locomotor activity
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for a period of 90 min following drug administration
revealed an overall stronger responsiveness to amphet-
amine in mice with forebrain GSK3b deficiency
(figure 4b). A time-course analysis of the whole dur-
ation of the test showed that, whereas POS and
NEG mice have similar responses to amphetamine
initially, POS mice were significantly more responsive
to amphetamine, between 30 and 90 min after drug
administration (figure 4c). These observations are in
stark contrast to the overall reduction in locomotor
responsiveness to amphetamine reported in systemic
GSK3b HET mice [32], and suggests that GSK3b
expressed in different brain regions may play differential
roles in modulating responsiveness to this drug.
(c) Involvement of forebrain GSK3b in the

regulation of anxiety

Inhibition of GSK3b has been shown to replicate sev-
eral effects of antidepressants in tests measuring
behavioural despair or anxiety-like behaviours in
rodents [25,46,47,64]. We investigated the effects of
Phil. Trans. R. Soc. B (2012)
a selective GSK3b deficiency in two sets of tests
used to measure antidepressant-like effects. A first
group of tests, made up of the Porsolt FST and the
TST, was used to assess antidepressant effects on be-
havioural despair. A second group of tests, including
the OFT and the dark-light emergence test (DLET),
measured the effects of drugs on anxiety-related
behaviours. Notably, we have previously shown that
systemic inhibition of GSK3b reverses the behaviou-
ral effects of 5-HT deficiency resulting from the
expression of mutant R439H-tph2 in the DLET and
the TST [25].

Systemic inhibition of GSK3b using inhibitors or
genetic approaches can mimic the effects of antidepress-
ants and lithium by increasing the time spent by animals
struggling against an inescapable situation (figure 5a)
[46,64]. By convention, this is indicated by a reduction
in the animal’s immobility time. When assessed in these
two tests, cre-positive GSK3b flox mice did not differ
from their cre-negative littermates in immobility time,
as measured over the last 4 min (figure 5b,c) or over
the whole duration of the test (data not shown). This
suggests that neither cortical nor hippocampal CA1
GSK3b is responsible for the behavioural response to
GSK3b inhibition.

In contrast, results obtained using the OFT and the
DLET revealed a marked reduction in the basal level of
anxiety-related responses in POS mice when compared
with control NEG littermates (figure 6). In DLET,
reduction in anxiety levels was detected by measuring
rodents’ decreased avoidance of an ‘anxiogenic’ brightly
illuminated compartment that is opposed to a ‘non-
anxiogenic’ dark compartment. When exposed to the
DLET, POS mice presented a markedly reduced latency
to cross to the illuminated chamber (figure 6a), spent
more time and were more active in this compartment
(figure 6b,c), resulting in an overall increase in total
activity (figure 6d). In the OFT, reduced anxiety is
characterized by a reduction in the avoidance of the
‘anxiogenic’ centre of an illuminated open field. In this
test, POS mice displayed a higher number of centre
entries and an augmentation of the time spent in the cen-
tral area. Overall, results obtained using the DLET and
OFT in mice with forebrain GSK3b deficiency are
consistent with results obtained following a systemic
inhibition of GSK3b [25,36], indicating a probable
contribution of cortex and/or hippocampus CA1
GSK3b in the regulation of anxiety-related behaviours.
(d) Involvement of forebrain GSK3b in

social behaviour

In addition to the action on anxiety and depressive-like
behaviour, the reduction of GSK3b activity also
antagonizes the effects of a reduced 5-HT synthesis on
social behaviour and aggression in mice expressing
mutant TPH2 [25]. In order to assess the involve-
ment of forebrain GSK3b in social behaviour, male
CamKIIcre-GSK3bflox mice were assessed in two
different tests, the preference for social novelty test
and a social interaction test. Because there are few
studies on the role of GSK3b in regulating social behav-
iour, systemic GSK3b HET mice were also used as a
contrast group in these tests. We are aware that
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GSK3b HETand CamKIIcre-GSK3bflox could not be
compared directly, owing to differences in genetic back-
grounds and level of local GSK3b deficiency [48,65].
However, a critical side-by-side comparison of the be-
haviour between these and CamKIIcre-GSK3bflox
mice can nevertheless provide indications about the
possible contribution of non-forebrain GSK3b in the
regulation of social behaviour.

The social preference test is designed to measure
mice’s preferences for social interactions and their
Phil. Trans. R. Soc. B (2012)
capacity to distinguish and prefer a new social partner
over a partner that is already known. In the first part of
the test, the animal is placed in the centre of a three-
compartment box and may choose between two
adjoining compartments containing either a caged
novel social interaction partner or a caged novel
object. In the second part of the test, the mouse is
given the choice between a known interaction partner
and a novel one. Interestingly, inhibition of GSK3 by
lithium has been reported to restore social preference
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in mice lacking the fragile X syndrome-associated gene
fmr1, but not in WT control mice [49]. Furthermore,
mice lacking the GSK3a isoform display an absence of
Phil. Trans. R. Soc. B (2012)
social preference in this test [50]. When assayed
in the social preference tests, GSK3b HET and cre-
positive GSK3bflox mice did not exhibit overt deficits
(figure 7). As may be expected [51,59], during the first
session of the preference for social novelty test, mice of
all genotypes spent more time with the unknown part-
ner than with the object (figure 7). Similarly, GSK3b
HET mice and cre-positive GSK3bflox mice and
their respective control littermates also showed a
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comparable preference for the new interaction partner
over the old one in the second portion of the tests.
However, in contrast to their NEG littermates, POS
mice spent significantly more time sniffing the first
interaction partner than did their NEG littermates
(figure 7b). This slightly higher interaction with an
unknown mouse, as opposed to an object, was
observed only in mice with forebrain GSK3b
depletion. This observation suggests that social inter-
est may be higher in these mice. However, even if
the social preference test gives an evaluation of socia-
bility and social memory, it is important to note that,
in this case, the tested mouse is free to explore the
entire apparatus, whereas the interacting partners are
always encaged. On the one hand, this situation does
not fully allow reciprocal social behaviours. On
the other hand, the sniffing time of tested mice can
be affected by different stress signals emitted by the
caged interaction partner.

In an effort to evaluate sociability under more eco-
logical conditions, a social interaction test was
performed. In this case, both tested mice and their
interaction partners were free to explore the environ-
ment and interact with each other. Active social
interaction time, made up by time during which two
unfamiliar interacting mice are engaged in social
activities within an open area, was measured. We
observed no difference between GSK3b HET and
their WT littermates in this test (figure 8). In contrast,
the total active social interaction time was higher in
POS mice than in NEG mice (figure 8a). More specifi-
cally, the number of social events initiated by POS
mice was elevated (figure 8b), and the number of
specific types of social events such as followings
and allogroomings was particularly increased (see
the figure 8c,d, and electronic supplementary material,
movies S1 and S2). Taken together, these data support
the idea of a predominant role of forebrain GSK3b
activity in the regulation of social behaviours.

Given the effects observed on anxiety and social be-
haviour, we then explored whether forebrain GSK3b
is also involved in resilience to social stress. Recent evi-
dence suggested a role for GSK3b in regulating
resilience in a social defeat model of depression [66].
A repeated social defeat test was performed, followed
by measurement of the social avoidance that it induced.
In WT GSK3bmice, the repeated social defeat protocol
induced a reduction of interest for an unknown mouse,
characterized by social avoidance (figure 9a). A similar
response to repeated social defeat was also observed
in both POS and NEG GSK3bflox (figure 9b). Interest-
ingly, GSK3bHET mice did not develop social aversion
after chronic social defeat (figure 9a), thus supporting
the contribution of GSK3b inhibition in resilience.
Furthermore, even if GSK3b HET mice show poor
memory reconsolidation [67], social memory does not
seem to be affected (figure 9c), allowing us to exclude
the hypothesis relating the absence of social avoidance
to a lack of long-term social memory. This indicates
that global GSK3b haploinsufficiency is sufficient to
prevent social aversion, as induced by the repeated
social defeat test, and that forebrain GSK3b is not a
major factor explaining the lack of social avoidance
observed in GSK3b HET mice.
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4. DISCUSSION
Modulation of 5-HT neurotransmission either by anti-
depressants or second-generation antipsychotics is
central to psychopharmacology [4,6,10,68]. Among
different signalling molecules that can be regulated by
5-HT, several lines of evidence support a role for
GSK3 in signalling networks underlying the develop-
ment and treatment of mental illnesses [21,26,69].
In line with this, systemic inhibition of GSK3b has
been shown to have effects similar to those of mood
stabilizers, antipsychotics or antidepressants in several
behavioural tests used to model endophenotypes of psy-
chiatric disorders in rodents. Several psychiatric drugs
(e.g. lithium, clozapine, fluoxetine and ketamine) have
been demonstrated to inhibit GSK3 in vivo [20]. Inter-
estingly, drugs from these different categories are often
prescribed jointly as part of combination therapies.
However, different types of therapeutic agents still
have very different clinical efficacies in treating distinct
mental illnesses [19]. This suggests that inhibition of
GSK3 may be a core mechanism of action for different
classes of psychiatric drugs, but that modulation of
other signalling pathways may be responsible for their
clinical differences [19]. Alternatively, most of these
drugs bind directly to specific cell-surface proteins that
are expressed by restricted neuronal populations
[6,70]. Therefore, various classes of pharmacological
compounds may differentially modulate GSK3 activity
in distinctive neuronal networks.

In order to understand the specific contributions of
GSK3 inhibition in the effects of psychiatric drugs, it
is important to map the roles played by these ubiquitous
protein kinases in the modulation of behaviour to differ-
ent brain areas. As a first step towards this objective, we
have generated conditional knockout mice lacking
GSK3b postnatally in pyramidal forebrain neurons.
Characterization of protein expression in these mice
confirmed that the expression of GSK3b is supres-
sed in most pyramidal neurons of the cortex and in
approximately 50 per cent of neurons of the hippocam-
pal CA1 region. Furthermore, regional suppression of
GSK3b activity did not overly affect the expression of
brain GSK3a. Therefore, it is highly probable that
most behavioural modifications observed in POS
CamKIIcre-GSK3bflox mice result from a major con-
tribution of cortical GSK3b. However, a limitation
of this animal model is that contributions of CA1
pyramidal neurons from the hippocampus cannot be
excluded. More delimited GSK3b deletion using trans-
genic mice or viral vectors expressing cre in a more
restricted pattern will be needed to further refine the
functional neuroanatomical mapping of GSK3b activity
in neuronal functions that we have initiated here.

That being said, results from the behavioural charac-
terization of CamKIIcre-GSK3bflox mice clearly
indicate major differences in the consequences of corti-
cal and subcortical GSK3b inhibition on a variety of
behavioural responses associated with mood regulation.
Among effects that can be associated with systemic inhi-
bition of GSK3, three were not affected or affected in a
different way in mice with forebrain GSK3b deficiency.
Locomotor response to amphetamine is reduced both in
GSK3b HETand in mice treated with GSK3 inhibitors
[32,45,65,71]. In contrast, no reduction of locomotor
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Figure 8. Social interaction test in an open area. (a) Time (in sec) spent in active social interaction during a 20 min
period. (b) Number of social events initiated by each of the interacting mice during the entire testing session. (c) Number
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response to amphetamine was noted in cre-positive
GSK3bflox mice, therefore suggesting that this effect
of GSK3b inhibition is mediated by subcortical struc-
tures. Considering that amphetamine exert its effects
Phil. Trans. R. Soc. B (2012)
by triggering dopamine release [72], the most probable
neuronal type responsible for the inhibition of amphet-
amine responses by GSK3 inhibitors would be medium
spiny neurons of the striatum, in which activation of
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D2 dopamine receptors in response to amphetamine
activates GSK3b [29]. Further studies using more
specific gene promoters such as D1 and D2 dopamine
receptors to drive cre expression in specific subtypes of
medium spiny neurons [73] should allow definite confir-
mation of this hypothesis in the future.

Systemic inhibition of GSK3b has also been shown to
exert antidepressant-like effects in the TST (figure 5a)
and the FST [25,36,46–48,64,71]. Interestingly, these
Phil. Trans. R. Soc. B (2012)
effects were absent in cre-positive GSK3bflox mice.
This observation is concordant with recent data showing
an antidepressant-like effect of lentiviral vectors expres-
sing siRNA targeted against GSK3b transcripts in the
hippocampal dentate gyrus of stressed mice using these
same behavioural paradigms [74]. Therefore, it seems
possible that the overall antidepressant-like effects of
systemic GSK3b inhibition can be explained, at least
in part, by an inhibition of this kinase in the dentate
gyrus. However, further studies examining the possible
contribution of other brain areas will be needed to
more firmly establish this possibility.

Examination of the role of brain GSK3b in social pre-
ference indicates that, under normal conditions, partial
systemic inhibition of GSK3b or a more pronounced
reduction of GSK3b expression in forebrain neurons
does not affect social preference or the recognition
and preference of a novel interaction partner. This is
in contrast with data obtained in GSK3a knockout
mice, which showed a lack of social preference in this
same test [50] and further support the possibility that
both isoforms of GSK3 may differently contribute to
social preference. In contrast, examination of the contri-
bution of GSK3b in the behavioural response to
repeated social defeat stress showed, for the first time,
that a global reduction of GSK3b expression is suffi-
cient to confer resilience. However, this effect appears
to be dependent on subcortical structures, because
mice with cortical GSK3b deficiency were not resilient
in this same test. Interestingly, an activation of GSK3b
in the nucleus accumbens has recently been reported
to correlate with the development of social defeat in sus-
ceptible mice [66]. Moreover, expression of a dominant
negative form of GSK3 in this same brain region
increased resilience. This is concordant with our
observations (figure 9) and suggests that a modulation
of GSK3b activity in subcortical structures such as
the nucleus accumbens may play a major role in mediat-
ing resilience to social stress, at least in this specific
rodent model.

The overall effect of forebrain GSK3b depletion is a
reduction in anxiety that is combined with an increase
in the initiation of social interaction. Interestingly,
this pattern of behavioural response can be compatible
with a modulation of 5-HT1A receptor signalling.
Previous studies have shown that GSK3b would be
mostly activated by 5-HT2A receptors and inhibited
by 5-HT1A receptors [22,23,26]. Therefore, the
removal of GSK3b expression in the forebrain in POS
CamKIIcre-GSK3bflox mice may partly mimic the
effects of an activation of 5-HT1A receptor. Activation
of this receptor by specific agonists has anxiolytic effects
in mice and humans [75,76], whereas inactivation
of 5-HT1A receptors in mice is anxiogenic [77–79].
Similarly, modulation of the activity of this receptor in
the prefrontal cortex has also been associated with the
regulation of social behaviour and aggression [80,81].

Alternatively, behavioural changes induced by fore-
brain GSK3b inhibition may also result from changes
in responsiveness to glutamatergic neurotransmission.
Indeed, activation of GSK3b in cortical neurons
antagonizes glutamatergic responses by reducing
NMDA-receptor cell surface expression [82]. Similarly,
GSK3 activity has also been shown to be essential for
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reduced glutamate neurotransmission during hippo-
campal long-term depression [31,83]. While these
explanations remain speculative, they fit relatively well
with our behavioural observations in POS CamKIIcre-
GSK3bflox mice, but further detailed investigations
will be needed to clarify this issue.

Overall, changes in the regulation of GSK3b
activity have been associated with the actions of several
psychoactive drugs, including those affecting 5-HT
functions in the treatment of mood disorders. Our
characterization of mice lacking this kinase in forebrain
pyramidal neurons has shown that its contribution to
different mood-associated behaviour is highly neuroa-
natomically defined. A better understanding of the
functions of GSK3b in different brain areas may be the
key to unravel the mechanisms by which it contributes
to the regulation of mood.

All procedures and experiments were approved by Laval
University’s Animal Care Committee, in agreement with
guidance and regulations of the Canadian Council on
Animal Care.

We acknowledge the dedication of Nathalie Bouchard and
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