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Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous
groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering
problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony
clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of
the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and
its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on
similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces
results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other
methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering.

1. Introduction

Clustering divides data into homogeneous subgroups, with
some details disregarded to simplify the data. Clustering
can be viewed as a data modeling technique that provides
for concise data summaries. The objective of the division is
twofold: data items within one cluster must be similar to
each other, whereas those within different clusters should be
dissimilar. Problems of this type arise in a variety of disci-
plines ranging from sociology and psychology to commerce,
biology, computer science, and civil engineering. Clustering
is thus utilized in many disciplines and plays an important
role in a broad range of applications; because of this, cluster-
ing algorithms continue to be the subject of active research.
Consequently, numerous clustering algorithms exist that can
be classified into four major traditional categories: partition-
ing, hierarchical, density-based, and grid-based clustering
methods [1].

The ant-based clustering algorithm is a relatively new
method inspired by the clustering of corpses and larval
sorting activities observed in actual ant colonies. The first
studies in this field were conducted by Deneubourg et al. [2],

who proposed a basic model that allowed ants to randomly
move, pick up, and deposit objects in clusters according to
the number of similar surrounding objects. This basic model
has been successfully applied in robotics. Lumer and Faieta
[3] modified the basic model into the LF algorithm, which
was extended to numerical data analysis. The algorithm’s
basic principles are straightforward: ants are modeled as
simple agents that randomly move in their environment, a
square grid with periodic boundary conditions. Data items
that are scattered within this environment can be picked up,
transported, and dropped by the agents. The picking and
dropping operations are biased by the similarity and density
of the data items within the ants’ local neighborhood: ants
are likely to pick up data items that are either isolated or
surrounded by dissimilar ones, and they tend to drop them in
the vicinity of similar ones. In this way, clustering and sorting
of the elements are obtained on the grid.

As a recently developed bionics optimization algorithm,
the ant colony clustering algorithm possesses several advan-
tages over traditional methods such as flexibility, robustness,
decentralization, and self-organization [4–6]. These proper-
ties are well suited in distributed real-world environments. It
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has thus been applied in many fields such as data mining [4],
graph partitioning [7], and text mining [8].

There has been a significant amount of research recently
conducted on the improved performance and wider applica-
tions of ant colony clustering algorithms.

Ramos and Merelo [8] studied ant-based clustering with
different ant speeds in the clustering of text documents.
Wu and Shi [13] studied similarity coefficients and proposed
a simpler probability conversion function. Moreover, the
clustering algorithm was combined with a K-means method
to solve document clustering. The new algorithm was called
CSIM [14]. Xu et al. [15] suggested an artificial ant sleep-
ing model (ASM) and an adaptive artificial ant clustering
algorithm (A4C) to solve the clustering problem in data
mining. In the ASM model, each datum was represented
by an agent within a two-dimensional grid environment.
In A4C, the agents formed into high-quality clusters by
making simple moves based on local information within
neighborhoods. An improved ant clustering algorithm called
Adaptive Time-Dependent Transporter Ants (ATTA) was
proposed [16] that incorporated adaptive and heterogeneous
ants and time-dependent transporting activities. Yang et al.
[17, 18] proposed a multi-ant colony approach for clustering
data that consisted of parallel and independent ant colonies
and a queen ant agent. Each ant colony had a differentmoving
speed and probability conversion function. A hypergraph
model was used to combine the results of all parallel ant
colonies. Kuo et al. [19] proposed a novel clustering method
called an ant K-means (A𝐾) algorithm. The A𝐾 algorithm
modified the K-means to locate objects in a cluster with
probability that was updated by the pheromone, whereas the
rule of the updating pheromone was based on total cluster
variance. An improved ant colony optimization-based clus-
tering technique was proposed using nearest-neighborhood
interpolation, and an efficient arrhythmia clustering and
detection algorithm based on a medical experiment and
new ant colony clustering technique for a QRS complex
was also presented [20]. Ramos et al. [21] proposed a new
clustering algorithm called Hyperbox Clustering with Ant
Colony Optimization (HACO) that clustered unlabeled data
by placing hyperboxes in the feature spaces optimized by
the ant colony optimization. A novel ant-based clustering
algorithm called ACKwas proposed [9] that incorporated the
merits of kernel-based clustering into ant-based clustering.
Tan et al. [22] proposed a simplified ant-based clustering
(SABC) method based on existing research of a state-of-the-
art ant-based clustering system. Tao et al. [12] redefined the
distance between two data objects and improved the strategy
for ants letting go and picking up data objects, thus proposing
an improved ant colony clustering algorithm.Wang et al. [10]
proposed an improvement to the ATTA called Logic-Based
Cold Ants (LCA). In LCA, ant populations initially pick
up data objects and calculate the current locations suitable
for dropping; they then take the data objects not suitable
for putting down directly to various objects that maximize
the similarity value of the position. Moreover, to allow for
the rapid formation of class cluster centers, a logic-based
similarity measure was proposed in which an ant classifies
objects as similar or dissimilar and groups similar objects

while detaching dissimilar ones. Xu et al. [23] proposed a
constrained ant clustering algorithm that was embeddedwith
a heuristic walk mechanism based on a random walk to
address constrained clustering problems that give pairsmust-
link and cannot-link constraints. More recently, Inkaya et
al. [24] presented a novel clustering methodology based on
ant colony optimization (ACO-C). In this ACO-C, two new
objective functions were used that adjusted for compactness
and relative separation. Each objective function evaluated the
clustering solution with respect to the local characteristics of
the neighborhoods.

Although many of these recently created methods appear
promising, there are still shortcomings with ant colony
clustering algorithms. Because ants move randomly and
spend significant time finding proper places to drop or pick
up objects, the computational efficiency and accuracy of
ant colony clustering algorithms are low, particularly for
large and complicated engineering problems. To overcome
these shortcomings, a new abstraction ant colony clustering
algorithm is proposed that uses a data combination mecha-
nism. In this new algorithm, the random projections of the
patterns are modified to improve computational efficiency
and accuracy. The performance of the new algorithm is
verified by actual datasets and compared with those of the ant
colony clustering algorithm and other algorithms proposed
in previous studies.

2. Ant Colony Clustering
Algorithm and Abstraction Ant Colony
Clustering Algorithm

2.1. Ant Colony Clustering Algorithm. To correctly describe
the proposed algorithm, the basic principle underlying the
ant colony clustering algorithm must be introduced.

First, data objects are randomly projected onto a single
plane. Next, each ant chooses an object at random and picks
up, moves, and drops the object according to a picking-
up or dropping probability based on the similarity of the
current object to objects in the local region. Finally, clusters
are collected from the plane.

The ant colony clustering algorithm is described by the
following pseudocode:

(1) Initialization: initialize the number of ants 𝑁, the
entire number of iterations 𝑀, the local region side
length 𝑠, the constant parameters 𝛼 and 𝑐, and the
maximum speed Vmax.

(2) Project the data objects onto a plane; that is, assign a
random pair of coordinates (𝑥, 𝑦) to each object.

(3) Each ant that is currently unloaded chooses an object
at random.

(4) Each ant is given a random speed V;
(5) For 𝑖 = 1, 2, . . . ,𝑀

For 𝑗 = 1, 2, . . . , 𝑁
The average similarity of all of the clustered
objects is calculated.
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If the ant is unloaded, the picking-up prob-
ability 𝑃

𝑝
is computed. If 𝑃

𝑝
is greater than

a random probability and an object is not
simultaneously picked up by another ant,
the ant picks up this object, marks itself
as loaded, and moves this object to a new
position; otherwise, the ant does not pick
up this object and randomly selects another
object.
If the ant is loaded, the dropping prob-
ability 𝑃

𝑑
is computed. If 𝑃

𝑑
is greater

than a random probability, the ant drops
the object, marks itself as unloaded, and
randomly selects a new object; otherwise,
the ant continues moving the object to a
new position.

End

End
(6) For 𝑖 = 1, 2, . . . , 𝑛 // for all objects [18]

If an object is isolated (i.e., the number of neigh-
bors it possesses is less than a given constant)
then it is labeled as an outlier;
otherwise, give this object a cluster labeling
number and recursively label the same number
to those objects that are neighbors of this object
within the local region.

End

The operations of the algorithm are described in detail in
the following section.

2.1.1. The Average Similarity Function. We assume that an ant
is located at site 𝑟 at time 𝑡 and that it finds an object 𝑜

𝑖
at that

site. The average similarity density of object 𝑜
𝑖
with the other

objects 𝑜
𝑗
present in its neighborhood 𝑓(𝑜

𝑖
) is given by

𝑓 (𝑜
𝑖
) = max

{

{

{

0,
1

𝑠2

⋅ ∑

𝑜𝑗∈Neigh𝑠×𝑠(𝑟)
[1 −

𝑑 (𝑜
𝑖
, 𝑜
𝑗
)

𝛼 (1 + (V − 1) /Vmax)
]

}

}

}

,

(1)

where 𝛼 defines a parameter used to adjust the similarity
between objects. The parameter V defines the speed of the
ants, and Vmax is the maximum speed. V is distributed
randomly in [1, Vmax]. Neigh𝑠×𝑠(𝑟) denotes a square of 𝑠 × 𝑠
sites surrounding site 𝑟. 𝑑(𝑜

𝑖
, 𝑜
𝑗
) is the distance between two

objects 𝑜
𝑖
and 𝑜

𝑗
in the space of attributes. The Euclidean

distance is used, which can be determined as

𝑑 (𝑜
𝑖
, 𝑜
𝑗
) = √

𝑚

∑

𝑘=1

(𝑜
𝑖𝑘
− 𝑜
𝑗𝑘
)
2

, (2)

where𝑚 defines the number of attributes.

From (1), we note that the parameter 𝛼 affects the number
of clusters and the algorithm convergence rate. Objects with
greater degrees of similarity have greater values of 𝛼 and tend
to cluster. Thus, the number of clusters decreases, and the
algorithm becomes faster. On the contrary, if 𝛼 is smaller,
the objects have smaller degrees of similarity, and the larger
group will split into smaller groups. Thus, the number of
clusters will increase, and the algorithm will become slower.

2.1.2. The Probability Conversion Function. The probability
conversion function is a function of 𝑓(𝑜

𝑖
), and its purpose

is to convert the average similarity 𝑓(𝑜
𝑖
) into picking-up

and dropping probabilities. This approach is based on the
following: the smaller the similarity of a data object is (i.e.,
fewer objects belong to the same cluster in its neighborhood),
the higher the picking-up probability is, and the lower the
dropping probability is. However, the larger the similarity
is, the lower the picking-up probability is (i.e., objects are
unlikely to be removed from dense clusters), and the higher
the dropping probability is. According to this principle,
the sigmoid function is used as the probability conversion
function.

The picking-up probability for a randomly moving ant
that is currently not carrying an object to pick up an object
is given by

𝑃
𝑝
= 1 − Sigmoid (𝑓 (𝑜

𝑖
)) , (3)

where 𝑓(𝑜
𝑖
) is the average similarity function.

Using the same method, the dropping probability for a
randomly moving, loaded ant to deposit an object is given by

𝑃
𝑑
= Sigmoid (𝑓 (𝑜

𝑖
)) . (4)

The sigmoid function has a natural exponential form of

Sigmoid (𝑥) = 1 − 𝑒
−𝑐𝑥

1 + 𝑒−𝑐𝑥
, (5)

where 𝑐 is a slope constant that can speed up the algorithm
convergence if increased.

It must be pointed out that, during the clustering pro-
cedure, some objects may exist (called outliers) with high
dissimilarity to all other data elements. The outliers prevent
ants from dropping them, which slows down the algorithm
convergence. Here, we choose a larger parameter 𝑐 to force
the ant to drop the outliers at the later stage of the algorithm.

2.2. Abstraction Ant Colony Clustering Algorithm. The pro-
cess behind the abstraction ant colony clustering algorithm is
described as follows.

(1) Initialization. 𝑛 data objects are put into 𝐾 data reactors
randomly (𝐾 ≤ 𝑛), where one data reactor is corresponding
to one data type.

(2) Iteration. Initially,𝑁 ants are assigned to one data reactor,
and this data reactor is the first visited data reactor. Each ant
will traverse 𝑀 (the maximum iteration step) steps to visit
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each data reactor. In this process, the most dissimilar data
objects in each visited data reactor will be selected to be put
into a suitable data reactor.

During the iteration process, each ant should abide by the
following rules:

(1) If one ant visits one data reactor while only one data
object exists in this data reactor, this data object will be picked
up with probability 1 to be dropped at suitable data reactor.

(2) If an ant is not loading a data object and the visited
data reactor contains more than one data object, then the
average similarity 𝑓(𝑜

𝑖
) of all the data objects 𝑜

𝑖
(𝑜
𝑖
∈

cluster) in the current data reactor (the similarity of one data
object to the other data object in the current data reactor) is
computed. The ant picks up the most dissimilar data object
with probability𝑝

𝑝−mean(𝑜𝑖) and randomly visits another data
reactor.

The average similarity 𝑓(𝑜
𝑖
) of the data object 𝑜

𝑖
in the

current data reactor can be described as

𝑓 (𝑜
𝑖
)

=

{{{

{{{

{

1

𝑠 − 1
∑

𝑜𝑗∈cluster(𝑜𝑖)

[

[

1 −
√
𝑑 (𝑜
𝑖
, 𝑜
𝑗
)

𝛼

]

]

, if 𝑓 > 0,

0, otherwise,

(6)

where 𝑓(𝑜
𝑖
) is the average similarity of data 𝑜

𝑖
to other data

objects 𝑜
𝑗
(𝑜
𝑗
̸= 𝑜
𝑖
, 𝑜
𝑗
∈ cluster) in the current data reactor, 𝑠

is the number of data objects in the data reactor visited by the
current ant, cluster(𝑜

𝑖
) is the data reactor that the data object

𝑜
𝑖
belongs to, 𝑑(𝑜

𝑖
, 𝑜
𝑗
) is the Euclidean distance, and 𝛼 defines

a parameter used to adjust the similarity between objects.
The picking-up probability of a data object 𝑜

𝑖
in the

current data reactor can be described as

𝑝
𝑝
(𝑜
𝑖
) = (

𝑘
𝑝

𝑘
𝑝
+ 𝑓 (𝑜

𝑖
)
)

2

, (7)

where 𝑘
𝑝
is a threshold for picking up one data object.

If 𝑓(𝑜
𝑖
) ≪ 𝑘

𝑝
, then 𝑝pick off ≈ 1. This is to say that the ant

will pick up this data object, which is not similar to other data
objects in this data reactor, with a very high probability. On
the contrary, if𝑓(𝑜

𝑖
) ≫ 𝑘

𝑝
, then𝑝pick off ≈ 0, which shows that

the object 𝑜
𝑖
is similar to other data objects in data reactor, and

this object has a very small probability of being picked up.
(3) If an ant that has loaded the data object 𝑜

𝑖
visits one

data reactor that contains more than one data object, the ant
will place the data object into the current data reactor, and
the “average similarity” of all the data objects in the current
data reactor can be computed. Next, the most dissimilar data
objects in the current data reactor will be picked up with a
probability 𝑝

𝑝−mean(𝑜𝑖). Finally, the ant loads this new data
object and visits the next data reactor.

(4) If an ant with one data object loaded has not found the
data reactor to drop the data object after𝑀 steps, the ant will
construct a new data reactor to place the data object into.

When the number of clustering types is larger than the
practical number of data object types, one principle of data
reactor combination is applied. Before the most dissimilar

data object in the current data reactor visited by the ant is
selected, the current data reactor will be compared with the
other data reactors, and the data reactors that are similar to a
given degree will be combined with some probability.

The combination probability of data reactors can be
described as

𝑝combine (𝑖)

=

{

{

{

2 similar (𝑐
𝑖
, 𝑐
𝑗
) , if similar (𝑐

𝑖
, 𝑐
𝑗
) < 𝑘
𝑐
;

1, otherwise,

(8)

where similar(𝑐
𝑖
, 𝑐
𝑗
) is the similarity function of the two data

reactors 𝑖 and 𝑗, which can be described as

similar (𝑐
𝑖
, 𝑐
𝑗
) = 1 −

𝑑 (𝑐
𝑖
, 𝑐
𝑗
)

𝛼
1

, (9)

where 𝑑(𝑐
𝑖
, 𝑐
𝑗
) is the Euclidean distance between the two data

reactors’ centers, 𝑐
𝑖
is the center of data reactor 𝑖 and 𝑐

𝑗
is

the center of data reactor 𝑗, 𝛼
1
is a parameter used to adjust

the similarity between data objects, and 𝑘
𝑐
is a threshold

parameter.
If similar(𝑐

𝑖
, 𝑐
𝑗
) ≪ 𝑘

𝑐
, the combination probability will

be 𝑝combine ≈ 0, and if similar(𝑐
𝑖
, 𝑐
𝑗
) ≫ 𝑘

𝑐
, the combination

probability will be 1.

(3) Termination. The termination condition is that the differ-
ence of the clustering results for neighboring iterations is less
than 10𝑒 − 5.

The flowchart of the abstraction ant colony clustering
algorithm is as shown in Figure 1.

Because the combination mechanism for data reactors
used in the proposed new algorithm is the abstraction of
clustering mechanism of similar data used in traditional ant
colony clustering algorithms, the proposed new algorithm is
called the abstraction ant colony clustering algorithm.

3. Applications

To verify the abstraction ant colony clustering algorithm and
to compare it with other clustering algorithms, some classical
datasets are used.

3.1. IrisDataset. TheIris dataset is constructed using data that
describe the features of iris plants. The dataset contains 150
instances with three classes of 50 instances each, where each
class refers to a type of iris plant. To each instance, there are
four attributes.The three classes are Iris setosa, Iris versicolour,
and Iris virginica.The four attributes describe the flower of iris
plants, which are the sepal length, sepal width, petal length,
and petal width.The Iris dataset was created by Fisher in July
1988 and is perhaps the best known dataset in the pattern
recognition literature. A detailed description of this dataset
can be found at http://archive.ics.uci.edu/ml/datasets/Iris.

For comparison purposes, the traditional K-means algo-
rithm [25], the ant colony clustering algorithm, and the
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Data initialized to supposed data
reactors (types) randomly

Ants initialized to data 
reactors randomly

Ants move data to suitable
types or construct new reactors

Reactors combination

Termination condition

Output the clustering results

Figure 1: Flowchart of the abstraction ant colony clustering algo-
rithm.

abstraction ant colony clustering algorithm are all applied to
this dataset. In this example, the dataset consists of numeric-
type data; therefore, the K-means algorithm is used.

In this study, the clustering accuracy is computed by the
following equation:

𝑟 = 1

−
(number of samples that is classified mistakenly)

(number of all samples)
.

(10)

For the dataset whose clustering results are known pre-
viously, such as the datasets used in this study, the number
of samples that is classified mistakenly can be obtained
easily through comparisons of the clustering results by the
clustering method with the known clustering results. This
idea is used by many researchers in their studies [9–12]. For
example, Zhang and Cao [9] defined one evaluation function
to evaluate the performance of the clustering algorithms,
which is called “error rate (ER),” using this idea. Moreover,
Hatamlou [11] proposed one criterion to evaluate the perfor-
mance of the clustering algorithms, which is also called “error
rate (ER),” using this idea. But the definitions of two ERs are
different.

It must be pointed out that, in the tables of the results, the
“number of samples that is classifiedmistakenly” is simplified
to “mistaken partition numbers.”

Based on testing and experience, the parameters of the ant
colony clustering algorithm and the abstraction ant colony
clustering algorithm are as follows.

For the ant colony clustering algorithm,

𝑁 = 20,

𝑀 = 15000,

𝑠 = 3,

𝛼 = 1.5,

Vmax = 0.85,

𝑐 = 3.

(11)

For the abstraction ant colony clustering algorithm,

𝑀 = 15000,

𝑘
𝑝
= 0.1,

𝑘
𝑐
= 0.15,

𝛼 = 1.5,

𝑁 = 20,

𝛼
1
= 0.4,

𝑠 = 3.

(12)

Using these parameters, the clustering results of 20
random tests using the three algorithms are shown in Table 1.

As seen in Table 1, the average number of iteration
steps of the ant colony clustering algorithm is lower than
that of the K-means algorithm, and the average number
of iteration steps of the abstraction ant colony clustering
algorithm is lower than that of the ant colony clustering
algorithm. Therefore, the abstraction ant colony clustering
algorithm has the fastest average iteration speed.The average
processing time of the abstraction ant colony clustering
algorithm (32.52 s) is faster than the ant colony clustering
algorithm (36.86 s) but slower than the K-means algorithm
(26.61 s). Therefore, although the computational efficiency
of the abstraction ant colony clustering algorithm is better
than that of the ant colony clustering algorithm, theK-means
algorithm is more efficient. However, the K-means algorithm
requires a priori knowledge of the number of clusters. In
this study, it is provided with the correct number of clusters.
Thus, it is unfair to compare the processing times of the
two ant colony clustering algorithms with that of the K-
means algorithm. Moreover, the average accuracy of the ant
colony clustering algorithm is 90.43%, compared to 81.61%
for the K-means algorithm and 96.34% for the abstraction
ant colony clustering algorithm.The computational accuracy
of the abstraction ant colony clustering algorithm is superior
to the ant colony clustering algorithm and the K-means
clustering algorithm. Based on the gap between theminimum
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Table 1: Clustering results of 20 random tests for Iris dataset.

𝐾-means algorithm Ant colony clustering
algorithm

Abstraction ant colony
clustering algorithm

Average iteration steps of running 20 cycles 6342.43 4151.4 2235.25
Average processing time of running 20 cycles (s) 26.61 36.86 32.53
Minimum mistaken partition numbers 15 9 3
Maximum mistaken partition numbers 41 25 11
Average mistaken partition numbers 27.59 14.36 5.49
Average accuracy of running 20 cycles (%) 81.61 90.43 96.34

Table 2: Comparison of computational effect for Iris dataset.

Clustering algorithms Average accuracy (%) Lowest accuracy (%) Highest accuracy (%)
LF algorithm [9] 90.34 — —
ATTA [9] 91.57 — —
ACP [9] 91.41 — —
ACP-F [9] 94.17 — —
ACK-I [9] 93.04 — —
ACK [9] 95.03 — —
LCA [10] 90 — —
Particle swarm optimization [11] 89.94 — —
Big Bang-Big Crunch algorithm [11] 89.95 — —
Gravitational search algorithm [11] 89.96 — —
Black hole algorithm [11] 89.98 — —
Improved ant colony clustering algorithm [12] 91 92 93
Ant colony clustering algorithm in this study 90.43 83.33 94
Abstraction ant colony clustering algorithm in this study 96.34 92.67 98

and maximum mistaken partition numbers, the computing
stability of the abstraction ant colony clustering algorithm is
superior to the others, with 8 mistaken partition numbers
for the abstraction ant colony clustering algorithm, 16 for
the ant colony clustering algorithm, and 26 for the K-means
algorithm.

To compare the computational effects of the ant colony
clustering algorithm and the abstraction ant colony clustering
algorithm with other clustering algorithms used in previous
studies, the average accuracy for each algorithm is summa-
rized in Table 2.

As seen in Table 2, the average accuracy of the abstraction
ant colony clustering algorithm, at 96.34%, is the best for
all fourteen algorithms. The second-best result is 95.03% for
the ACK algorithm [9], whereas the worst result is 89.94%
for the particle swarm optimization method [11]. Moreover,
the average accuracies of all ant colony-based clustering
algorithms are greater than 90%, whereas the results of other
algorithms are all less than 90%.Therefore, algorithms based
on ant colonies outperform other algorithms such as particle
swarm optimization, Big Bang-Big Crunch, gravitational
search, and black hole algorithms. In examining the results
of all ant colony-based clustering algorithms, the best average
accuracy was 96.34% for the abstraction ant colony clustering

algorithm proposed in this study.The worst ant colony-based
average accuracy was 90% for the LAC algorithm [10].

In assessing the last three algorithms in Table 2, the
average accuracy of the abstraction ant colony clustering
algorithm is the best, but the difference between the highest
accuracy and lowest accuracy, at 5.33%, is not the least; this
distinction belongs to the improved ant colony clustering
algorithm [12], at 1%. This means that the computational
stability of the improved ant colony clustering algorithm is
the best. Because the highest accuracy and lowest accuracy
values for the other referenced algorithms were not available,
their computational stabilities cannot be analyzed.

3.2. Animal Dataset. The Animal, or Zoo database, dataset
was created by Forsyth in May 1990. The dataset contains 101
instances and 7 classes as well as a simple database containing
17 Boolean-valued attributes. The “type” attribute appears to
be the class attribute. A detailed description of this dataset
can be found at http://archive.ics.uci.edu/ml/datasets/Zoo.

For comparison purposes, the traditional K-modes algo-
rithm [26], ant colony clustering algorithm, and abstraction
ant colony clustering algorithm are all applied to this dataset.
In this example, the dataset consists of the Boolean type data;
therefore, the K-modes algorithm is used.
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Table 3: Clustering results of 20 random tests for Animal dataset.

𝐾-modes algorithm Ant colony clustering
algorithm

Abstraction ant colony
clustering algorithm

Average iteration steps of running 20 cycles 31524.56 12425.52 8673.73
Average processing time of running 20 cycles (s) 27.71 37.52 34.36
Minimum mistaken partition numbers (including Mammalia) 6 4 4
Maximum mistaken partition numbers (including Mammalia) 32 25 19
Average mistaken partition numbers (including Mammalia) 17 10.4 6.32
Average accuracy of running 20 cycles (%) 83.17 89.7 93.74

In this study, the clustering accuracy is also computed by
(10).

Based on testing and experience, the parameters of the ant
colony clustering algorithm and the abstraction ant colony
clustering algorithm are as follows.

For the ant colony clustering algorithm,

𝑁 = 30,

𝑀 = 15000,

𝑠 = 3,

𝛼 = 0.7,

Vmax = 0.85,

𝑐 = 5.

(13)

For the abstraction ant colony clustering algorithm,

𝑀 = 15000,

𝑘
𝑝
= 0.2,

𝑘
𝑐
= 0.05,

𝛼 = 0.7,

𝑁 = 20,

𝛼
1
= 0.5,

𝑠 = 3.

(14)

Based on these parameters, the clustering results of 20
random tests using the three algorithms are given in Table 3.

As seen in Table 3, the average iteration steps of the
abstraction ant colony clustering algorithm are the least,
which is 8673.73, the second is that of the ant colony
clustering algorithm, and the biggest is that using K-modes
algorithm, which is 31524.56. The average processing time of
theK-modes algorithm (27.71 s) is the least, the second is that
of the abstraction ant colony clustering algorithm (34.36 s),
and the biggest is that using ant colony clustering algorithm
(37.52 s). Therefore, although the computational efficiency of
the abstraction ant colony clustering algorithm is better than
that of the ant colony clustering algorithm, the K-modes
algorithm is more efficient. However, theK-modes algorithm

Table 4: Comparison of computational effect for Animal dataset.

Clustering algorithms
Average
accuracy

(%)
LF algorithm [9] 78.24
ATTA [9] 88.84
ACP [9] 79.74
ACP-F [9] 87.23
ACK-I [9] 81.8
ACK [9] 87.3
Ant colony clustering algorithm in this study 89.7
Abstraction ant colony clustering algorithm in this study 93.74

requires a priori knowledge of the number of clusters. In
this study, it is provided with the correct number of clusters.
Thus, it is unfair to compare the processing times of the two
ant colony clustering algorithms with that of the K-modes
algorithm. Moreover, the average accuracy of the ant colony
clustering algorithm is 89.7%, compared to 83.17% for the K-
modes algorithm and 93.74% for the abstraction ant colony
clustering algorithm. Therefore, the computational accuracy
of the abstraction ant colony clustering algorithm is superior
to the ant colony clustering algorithm and the K-modes
clustering algorithm. Based on the gap between theminimum
and maximum mistaken partition numbers, the computing
stability of the abstraction ant colony clustering algorithm
is the best, with 15 mistaken partition numbers, while that
of the K-modes clustering algorithm is the poorest, with 26
mistaken partition numbers.

To compare the computational effects of the ant colony
clustering algorithm and the abstraction ant colony clustering
algorithm with other clustering algorithms used in previous
studies, the average accuracy for each algorithm is summa-
rized in Table 4.

As seen in Table 4, in the eight algorithms, all algorithms
are from ant colony algorithm. And the average accuracy
of the abstraction ant colony clustering algorithm, at the
93.74%, is the best. The second-best is 89.7% for the ant
colony clustering algorithm, whereas the worst result is
78.24% for the LF algorithm. Therefore, in those ant colony-
based clustering algorithms, the computational results of the
abstraction ant colony clustering algorithm are the best.
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Table 5: Clustering results of 20 random tests for Soybean (Small) dataset.

𝐾-means algorithm Ant colony clustering
algorithm

Abstraction ant colony
clustering algorithm

Average iteration steps of running 20 cycles 23342.43 13785.22 7235.25
Average processing time of running 20 cycles (s) 34.39 52.35 47.42
Minimum mistaken partition numbers 5 4 3
Maximum mistaken partition numbers 28 21 17
Average mistaken partition numbers 15.65 10.37 7.37
Average accuracy of running 20 cycles (%) 84 92.51 97.35

3.3. Soybean (Small) Dataset. The Soybean dataset is Michal-
ski’s famous Soybean disease database, which was donated in
1987. This dataset contains 47 instances, and each instance
is described using 35 attributes. All attributes appear with
numeric values. The dataset contains four classes with
instances of 10, 10, 10, and 17.

A detailed description of this dataset can be found at
http://archive.ics.uci.edu/ml/datasets/Soybean+(Small).

For comparison purposes, the traditional K-means algo-
rithm, the ant colony clustering algorithm, and the abstrac-
tion ant colony clustering algorithm are all applied to this
dataset. In this example, the dataset also consists of numeric-
type data; therefore, the K-means algorithm is used too.

In this study, the clustering accuracy is also computed by
(10).

Based on testing and experience, the parameters of the ant
colony clustering algorithm and the abstraction ant colony
clustering algorithm are as follows.

For the ant colony clustering algorithm,
𝑁 = 50,

𝑀 = 15000,

𝑠 = 3,

𝛼 = 0.6,

Vmax = 0.85,

𝑐 = 6.

(15)

For the abstraction ant colony clustering algorithm,
𝑀 = 15000,

𝑘
𝑝
= 0.1,

𝑘
𝑐
= 0.15,

𝛼 = 0.5,

𝑁 = 20,

𝛼
1
= 0.3,

𝑠 = 3.

(16)

Based on these parameters, the clustering results of 20
random tests using the three algorithms for the Soybean
dataset are as shown in Table 5.

As seen in Table 5, the average iteration steps of the
abstraction ant colony clustering algorithm are the least,
which is 7235.25, the second is that of the ant colony
clustering algorithm, which is 13785.22, and the biggest is
that using K-means algorithm, which is 23342.43. Therefore,
the iteration steps of the abstraction ant colony clustering
algorithm are the best. The average processing time of the K-
means algorithm (34.39 s) is the least, the second is that of the
abstraction ant colony clustering algorithm (47.42 s), and the
biggest one is that using the ant colony clustering algorithm
(52.35 s). Therefore, although the computational efficiency
of the abstraction ant colony clustering algorithm is better
than that of the ant colony clustering algorithm, theK-means
algorithm is more efficient. However, the K-means algorithm
requires a priori knowledge of the number of clusters. In
this study, it is provided with the correct number of clusters.
Thus, it is unfair to compare the processing times of the two
ant colony clustering algorithms with that of the K-means
algorithm. Moreover, the average accuracy of the ant colony
clustering algorithm is 92.51% compared to 84% for the K-
means algorithm and 97.35% for the abstraction ant colony
clustering algorithm. Therefore, the computational accuracy
of the abstraction ant colony clustering algorithm is superior
to the ant colony clustering algorithm and the K-means
clustering algorithm. Based on the gap between theminimum
and maximum mistaken partition numbers, the one for the
abstraction ant colony clustering algorithm is the least, which
is 14, while the one for the K-means clustering algorithm is
the biggest, which is 23. Therefore, the computing stability of
the abstraction ant colony clustering algorithm is the best. It is
clear that the abstraction ant colony clustering algorithm can
solve this problem with a high degree of accuracy and speed.

To compare the computational effects of the ant colony
clustering algorithm and the abstraction ant colony clustering
algorithm with other clustering algorithms used in previous
studies, the average accuracy for each algorithm is summa-
rized in Table 6.

As seen in Table 6, the result by the LCA algorithm is the
best, whose average accuracy is 100%. The second result is
97.35%, which is using the abstraction ant colony clustering
algorithm. The worst result is 92.51%, which is by the ant
colony clustering algorithm. It is clear that, for this dataset,
in three algorithms from the ant colony algorithm, the
computational results of the abstraction ant colony clustering
algorithm are not the best.
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Table 6: Comparison of computational effect for Soybean dataset.

Clustering algorithms
Average
accuracy

(%)
LCA [10] 100
Ant colony clustering algorithm in this study 92.51
Abstraction ant colony clustering algorithm in this study 97.35

Therefore, the abstraction ant colony clustering algorithm
can solve the clustering problem with a high degree of
accuracy and speed. However, its results are the best for the
most problems but not for all problems.

3.4. Yeast Dataset. The Yeast dataset contains 1484 instances
and each instance is described using 8 attributes. All
attributes appear with numeric values. The dataset contains
10 classes with instances of 463, 429, 244, 163, 51, 44, 35, 30,
200, and 5. A detailed description of this dataset can be found
at http://archive.ics.uci.edu/ml/datasets/Yeast.

For comparison purposes, the traditional K-means algo-
rithm, the ant colony clustering algorithm, and the abstrac-
tion ant colony clustering algorithm are all applied to this
dataset.

In this study, the clustering accuracy is also computed
using (10).

Based on testing and experience, the parameters of the ant
colony clustering algorithm and the abstraction ant colony
clustering algorithm are as follows.

For the ant colony clustering algorithm,

𝑁 = 55,

𝑀 = 15000,

𝑠 = 3,

𝛼 = 0.45,

Vmax = 0.85,

𝑐 = 8.

(17)

For the abstraction ant colony clustering algorithm,

𝑀 = 15000,

𝑘
𝑝
= 0.05,

𝑘
𝑐
= 0.25,

𝛼 = 0.45,

𝑁 = 20,

𝛼
1
= 0.25,

𝑠 = 3.

(18)

Based on these parameters, the clustering results of 20
random tests using the three algorithms are given in Table 7.

As seen in Table 7, the average processing time of the K-
means algorithm (54.34 s) is the least, the second is that of
the abstraction ant colony clustering algorithm (105.31 s), and
the biggest is that using the ant colony clustering algorithm
(123.57 s). Therefore, the computational efficiency of the
abstraction ant colony clustering algorithm is better than
that of the ant colony clustering algorithm. Moreover, the
average accuracy of ant colony clustering algorithm is 82.86%
compared to 75.42% for the K-means algorithm and 88.56%
for the abstraction ant colony clustering algorithm.Therefore,
the computational accuracy of the abstraction ant colony
clustering algorithm is superior to the ant colony clustering
algorithm and the K-means clustering algorithm. Based on
the gap between the minimum and maximum mistaken
partition numbers, the one for the abstraction ant colony
clustering algorithm is the least, which is 166, while the one
for the K-means clustering algorithm is the biggest, which is
354. Therefore, the computing stability of the abstraction ant
colony clustering algorithm is the best.

4. Sensitivity Analysis of Main
Parameters for Abstraction Ant Colony
Clustering Algorithm and Ant Colony
Clustering Algorithm

To conduct a sensitivity analysis of the main parameters for
the abstraction ant colony clustering algorithm and the ant
colony clustering algorithm, the Iris dataset is applied in this
study.

4.1. AbstractionAnt ColonyClusteringAlgorithm. Theparam-
eters 𝑘

𝑝
, 𝑘
𝑐
, 𝛼
1
, and 𝛼 are analyzed because they significantly

influence the abstraction ant colony clustering algorithm.
In this study, the convergence speed is represented by the
iterations number and the computation performance is rep-
resented by the clustering accuracy.

The relationship between 𝑘
𝑝
and the convergence speed of

the algorithm is shown in Figure 2. The relationship between
𝑘
𝑝
and the performance of the algorithm is shown in Figure 3.
Based on Figures 2 and 3, the relationship between 𝑘

𝑝

and convergence speed is a monotonic function, whereas its
relationship with computation performance is a unimodal
function. As 𝑘

𝑝
increases, the computation speed and ampli-

tude will increase. However, the variable law of computation
performance is complex. If 𝑘

𝑝
is less than 0.1, then computa-

tion performancewill improve as𝑘
𝑝
increases, whereas if 𝑘

𝑝
is

greater than 0.1, then computation performance will decline
as 𝑘
𝑝
increases.

The relationship between 𝑘
𝑐
and the convergence speed of

the algorithm is shown in Figure 4. The relationship between
𝑘
𝑐
and the performance of the algorithm is shown in Figure 5.
As seen in Figure 4, the relationship between 𝑘

𝑐
and the

convergence speed is approximately defined as a downward
straight line; that is, as 𝑘

𝑐
increases, the computation speed

will decrease. As seen in Figure 5, the relationship between
𝑘
𝑐
and computation performance is a unimodal function.

When 𝑘
𝑐
is less than 0.15, computation performance will

decline as 𝑘
𝑐
increases, whereas when 𝑘

𝑐
is greater than 0.15,

computation performance will improve as 𝑘
𝑐
increases.
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Table 7: Clustering results of 20 random tests for Yeast dataset.

𝐾-means algorithm Ant colony clustering
algorithm

Abstraction ant colony
clustering algorithm

Average processing time of running 20 cycles (s) 54.34 123.57 105.31
Minimum mistaken partition numbers 178 102 73
Maximum mistaken partition numbers 532 412 239
Average mistaken partition numbers 364.77 254.36 169.77
Average accuracy of running 20 cycles (%) 75.42 82.86 88.56
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Figure 2: Relationship between 𝑘
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and convergence speed of the

abstraction ant colony clustering algorithm.
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Figure 3: Relationship between 𝑘
𝑝
and performance of the abstrac-

tion ant colony clustering algorithm.

The relationship between𝛼
1
and the convergence speed of

the algorithm is shown in Figure 6. The relationship between
𝛼
1
and the performance of the algorithm is shown in Figure 7.
As seen in Figure 6, the relationship between 𝛼

1
and the

convergence speed is defined as an upward straight line; that
is, as 𝛼

1
increases, the computation speed increases. As seen
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Figure 4: Relationship between 𝑘
𝑐
and convergence speed of the

abstraction ant colony clustering algorithm.
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Figure 5: Relationship between 𝑘
𝑐
and performance of the abstrac-

tion ant colony clustering algorithm.

in Figure 7, the relationship between 𝛼
1
and computation

performance is a unimodal function.When𝛼
1
is less than 0.4,

computation performance improves as 𝛼
1
increases, whereas

when 𝛼
1
is greater than 0.4, computation performance

declines as 𝛼
1
increases.
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and convergence speed of the

abstraction ant colony clustering algorithm.
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tion ant colony clustering algorithm.

The relationship between 𝛼 and the convergence speed of
the algorithm is shown in Figure 8. The relationship between
𝛼 and the performance of the algorithm is shown in Figure 9.

As seen in Figures 8 and 9, the relationship between 𝛼
and the convergence speed is a monotonic function; that is,
as 𝛼 increases, the iterations number will decrease or the
computation speed will increase. However, the relationship
between 𝛼 and computation performance is a unimodal
function. When 𝛼 is less than 1.5, the clustering accuracy
increases as𝛼 increases; that is, the computation performance
will improve. When 𝛼 is greater than 1.5, the clustering
accuracy will decrease as 𝛼 increases; that is, the computation
performance will decline.

4.2. Ant Colony Clustering Algorithm. The parameters 𝑁, 𝛼,
and 𝑐 are analyzed because they significantly influence the ant
colony clustering algorithm.
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Figure 8: Relationship between 𝛼 and convergence speed of the
abstraction ant colony clustering algorithm.
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Figure 9: Relationship between 𝛼 and performance of the abstrac-
tion ant colony clustering algorithm.

The relationship between𝑁 and the convergence speed of
the algorithm is shown in Figure 10.The relationship between
𝑁 and the performance of the algorithm is shown in Figure 11.

Based on Figures 10 and 11, the relationship between
𝑁 and convergence speed is approximately a straight line,
whereas its relationship with computation performance is a
unimodal function. As 𝑁 increases, the computation speed
will increase. However, the variable law of computation
performance is complex. As seen in Figure 7, if 𝑁 is less
than 20, then computation performance will improve as 𝑁
increases, whereas if𝑁 is greater than 20, then computation
performance will decline as 𝑘

𝑝
increases. Therefore, for this

example, the suitable value of𝑁 should be 20.
The relationship between 𝛼 and the convergence speed of

the algorithm is shown in Figure 12.The relationship between
𝛼 and the performance of the algorithm is shown in Figure 13.
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Figure 10: Relationship between 𝑁 and convergence speed of the
ant colony clustering algorithm.
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colony clustering algorithm.
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Figure 12: Relationship between 𝛼 and convergence speed of the ant
colony clustering algorithm.
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Figure 13: Relationship between 𝛼 and performance of the ant
colony clustering algorithm.
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Figure 14: Relationship between 𝑐 and convergence speed of ant
colony clustering algorithm.

As seen in Figures 12 and 13, the relationship between 𝛼
and the convergence speed is one monotonic function; that
is, as 𝛼 increases, the iterations number will decrease or the
computation speed will increase. However, the relationship
between 𝛼 and the computation performance is unimodal
function. When 𝛼 is less than 1.5, the clustering accuracy will
increase as 𝛼 increases; that is, the computation performance
will be better. When 𝛼 is bigger than 1.5, the clustering
accuracy will decrease as 𝛼 increases; that is, the computation
performance will be poorer. Therefore, for this example, the
suitable value of 𝛼 is 1.5.

The relationship between 𝑐 and the convergence speed of
the algorithm is shown in Figure 14.The relationship between
𝑐 and the performance of the algorithm is shown in Figure 15.

As seen in Figures 14 and 15, the relationship between 𝑐
and the convergence speed is one monotonic function. As 𝑐
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Figure 15: Relationship between 𝑐 and performance of ant colony
clustering algorithm.

increases, the computation speed will increase too. But at the
same time, the increasing amplitude of computation speed
will decrease. The turning point is near 𝑐 = 2.5. However,
the relationship between 𝑐 and the computation performance
is also a unimodal function. When 𝑐 is less than 3.5, the
clustering accuracy will increase as 𝑐 increases; that is to say,
the computation performance will be better.When 𝑐 is bigger
than 3.5, the clustering accuracy will decrease as 𝑐 increases;
that is to say, the computation performance will be poorer.
Therefore, for this example, the suitable value of 𝑐 is 3.

Comparing the analysis results of two algorithms, the
following conclusions can be drawn. The influence law of
parameter𝑁 for the ant colony clustering algorithm is similar
to those of parameters 𝛼

1
and 𝑘

𝑝
for the abstraction ant

colony clustering algorithm. Moreover, the influence laws
of parameter 𝛼 for the ant colony clustering algorithm and
the abstraction ant colony clustering algorithm are similar.
The influence law of parameter 𝛼 on the convergence speed
for the ant colony clustering algorithm is similar to that
of parameter 𝑘

𝑐
for the abstraction ant colony clustering

algorithm. However, the influence laws on the computation
performance for two parameters are completely opposite.
Moreover, the influence law of parameter 𝑐 for the ant colony
clustering algorithm is similar to those of parameters 𝛼 for
the abstraction ant colony clustering algorithm.

5. Conclusions

Clustering analysis is an important tool and descriptive
task used in many disciplines and applications to identify
homogeneous groups of objects based on the values of their
attributes. The ant colony clustering algorithm is a swarm-
intelligent method for solving clustering problems that is
inspired by the behavior of ant colonies in clustering their
corpses and sorting their larvae. This algorithm can solve
complicated clustering problems very well. However, the ant
colony clustering algorithm exhibits several shortcomings
with large complicated engineering problems such as poor

computational efficiency and accuracy. To overcome these
shortcomings, a new abstraction ant colony clustering algo-
rithm using a data combination mechanism is proposed.
Using three actual datasets (an Iris dataset, a Zoo dataset, and
a Soybean dataset), the performance of the new algorithm
is verified and compared with an ant colony clustering
algorithm and other algorithms proposed in previous studies.
The results show that the abstraction ant colony clustering
algorithm can solve the clustering problem with a high
degree of accuracy and speed while providing very good
computing stability. For most datasets, the abstraction ant
colony clustering algorithm results are superior. In other
words, the computational accuracy of the abstraction ant
colony clustering algorithm is superior to the ant colony clus-
tering algorithm and other algorithms proposed in previous
studies. In addition, the sensitivity of themain parameters for
the abstraction ant colony clustering algorithm and the ant
colony clustering algorithm is analyzed using Iris dataset to
gauge their influence on convergence speed and computation
performance.

However, the numbers of parameters for the two ant
colony clustering algorithms are large and must be selected
through testing and experience. This is the major limitation
of ant colony clustering algorithms.

Based on the analysis results in this study, the following
suggestions can be offered to conveniently select parameters.
As for the main parameters that significantly affect the
algorithms, such as 𝑘

𝑝
, 𝑘
𝑐
, 𝛼
1
, and 𝛼 for the abstraction ant

colony clustering algorithm or𝑁, 𝛼, and 𝑐 for the ant colony
clustering algorithm, these can be determined by trials based
on sensitivity analysis results for the specific datasets. Because
the influence laws of parameters for different datasets are
similar, according to the influence laws from the sensitivity
analysis results shown in this study, the suitable values of
parameters can be determined by trials.The selection process
for the suitable values may be as follows. Firstly, the initial
values of parameters should be guessed from the previous
experience or the studies. Thus, the values can be changed
by trials according to the influence laws. Finally, the suitable
values can be obtained through some trials. As a result,
the values of the main parameters should be different for
different datasets. Conversely, other parameters that barely
affect the algorithms can be determined through testing and
experience, and these parameters can be fixed for different
datasets. For example, the value of 𝑠 can be fixed as 3 or 4 for
different datasets, similar to 𝑠 = 3 being used in this study for
the three different datasets.
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