
nanomaterials

Article

Quantum Characteristics of a Nanomechanical
Resonator Coupled to a Superconducting LC
Resonator in Quantum Computing Systems

Jeong Ryeol Choi * and Sanghyun Ju
Department of Physics, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea;
shju@kyonggi.ac.kr
* Correspondence: jrchoi@kyonggi.ac.kr or choiardor@hanmail.net; Tel.: +82-31-249-1320

Received: 26 November 2018; Accepted: 21 December 2018; Published: 24 December 2018 ����������
�������

Abstract: The mechanical and quantum properties of a nanomechanical resonator can be improved
by connecting it to a superconducting resonator in a way that the resonator exhibits new phenomena
that are possibly available to novel quantum technologies. The quantum characteristics of a
nanomechanical resonator coupled to a superconducting resonator have been investigated on the
basis of rigorous quantum solutions of the combined system. The solutions of the Schrödinger
equation for the coupled system have been derived using the unitary transformation approach.
The analytic formula of the wave functions has been obtained by applying the adiabatic condition for
time evolution of the coupling parameter. The behavior of the quantum wave functions has been
analyzed for several different values of parameters. The probability densities depicted in the plane of
the two resonator coordinates are distorted and rotated due to the coupling between the resonators.
In addition, we have shown that there are squeezing effects in the wave packet along one of the two
resonator coordinates or along both the two depending on the magnitude of several parameters,
such as mass, inductance, and angular frequencies.

Keywords: nanomechanical resonator; superconducting resonator; wave function; unitary
transformation; Hamiltonian; probability density; adiabatic condition; quantum solution

1. Introduction

A rapidly developing field in nano-based science and technology is optomechanics which deals
with the interaction of light with a mechanical motion [1]. Especially, optomechanics combined with
nanomechanical resonators can be practically applied to a broad scientific domain such as quantum
information processing [2], biological sensing [3], wave detections [4], measurements of mechanical
displacement [5], and quantum metrologies [6]. Such optomechanics developed in the quantum regime
with low phonon occupation states will play a major role in future-oriented quantum technologies
with nanodevices.

The investigation of nanodevices regarding their application in quantum information science,
including quantum computing, is a promising research topic. In particular, research into nanomechanical
resonators in which the parameters are dependent on time is quite necessary for the advancement of the
quantum information technology [7–11]. Now, it is possible to design quantum computing devices with
a reliable architecture for multi-qubit operations in the GHz-frequency range by coupling mechanical
resonators to Josephson phase qubits [12]. Onchip-integrated hybrid systems, i.e., mechanical
resonators combined with phase qubits which are composed of Josephson-junction superconducting
circuits, can be used as a compact quantum information storage with a high quality factor [13]. Recent
advances in nanotechnology in the past decade enabled the fabrication of nanomechanical resonators,
of which quality factors are high in the desired frequency ranges.

Nanomaterials 2019, 9, 20; doi:10.3390/nano9010020 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://www.mdpi.com/2079-4991/9/1/20?type=check_update&version=1
http://dx.doi.org/10.3390/nano9010020
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 20 2 of 12

By connecting nanomechanical resonators to the superconducting resonators, it is possible to
enhance the properties of nanomechanical resonators. Thanks to this, many relevant experiments have
been developed and renewed, such as, for example, preparing quantum ground state in resonators [10],
a frequency up/down conversion [11], and maintaining longer coherence times [14]. In particular,
coherent feedback control of the nanoresonators can be used for cooling them to the zero-point
temperature. The cooling of a mechanical system to the ground-state has already been achieved in
several laboratories [15,16].

As the size of the resonator reaches below a critical value that is the limiting one from a
quantum mechanical point of view, there emerge distinguishing quantum features that are totally
absent in the classical world [5]. Quantum behaviors of a nanomechanical resonator were observed
through its sideband laser-cooling over the quantum ground state [17]. A deeper understanding of
quantum characteristics of nanomechanical resonators, where the device-size is within the Heisenberg
uncertainty principle limit, is crucial for utilizing them in quantum computing systems. We investigate
quantum properties of a nanomechanical resonator coupled to a superconducting resonator. This is
important for providing theoretical knowledge as background information for manipulating quantum
computing processes. Furthermore, this research may help to achieve robust quantum computations
on the basis of the restriction of the decoherence and noise.

2. Materials and Methods

Cooling of nanomechanical resonators can be achieved by the methods of sideband cooling or
measurement-based feedback cooling [18]. The former is classified as coherent feedback controlling for
a nanomechanical system, that can be carried out by coupling it to an auxiliary one such as an optical
cavity and a superconducting oscillator, whereas the systems in the letter case are controlled by means
of the feedback technique with the data which are continuously measured from homodyne detection.
In this work, we consider sideband cooling using a high-frequency superconducting LC oscillator as
an auxiliary mode in order to control the motion of the nanomechanical resonator. For more details of
the nanomechanical-resonator design and the related mechanics, refer to Refs. [10,11].

To see quantum features of the system, we first need to derive relevant quantum solutions
in a rigorous way. We introduce the Hamiltonian for describing the quantum dynamics of the
nanomechanical resonator coupled to the superconducting resonator. The Hamiltonian involves a
coupling term which is associated with the coupling of the two resonators. Due to not only such a
coupling term but the time-dependence of the parameters as well, it may be not an easy task to solve
the Schrödinger equation on the basis of the conventional separation of variables method. For this
reason, we will derive quantum solutions by making use of another method which is the unitary
transformation method [7,8,19].

It may be convenient that we unfold quantum theory after mathematically transforming the
system described by a time-dependent Hamiltonian into a simple one that can be easily managed.
By introducing a unitary operator, we will transform the original system to a system composed of two
decoupled harmonic oscillators of which quantum solutions are well known. By inversely transforming
the quantum solutions associated to the transformed system, it is possible to obtain the complete
quantum solutions in the (original) system. This is the main strategy used in this work for deriving
quantum solutions of the system whose Hamiltonian is a fairly complicated form. We will analyze
quantum properties of the system in detail on the basis of the quantum solutions evaluated in such
a way.

3. Results and Discussion

3.1. Hamiltonian and the Unitary Transformation

Superconducting systems can be used to improve the properties of other quantum systems by
connecting them to the target systems [20]. From there, we can explore new phenomena which



Nanomaterials 2019, 9, 20 3 of 12

could possibly bring about the deveopment of novel quantum technologies for quantum information
processing. For instance, a sideband cooling of a nanoresonator is possible through its modulation via
coupling it to a superconducting LC oscillator. In this case, we can regard the nanoresonator as the
target device and the superconducting LC resonator as an auxiliary one.

The Hamiltonian that describes the nanomechanical resonator combined with the superconducting
LC resonator is given by [10,11]

Ĥ = h̄ω(â† â + 1/2) + h̄Ω(b̂† b̂ + 1/2) + h̄λ(t)(â + â†)(b̂ + b̂†), (1)

where â and b̂ are annihilation operators in the nanomechanical resonator and the superconducting
resonator, respectively, and ω is the frequency of the nanoresonator, while Ω is the frequency of the
superconducting resonator. Here, we assume that the parameter λ(t) is a slowly varying function
so that we can apply the adiabatic theorem. Although we are interested in the quantum description
of the nanomechanical resonator coupled to the superconducting resonator with Equation (1),
the Hamiltonian in Equation (1) can also be used for other purposes such as the gauge field theory of
two superconducting resonators which are tunably coupled to each other [21] and quantum simulation
of bosonic modes utilizing superconducting circuits [22].

Because the operators â and b̂ are represented in the form

â =

√
mω

2h̄
x̂ +

i p̂x√
2h̄mω

, (2)

b̂ =

√
LΩ
2h̄

q̂ +
i p̂q√
2h̄LΩ

, (3)

with p̂x = −ih̄∂/∂x and p̂q = −ih̄∂/∂q, Equation (1) can be rewritten as

Ĥ =
p̂2

x
2m

+
1
2

mω2 x̂2 +
p̂2

q

2L
+

1
2

LΩ2q̂2 + 2λ(t)
√

mLωΩx̂q̂. (4)

Due to the coupling term (the last term) in the above equation, it may be somewhat difficult
to treat this system from a quantum mechanical point of view. In order to overcome this, we will
mathematically decouple the two sub-systems by means of the unitary transformation method [7,8,19].
For this purpose, we introduce a unitary operator of the form

Û = exp
[

i
4h̄

( p̂x x̂ + x̂ p̂x) ln
(√

m/L
)]

× exp
[

i
4h̄

( p̂q q̂ + q̂ p̂q) ln
(√

L/m
)]

× exp
[
− iθ(t)

h̄
( p̂x q̂− p̂q x̂)

]
, (5)

where

θ(t) =
1
2

tan−1

(
4λ(t)

√
ωΩ

Ω2 −ω2

)
. (6)

By transforming Ĥ in Equation (4) using this operator:

Ĥ′ = Û−1ĤÛ − ih̄Û−1 ∂Û
∂t

, (7)
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we have the Hamiltonian in the transformed system as

Ĥ′ =
p̂2

x + p̂2
q

2
√

mL
+

1
2

√
mLw2

1(t)x̂2 +
1
2

√
mLw2

2(t)q̂
2 + λ̇(t)β(t)( p̂x q̂− p̂q x̂), (8)

where

w2
1(t) = ω2 cos2 θ(t) + Ω2 sin2 θ(t)− 4λ(t)

√
ωΩ cos θ(t) sin θ(t), (9)

w2
2(t) = ω2 sin2 θ(t) + Ω2 cos2 θ(t) + 4λ(t)

√
ωΩ cos θ(t) sin θ(t), (10)

β(t) = − 2
√

ωΩ
Ω2 −ω2 + 16ωΩλ2(t)/(Ω2 −ω2)

. (11)

According to the adiabatic condition which is that λ(t) is a sufficiently slowly time-varying
function, we can neglect the last term in Equation (8), leading to

Ĥ′ '
p̂2

x + p̂2
q

2µ
+

1
2

µw2
1(t)x̂2 +

1
2

µw2
2(t)q̂

2, (12)

where µ =
√

mL. Thus, the two sub-systems are decoupled as can be confirmed from the above
Hamiltonian. The quantum treatment of the system relying on the transformed Hamiltonian,
Equation (12), may be much simpler than that relying on the original Hamiltonian given in Equation (4).
Two independent classical equations of motion that correspond to Ĥ′ are given by

d2x
dt2 + w2

1(t)x = 0, (13)

d2q
dt2 + w2

2(t)q = 0. (14)

In the next section, we will derive the quantum wave solutions associated to the Hamiltonian
given in Equation (12). By using the unitary relation between the wave functions in the transformed
system and those in the original system, the quantum wave solutions in the original system will be
obtained and analyzed.

3.2. Quantum Wave Solutions

From the knowledge of the formulae of quantum wave functions in the transformed system,
we can obtain the wave functions in the original system because the two systems are connected
by a unitary operator. If we denote the wave functions in the transformed system associated with
Equations (13) and (14) as ψ′n(x, t) and ψ̃′l(q, t), respectively, they can be divided into kernel and phase
parts such that

ψ′n(x, t) = φ′n(x, t) exp[iαn(t)], (15)

ψ̃′l(q, t) = φ̃′l(q, t) exp[iα̃l(t)], (16)

where αn(t) and α̃l(t) are time-dependent phases.
Let us write the corresponding Schrödinger equation as

ih̄
∂Ψ′n,l(x, q, t)

∂t
= Ĥ′Ψ′n,l(x, q, t), (17)

where Ψ′n,l(x, q, t) are wave functions in the transformed system, that are of the form

Ψ′n,l(x, q, t) = ψ′n(x, t)ψ̃′l(q, t). (18)
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Because the transformed system is composed of the two decoupled harmonic oscillators, we can
easily identify the corresponding quantum solutions, Equation (18). Then, the wave functions
Ψn,l(x, q, t) in the original system are obtained from such solutions through the use of the unitary
relation Ψn,l(x, q, t) = ÛΨ′n,l(x, q, t). According to this, the wave functions in the original system are
represented as

Ψn,l(x, q, t) = ψn(x, q, t)ψ̃l(x, q, t), (19)

where

ψn(x, q, t) = φn(x, q, t) exp[iαn(t)], (20)

ψ̃l(x, q, t) = φ̃l(x, q, t) exp[iα̃l(t)], (21)

while
φn(x, q, t) = Ûφ′n(x, t), (22)

φ̃l(x, q, t) = Ûφ̃′l(q, t). (23)

Let us now further see for the case that the coupling parameter is a positive real constant,
λ(t) = λ0. In this case, wi (i = 1, 2) and θ become constants. As a consequence, the corresponding
quantum solutions are easily identified to be

αn(t) = −(n + 1/2)w1t, (24)

α̃l(t) = −(l + 1/2)w2t, (25)

φ′n(x) =

(√
k1/π

2nn!

)1/2

Hn

(√
k1x
)

exp
[
−k1x2/2

]
, (26)

φ̃′l(q) =

(√
k2/π

2l l!

)1/2

Hl

(√
k2q
)

exp
[
−k2q2/2

]
, (27)

where ki = µwi/h̄, and Hn(l) are Hermite polynomials. The probability density, |Ψ′n,l(x, q, t)|2, in the
transformed system is illustrated in Figure 1 with the choice of (n, l) = (3, 5) under the limit that
the coupling parameter is constant. This density is not deformed because the Hamiltonian of the
transformed system does not involve the coupling term.

Figure 1. The probability density, |Ψ′n,l(x, q, t)|2, in the transformed system with the choice of
(m, L) = (1.0, 1.0) under the limit λ(t) = λ0. This is associated to the wave functions, Equation (18)
with Equations (15), (16), and (24)–(27). We used (n, l) = (3, 5), (ω, Ω) = (0.5, 0.49), h̄ = 1, and λ0 = 0.1.
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According to the relations, Equations (22) and (23), the eigenfunctions in the original system can
be derived to be

φn(x, q, t) =

(√
k1/π

2nn!

)1/2

Hn

(√
k1Q1

)
exp

[
−k1Q2

1/2
]

, (28)

φ̃l(x, q, t) =

(√
k2/π

2l l!

)1/2

Hl

(√
k2Q2

)
exp

[
−k2Q2

2/2
]

, (29)

where

Q1 =

(
m
L

)1/4

cos θ(t)x−
(

L
m

)1/4

sin θ(t)q, (30)

Q2 =

(
m
L

)1/4

sin θ(t)x +

(
L
m

)1/4

cos θ(t)q. (31)

Notice that the wave packets in the original system in the x-p coordinate have more or less been
deformed depending on the values of parameters such as m and L, and rotated in proportion to θ from
those in the transformed system. If θ is positive, the direction of rotation in the x-p plane is clockwise.
The probability densities, |Ψn,l(x, q, t)|2, are illustrated in Figures 2–4. By comparing these figures with
that in the transformed system represented in Figure 1, we can confirm the effects of the coupling on
the behavior of the wave functions. Figure 2 is for several different values of ω with the choice of
(m, L) = (1.0, 0.5) under the condition ω > Ω. The rotation angle θ can be evaluated from Equation (6)
and is given by −0.76 rad for Figure 2A, −0.18 rad for Figure 2B, and −0.05 rad for Figure 2C.

We see from Figure 2 that the uncertainty of x is relatively small than that of q, which means that
the wave packet is squeezed along the x coordinate. Such a squeezing effect becomes large as the
difference ω−Ω increases. On the other hand, Figure 3, which is for the case that ω−Ω is negative,
shows the squeeze of waves along the q-coordinate.

For the case of Figure 4 which is depicted under (m, L) = (0.5, 2.0), the wave packets
exhibit q-squeezing. However, a weak x-squeezing for the waves also takes place as ω increases
(see Figure 4C).

For the case that λ(t) is not a constant, it is necessary to use the quantum theory of time-dependent
harmonic oscillators [9,23,24] in order to manage the Schrödinger equation, Equation (17) with
Equation (12). According to that theory, the phases and the eigenfunctions in the transformed system
are given in terms of time functions as [24]

αn(t) = −(n + 1/2)γ1(t), (32)

α̃l(t) = −(l + 1/2)γ2(t), (33)

φ′n(x, t) =

(√
κ1(t)/π

2nn!

)1/2

Hn

(√
κ1(t)x

)
exp

[
− κ1(t)

2

(
1− iṡ1(t)

γ̇1(t)s1(t)

)
x2
]

, (34)

φ̃′l(q, t) =

(√
κ2(t)/π

2l l!

)1/2

Hl

(√
κ2(t)q

)
exp

[
− κ2(t)

2

(
1− iṡ2(t)

γ̇2(t)s2(t)

)
q2
]

, (35)

where κi = µγ̇i/h̄, while the time functions si(t) and γi(t) satisfy

s̈i + w2
i (t)si − C2

i /s3
i = 0, (36)

γ̇i = Ci/s2
i , (37)

where Ci are arbitrary real constants.
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Figure 2. The probability density |Ψn,l(x, q, t)|2 in the original system for several different values of ω

with the choice of (m, L) = (1.0, 0.5) under the limit λ(t) = λ0. This is associated to the wave functions
given in Equation (19) with Equations (20), (21), (24), (25), (28), and (29). The values of (ω, Ω) are (0.5,
0.49) for (A), (1.0, 0.49) for (B), and (2.0, 0.49) for (C). We used (n, l) = (3, 5), h̄ = 1, and λ0 = 0.1.
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Figure 3. This figure is the same as Figure 2C, but for a different choice of angular frequencies.
The values of (ω, Ω) are (0.49, 2.0).

From a minor evaluation through Equations (22) and (23), we have the wave solutions in the
original system:

φn(x, q, t) =

(√
κ1(t)/π

2nn!

)1/2

Hn

(√
κ1(t)Q1

)
exp

[
− κ1(t)

2

(
1− iṡ1(t)

γ̇1(t)s1(t)

)
Q2

1

]
, (38)

φ̃l(x, q, t) =

(√
κ2(t)/π

2l l!

)1/2

Hl

(√
κ2(t)Q2

)
exp

[
− κ2(t)

2

(
1− iṡ2(t)

γ̇2(t)s2(t)

)
Q2

2

]
, (39)

where Qi are given by Equations (30) and (31), but in terms of λ(t) which is not a constant.
The overall wave function is given by

Ψ(x, q, t) =
∞

∑
n=0

∞

∑
l=0

cn,lΨn,l(x, q, t), (40)

where cn,l are complex numbers that yield ∑∞
n=0 ∑∞

l=0 |cn,l |2 = 1. Thus, we have obtained the full
wave function of the system which is given by Equation (40) with Equations (19)–(21), (32), (33), (38),
and (39). This wave function is crucial in unfolding quantum theory of the system and can be used to
investigate diverse quantum characteristics that the system exhibits. We can use the wave function in
estimating various quantum variables, such as energy eigenvalues, expectation values and fluctuations
of the canonical variables, uncertainty products, Wigner distribution functions, and so on.
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Figure 4. The probability density |Ψn,l(x, q, t)|2 in the original system for several different values of ω

with the choice of (m, L) = (0.5, 2.0) under the limit λ(t) = λ0. This is associated to the wave functions
given in Equation (19) with Equations (20), (21), (24), (25), (28), and (29). The values of (ω, Ω) are (0.5,
0.49) for (A), (1.0, 0.49) for (B), and (2.0, 0.49) for (C). We used (n, l) = (3, 5), h̄ = 1, and λ0 = 0.1.

4. Conclusions

The quantum properties of the nanomechanical resonator coupled to a superconducting resonator
via a small time-varying coupling constant have been investigated. We have used an adiabatic
condition under the assumption that the time-variation of the coupling parameter is sufficiently
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slow. Due to the presence of the coupling term in the Hamiltonian, we cannot develop quantum
theory for x and q coordinates independently in the original system. Hence, by means of the unitary
transformation approach, we have decoupled x and q coordinates from each other in the expression of
the Hamiltonian.

Through the transformation performed using a unitary operator, the Hamiltonian became a
manageable one. Not only did the coupling term no longer appear in the transformed Hamiltonian,
but the transformed system has also become much more simplified compared to the original one.
More precisely speaking, the transformed system is composed of two independent harmonic oscillators
with time-dependent angular frequencies. We accordingly have easily identified quantum solutions
in the transformed system. By inverse transformation of those quantum solutions, we have obtained
complete quantum solutions in the original system.

The exact wave functions derived here can be used for evaluating various quantum quantities
of the coupled resonators, such as expectation values and fluctuations of the canonical variables,
uncertainties, and energy eigenvalues, which are necessary for identifying the quantum characteristics
of the system. It is also possible to derive Wigner distribution function of the system, which serves
in describing signal processing, from the wave functions given in the text. Wigner distribution
function can be used not only in estimating quantum corrections from classical statistical mechanics
but also in demonstrating nonclassicalities of the system through quantum probability distribution.
Terraneo et al. used Wigner distribution functions for the purpose of developing an efficient way for
extracting information from the wave functions of quantum algorithms associated with quantum
computation [25].

The probability densities which are the absolute square of the wave functions were illustrated
in detail in the limit that λ is a constant. The wave packets in the x-q plane are rotated and
deformed compared to those in the transformed system. The rotation direction is counterclockwise
when ω − Ω is positive. Due to the coupling of the two sub-systems, the wave packets of the
system underwent x-squeezing, q-squeezing, or both depending on the values of m, L, and the
frequency difference ω−Ω. For the situation of x-squeezing (q-squeezing), the wave amplitude of the
nanomechanical (the superconducting) resonator is small and, as a consequence, the nanomechanical
(the superconducting) resonator has less energy. The energy of the nanomechanical resonator flows to
the superconducting resonator, and vice versa [10,18]. From this process, the superconducting resonator
extracts information about the nanomechanical resonator in order to control the nanoresonator.

The techniques for sideband cooling, frequency conversion, and state-swapping through coherent
control of the resonator are important in quantum information systems, especially, in the realization
of quantum computers. For the purpose of developing such techniques, the use of nanomechanical
resonators is more effective than the use of nanophotonic resonators [11]. It is also noticeable that
quantum data bus in quantum computers could be designed using nanomechanical resonators through
their controllable coupling with qubits [2,26].

Our analysis regarding the wave functions of the system is useful for understanding the
quantum behavior of the combined system. If we consider that theoretical analysis of a quantum
system starts from the wave functions rigorously derived from the Schrödinger equation, the wave
functions developed in this work are the basic tool for elucidating quantum properties of the system.
Exact analyses of the quantum behaviors of nanoresonators based on such clarified quantum properties
are necessary for realizing efficient quantum information processing.

The advantage of information processing and physical simulations using quantum computing
devices rather than classical computers is that they make it possible to solve time-consuming problems
within a polynomial time, such as factorizing large numbers which is classically very difficult to solve.
The theoretical research for demonstrating the characteristics of quantum devices and their operations are
important stepping stones for the development of quantum information science. While the system we
treated here is a completely solvable one using our method, we also expect that quantum characteristics
of more complicated namomecanical systems, including nanoresonators described by higher-order
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nonlinearity such as Duffing nonlinearity [27] and/or newly designed nanophotonic resonators [28,29],
would be analyzed in the near future using the same method. Nanomechanical resonators are used for
the detection of quantum states, spins, thermal fluctuations, etc., whereas nanophotonic resonators as
passive optical components are mainly used for detecting light–matter interactions.

The coupled system investigated in this work can be used as a basic component of quantum
computing systems. Quantum computation as a next generation technology should be developed
together with other quantum information science such as quantum communication and quantum
cryptography. Moreover recent development of neural computation through neural network
with multi-core optical fibers [30,31] enhances the performance of the technology in quantum
information science.

As a next task, the investigation of geometric phases that appear in the wave functions when
parameters vary over time may be a good research topic which can be fulfilled on the basis of
the quantum theory developed in the present work. Geometric phase can be applied not only
to fundamental physics [23] but also to various next generation quantum technologies, such as
quantum computing [32], interferometric imaging of microstructures [33], and beam steering in
virtual/augmented reality displays [34].

Author Contributions: J.R.C. proposed the idea of the research. J.R.C. and S.J. co-wrote the manuscript. The
graphics in the text have been prepared by J.R.C. All authors read and approved the final manuscript.

Funding: This research was supported by the Basic Science Research Program of the year 2018 through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.:
NRF-2016R1D1A1A09919503).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Favero, I.; Marquardt, F. Focus on optomechanics. New J. Phys. 2014, 16, 085006. [CrossRef]
2. Rabl, P.; Kolkowitz, S.J.; Koppens, F.H.L.; Harris, J.G.E.; Zoller, P.; Lukin, M.D. A quantum spin transducer

based on nanoelectromechanical resonator arrays. Nat. Phys. 2010, 6, 602–608. [CrossRef]
3. Tetard, L.; Passian, A.; Venmar, K.T.; Lynch, R.M.; Voy, B.H.; Shekhawat, G.; Dravid, V.P.; Thundat, T.

Imaging nanoparticles in cells by nanomechanical holography. Nat. Nanotechnol. 2008, 3, 501–505. [CrossRef]
[PubMed]

4. Sawadsky, A.; Kaufer, H.; Nia, R.M.; Tarabrin, S.P.; Khalili, F.Y.; Hammerer, K.; Schnabel, R. Observation of
generalized optomechanical coupling and cooling on cavity resonance. Phys. Rev. Lett. 2015, 114, 043601.
[CrossRef] [PubMed]

5. LaHaye, M.D.; Buu, O.; Camarota, B.; Schwab, K.C. Approaching the quantum limit of a nanomechanical
resonator. Science 2004, 304, 74–77. [CrossRef] [PubMed]

6. Woolley, M.J.; Milburn, G.J.; Caves, C.M. Nonlinear quantum metrology using coupled nanomechanical
resonators. New J. Phys. 2008, 10, 125018. [CrossRef]

7. Liao, J.-Q.; Law, C.K.; Kuang, L.-M.; Nori, F. Enhancement of mechanical effects of single photons in
modulated two-mode optomechanics. Phys. Rev. A 2015, 92, 013822. [CrossRef]

8. Wang, D.-Y.; Bai, C.-H.; Liu, S.; Zhang, S.; Wang, H.-F. Optomechanical cooling beyond the quantum
backaction limit with frequency modulation. Phys. Rev. A 2018, 98, 023816. [CrossRef]

9. Choi, J.R. Hamiltonian dynamics and adiabatic invariants for time-dependent superconducting qubit-
oscillators and resonators in quantum computing systems. Adv. Math. Phys. 2015, 2015, 120573. [CrossRef]

10. Tian, L. Ground state cooling of a nanomechanical resonator via parametric linear coupling. Phys. Rev. B
2009, 79, 193407. [CrossRef]

11. Jacobs, K.; Nurdin, H.I.; Strauch, F.W.; James, M. Frequency conversion: Side-band cooling, state-swapping,
and coherent control of mechanical resonators. arXiv 2010, arXiv:1003.2653v3.

12. Cleland, A.N.; Geller, M.R. Mechanical quantum resonators. AIP Conf. Proc. 2005, 786, 396–400.
13. Pechal, M.; Arrangoiz-Arriola, P.; Safavi-Naeini, A.H. Superconducting circuit quantum computing with

nanomechanical resonators as storage. Quantum Sci. Technol. 2018, 4, 015006. [CrossRef]

http://dx.doi.org/10.1088/1367-2630/16/8/085006
http://dx.doi.org/10.1038/nphys1679
http://dx.doi.org/10.1038/nnano.2008.162
http://www.ncbi.nlm.nih.gov/pubmed/18685639
http://dx.doi.org/10.1103/PhysRevLett.114.043601
http://www.ncbi.nlm.nih.gov/pubmed/25679890
http://dx.doi.org/10.1126/science.1094419
http://www.ncbi.nlm.nih.gov/pubmed/15064412
http://dx.doi.org/10.1088/1367-2630/10/12/125018
http://dx.doi.org/10.1103/PhysRevA.92.013822
http://dx.doi.org/10.1103/PhysRevA.98.023816
http://dx.doi.org/10.1155/2015/120573
http://dx.doi.org/10.1103/PhysRevB.79.193407
http://dx.doi.org/10.1088/2058-9565/aadc6c


Nanomaterials 2019, 9, 20 12 of 12

14. Armour, A.D.; Blencowe, M.P. Probing the quantum coherence of a nanomechanical resonator using a
superconducting qubit: I. Echo scheme. New J. Phys. 2008, 10, 095004. [CrossRef]

15. O’Connell, A.D.; Hofheinz, M.; Ansmann, M.; Bialczak, R.C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.;
Wang, H.; Weides, M.; et al. Quantum ground state and single-phonon control of a mechanical resonator.
Nature 2010, 464, 697–703. [CrossRef] [PubMed]

16. Teufel, J.D.; Donner, T.; Li, D.; Harlow, J.W.; Allman, M.S.; Cicak, K.; Sirois, A.J.; Whittaker, J.D.; Lehnert, K.W.;
Simmonds, R.W. Sideband cooling of micromechanical motion to the quantum ground state. Nature 2011,
475, 359–363. [CrossRef] [PubMed]

17. Safavi-Naeini, A.H.; Chan, J.; Hill, J.T.; Alegre, T.P.M.; Krause, A.; Painter, O. Observation of quantum
motion of a nanomechanical resonator. Phys. Rev. Lett. 2012, 108, 033602. [CrossRef]

18. Jacobs, K.; Nurdin, H.I.; Strauch, F.W.; James, M. Comparing resolved-sideband cooling and measurement-
based feedback cooling on an equal footing: Analytical results in the regime of ground-state cooling.
Phys. Rev. A 2015, 91, 043812. [CrossRef]

19. Choi, J.R. Exact solution of a quantized LC circuit coupled to a power source. Phys. Scr. 2006, 73, 587–595.
[CrossRef]

20. Xiang, Z.-L.; Ashhab, S.; You, J.Q.; Nori, F. Hybrid quantum circuits: Superconducting circuits interacting
with other quantum systems. Rev. Mod. Phys. 2013, 85, 623–653. [CrossRef]

21. Peropadre, B.; Zueco, D.; Wulschner, F.; Deppe, F.; Marx, A.; Gross, R.; García-Ripoll, J.J. Tunable coupling
engineering between superconducting resonators: From sidebands to effective gauge fields. Phys. Rev. B
2013, 87, 134504. [CrossRef]
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