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Clinical Value of RNA Sequencing–
Based Classifiers for Prediction 
of the Five Conventional Breast 
Cancer Biomarkers: A Report From 
the Population-Based Multicenter 
Sweden Cancerome Analysis 
Network—Breast Initiative 

Purpose In early breast cancer (BC), five conventional biomarkers—estrogen receptor 
(ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), 
Ki67, and Nottingham histologic grade (NHG)—are used to determine prognosis and 
treatment. We aimed to develop classifiers for these biomarkers that were based on tumor 
mRNA sequencing (RNA-seq), compare classification performance, and test whether  
such predictors could add value for risk stratification.
Methods In total, 3,678 patients with BC were studied. For 405 tumors, a comprehensive 
multi-rater histopathologic evaluation was performed. Using RNA-seq data, single-gene 
classifiers and multigene classifiers (MGCs) were trained on consensus histopathology 
labels. Trained classifiers were tested on a prospective population-based series of 3,273 
BCs that included a median follow-up of 52 months (Sweden Cancerome Analysis 
Network—Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), and results 
were evaluated by agreement statistics and Kaplan-Meier and Cox survival analyses.
Results Pathologist concordance was high for ER, PgR, and HER2 (average κ, 0.920, 
0.891, and 0.899, respectively) but moderate for Ki67 and NHG (average κ, 0.734 and 
0.581). Concordance between RNA-seq classifiers and histopathology for the inde-
pendent cohort of 3,273 was similar to interpathologist concordance. Patients with  
discordant classifications, predicted as hormone responsive by histopathology but non–
hormone responsive by MGC, had significantly inferior overall survival compared with 
patients who had concordant results. This extended to patients who received no adjuvant 
therapy (hazard ratio [HR], 3.19; 95% CI, 1.19 to 8.57), or endocrine therapy alone (HR, 
2.64; 95% CI, 1.55 to 4.51). For cases identified as hormone responsive by histopathol-
ogy and who received endocrine therapy alone, the MGC hormone-responsive classifier 
remained significant after multivariable adjustment (HR, 2.45; 95% CI, 1.39 to 4.34).
Conclusion Classification error rates for RNA-seq–based classifiers for the five key BC 
biomarkers generally were equivalent to conventional histopathology. However, RNA-
seq classifiers provided added clinical value in particular for tumors determined by histo-
pathology to be hormone responsive but by RNA-seq to be hormone insensitive.
JCO Precis Oncol. © 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 
License
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INTRODUCTION

Histopathologic analysis of breast cancers (BCs) 
for estrogen receptor (ER) and progester-
one receptor (PgR) content, human epidermal 
growth factor receptor 2 (HER2) gene amplifi-
cation, and Nottingham histologic grade (NHG) 
are the mainstays of current clinical practice.1 
Increasingly, assessment of the proliferation 
antigen Ki67 is clinically recommended.2 These 
five biomarkers carry prognostic and predictive 
information and are used in combination with 
other clinicopathological factors for risk stratifi-
cation and therapy selection.1

Current evaluation of these BC biomarkers is 
imperfect. Immunohistochemistry (IHC) is the 
principal method for ER, PgR, HER2, and Ki67 
measurement, and in situ hybridization (ISH) 
methods are used to refine HER2 IHC. Among 
laboratories, significant differences exist in, for 
example, fixation, antigen retrieval, antibodies, 
chemistries, scoring systems, and interpretation. 
Accuracy and reproducibility are concerns, with 
up to 20% false-positive or false-negative ER/
PgR IHC determinations.3 Varying discordance 
has been reported for HER2 IHC and fluo-
rescent ISH (FISH).4-7 Accordingly, consensus 
guidelines emphasize standardization and vali-
dation of analytic performance.1,2,8 Lack of stan-
dardization has slowed the entrance of Ki67 into 
clinical routines.9 For example, Ki67 status was 
only moderately concordant in an interlabora-
tory reproducibility analysis.10 Thresholds for 
Ki67 positivity are evolving; cutoffs between 
20% and 29% were recommended by the 2015 
St Gallen/Vienna panel for laboratories with a 
quality assurance program.11 Swedish quality 
assurance program guidelines recommend that 
each laboratory calibrate a cutoff yearly such 
that one third of 100 consecutive occurrences 
are Ki67-high. The NHG system was developed 
to establish better standards and improve repro-
ducibility, and it is the recommended method for 
BC grading today. NHG reproducibility stud-
ies12 have reported modest agreements (pairwise 
κ, 0.43 to 0.83), which correspond to 15% to 
30% discordance.

Microarray and reverse transcriptase polymerase 
chain reaction–based gene expression analyses 
of BCs have yielded many signatures for tumor 
subtyping, prognosis, and survival, as well as for 
individual biomarkers, such as ER, PgR, HER2, 
and PTEN.13-16 Massively parallel sequencing 

of mRNA (RNA-seq) has advantages compared 
with earlier methods, including greater dynamic 
range and reproducibility and the ability to dis-
cover and quantify transcripts without a priori 
sequence knowledge. In 2010, toward imple-
mentation of molecular profiling in the clinical 
routine, we launched the Sweden Cancerome 
Analysis Network Breast Initiative (SCAN-B; 
ClinicalTrials.gov identifier: NCT02306096), 
an ongoing population-based multicenter obser-
vational study covering a wide geography of 
Sweden that prospectively invites all patients 
with BC to participate.17 To date, approxi-
mately 85% of the eligible catchment popu-
lation are included, more than 11,000 patients 
have enrolled, and blood and fresh tumor tissues 
are sampled for molecular research. In the first 
phase, all tumors are analyzed by RNA-seq gen-
erally within 1 week after surgery. Thus, for each 
BC, it will be possible to report a multitude of 
biomarker tests simultaneously on the basis of 
its RNA-sequencing data and within a clinically 
actionable time frame.

Herein, we aimed to validate the SCAN-B mul-
ticenter infrastructure and provide molecular 
analyses of clinical value by developing RNA-
seq–derived classifiers for the conventional his-
topathologic BC biomarkers ER, PgR, HER2, 
Ki67, and NHG. For this purpose, both single- 
gene classifiers (SGCs) and multigene classifi-
ers (MGCs) were developed by using a training 
cohort, the prediction accuracy was compared 
against current clinical practice across a large 
independent prospective cohort, and the classi-
fier predictions and their discrepancies to histo-
pathology were evaluated with respect to patient 
survival.

METHODS

Patients

The study (Fig 1) was approved by the Regional 
Ethical Review Board of Lund at Lund Uni-
versity and the Swedish Data Inspection group. 
Health professionals provided patient infor-
mation, and patients gave written informed 
consent. Clinical data were retrieved from the 
Swedish National Breast Cancer Registry. Diag-
nostic pathology slides, snap-frozen surgical 
tumor specimens, and formalin-fixed paraffin- 
embedded tissue blocks were retrieved for 405 
patient cases, selected for classifier training 
with an over-representation of HER2-positive 
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and ER-negative tumors (training cohort; Data 
Supplement). For classifier testing, an indepen-
dent, prospective, and population-based mod-
ern cohort of 3,273 patients with early BC was 
assembled from the ongoing SCAN-B study17 
(validation cohort; Appendix Fig A1; Data Sup-
plement).

Histopathology

For the training cohort, all biomarkers with 
the exception of Ki67 were evaluated at time 
of diagnosis. In addition, new formalin-fixed 
paraffin-embedded slides were analyzed for 
ER, PgR, and Ki67 IHC and for HER2 silver  
ISH, all performed at a central laboratory 
(Helsingborg Hospital). The diagnostic slides 
and newly stained slides were each scored in 
total by three pathologists independently by 
using 1% or greater tumor cell staining thresh-
old for hormone receptor positivity, standard 
HER2 HercepTest (Agilent/Dako, Santa Clara, 
CA) and ISH criteria (Roche/Ventana, Tucson, 
AZ), greater than 20% positive nuclei for Ki67-
high status, and the NHG scoring system (Data 

Supplement). On the basis of all evaluations, a 
consensus score for each biomarker was deter-
mined with the majority scores.

Tumor Processing and RNA Sequencing

Snap-frozen (training cohort) or RNAlater- 
preserved (validation cohort) tumor specimens 
were processed and sequenced, and the raw data 
(Data Supplement) was processed as described 
previously.17,18 All data are available from the 
NCBI Gene Expression Omnibus (Accession 
Nos. GSE81538 and GSE96058).

Classifiers

Within the 405-patient training set, SGCs were 
built for the ER, PgR, HER2, and Ki67 bio-
markers by determining the optimal expression 
thresholds for the genes ESR1, PGR, ERBB2, 
and MKI67 that maximized concordance to the 
respective histopathology consensus score (Data 
Supplement). MGCs for ER, PgR, HER2, 
Ki67, and NHG were built by training near-
est shrunken centroid (NSC)19 models with the 
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5,000 most varying genes across the training 
cohort (Data Supplement) and the histopathol-
ogy consensus scores as training labels. Within 
the training set, optimal model parameters were 
determined by using cross-validation and then 
were used to train prediction models with all 
training samples. The resulting four SGCs and 
five MGCs were used to predict the biomarker 
status of 3,273 independent validation BC sam-
ples. The biologic functional annotation clusters 
of each MGC signature were evaluated with the 
DAVID Bioinformatics Resource.20

Statistical Analysis

Histopathology evaluations and single-gene 
and multigene predictions were compared with 
agreement statistics21 (defined in the Data Sup-
plement) and balanced statistics—Cohen’s κ and 
Matthews correlation coefficient (MCC)—and 
were interpreted according to Viera and Gar-
rett.22 The κ and MCC values were comparable 
(Data Supplement), so we focused on κ. Kaplan-
Meier and Cox regression survival analyses were 
performed with overall survival as the end point. 
Multivariable Cox models included the variables 
age at diagnosis, lymph node status, tumor size, 
ER, PgR, HER2, and NHG as covariates, as rel-
evant (Data Supplement). All calculations were 
performed with R 3.2.3. P values of ≤ .05 were 
considered significant.

RESULTS

Clinical Histopathology

To estimate the inherent variability within clini-
cal histopathology and to determine a consensus 
score for each BC biomarker for classifier train-
ing, a comprehensive histopathologic analysis 
was performed for 405 patient breast tumors 
with three readings of up to two independent 
stains for the five conventional biomarkers: ER, 
PgR, HER2, Ki67, and NHG (Fig 1). With the 
diagnostic evaluation as the reference, agreement 
statistics were calculated (Table 1; Data Supple-
ment). Concordance for histopathologic evalu-
ation of ER, PgR, and HER2 into positive and 
negative groups was high; the average pairwise 
agreements were 97.3% (average κ [Aκ], 0.920), 
95.5% (Aκ, 0.891), and 96.6% (Aκ, 0.899), 
respectively, whereas agreements were lower 
for Ki67 (86.8%; Aκ, 0.734) and NHG (74.8%; 
Aκ, 0.581). As expected with minimization of 

technical and heterogeneity factors, within-slide 
concordances were slightly better than between-
slide concordances (Data Supplement).

Classifier Training

Whole-transcriptome expression profiles were 
generated for the 405 training samples using 
RNA-seq. For the SGCs, optimal thresholds 
were determined for ESR1 (which encodes the 
ER protein), PGR (PgR), ERBB2 (HER2), and 
MKI67 (Ki67) (Data Supplement). Next, MGCs  
were trained, and the training-cohort cross- 
validation accuracy was determined (balanced 
accuracy or accuracy ± standard deviation; Data 
Supplement) as follows: ER, 95.3% ± 2.4%; PgR, 
90.4% ± 2.9%; HER2, 88.5% ± 3.8%; Ki67, 
84.9% ± 3.4%; and NHG, 73.8% ± 3.9%. For 
MGCs, the NSC method has the property of 
eliminating noninformative genes (zero weight 
for the classification). The ER classifier had 459 
weighted genes; PgR, 184; HER2, 312; Ki67, 273; 
and NHG, 206 (Data Supplement). In total, 869 
genes had nonzero weights in at least one MGC 
classifier. The constituent biologic themes for 
each MGC classifier were investigated with func-
tional annotation clustering (Data Supplement).

Performance on Independent Data

To evaluate the classifiers, we tested them on 
RNA-seq data generated for 3,273 independent 
tumors from the prospective population-based 
multicenter SCAN-B study (n = 136 tumors were 
analyzed in technical replicates). Concordance 
between the diagnostic histopathologic results 
and the SGC predictions was substantial for ER 
(overall agreement, [OA], 96.1%; κ, 0.730) and 
HER2 (OA, 94.92%; κ, 0.749) and moderate 
for PgR (OA, 89.6%; κ, 0.588) and Ki67 (OA, 
76.7%; κ, 0.516; Fig 2; Appendix Figs A2 and 
A3; Data Supplement). Similarly, for the MGCs, 
concordance was substantial for ER (OA, 91.9%; 
κ, 0.606) and HER2 (OA, 92.4%; κ, 0.667), 
moderate for PgR (OA, 88.7%; κ, 0.568) and 
NHG (OA, 67.7%; κ, 0.418), and fair for Ki67 
(OA, 66.3%; κ, 0.370). For RNA-seq replicates, 
534 (98.2%) of 544 SGC classifications and 675 
(99.3%) of 680 MGC classifications were con-
cordant (Data Supplement). Similar results were 
obtained when an ER/PgR IHC cutoff of 10% 
or greater positive cells (current Swedish stan-
dard) was used.
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Table 1. Concordance Among Three Pathologist Evaluations for Five Biomarkers and Multiple Stains Within the 
Training Cohort

Biomarker Staining 
Pathology

Overall Agreement Concordance

% 95% CI κ 95% CI

ER (diagnostic IHC)

Routine (reference) — — — — — —

Versus 2 98.8 97.1 99.6 0.965 0.931 0.993

Versus 3 98.8 97.1 99.6 0.965 0.931 0.993

ER (new IHC)

Versus 1 95.8 93.4 97.5 0.873 0.810 0.929

Versus 2 96.5 94.3 98.1 0.898 0.842 0.947

Versus 3 96.5 94.3 98.1 0.898 0.842 0.947

ER summarized

Average (v reference) 97.3 95.2 98.6 0.920 0.871 0.962

Complete concordance 94.1 (381 of 
405)

PgR (diagnostic IHC)

Routine (reference) — — — — — —

Versus 2 96.0 93.7 97.7 0.904 0.855 0.947

Versus 3 96.0 93.7 97.7 0.902 0.851 0.945

PgR (new IHC)

Versus 1 96.0 93.7 97.7 0.905 0.857 0.949

Versus 2 93.8 91.0 96.0 0.853 0.793 0.906

Versus 3 95.3 92.8 97.2 0.889 0.836 0.934

PgR summarized

Average (v reference) 95.5 93.0 97.3 0.891 0.838 0.936

Complete concordance 91.1 (369 of 
405)

HER2 (diagnostic IHC)

Routine (reference) — — — — — —

Versus 2 72.8 68.2 77.1 0.628 0.568 0.686

Versus 3 75.3 70.8 79.4 0.661 0.602 0.717

HER2 (new SISH)

Clinical status 
(reference)

— — — — — —

Versus 1 96.6 94.3 98.2 0.902 0.844 0.95

Versus 2 96.4 94.1 98.0 0.895 0.837 0.945

Versus 3 96.6 94.3 98.2 0.901 0.844 0.95

HER2 SISH summarized

Average (v reference) 96.6 94.2 98.1 0.899 0.842 0.948

Complete concordance 96.3 (360 of 
374)

Ki67 (new IHC)

Reader 1 (reference) — — — — — —

Versus 2 85.9 82.2 89.2 0.717 0.648 0.783

Versus 3 87.7 84.0 90.7 0.751 0.684 0.811

(Continued on following page)
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Survival Analysis

To evaluate the possible clinical utility of our 
classifiers, we analyzed our classifier predictions 
within the validation cohort with respect to 
overall survival. Kaplan-Meier analysis revealed 
comparable patient stratification for both diag-
nostic histopathology and SGCs for the five 
biomarkers across the entire validation cohort, 
whereas the MGCs had a noticeably richer strat-
ification, particularly for the hormone receptors 
and the hormone-responsive group, defined 
by ER positivity and PgR positivity (Appen-
dix Figs A4 and A5). Therefore, and to reduce 
the number of comparisons, we focused on the 
MGCs for each biomarker and within the major 
treatment groups. Patients with tumors dis-
crepant for hormone responsiveness (hormone 
responsive by pathology but not responsive by 
MGC) had significantly worse outcomes across 
the entire cohort (hazard ratio [HR], 1.64; 95% 
CI, 1.17 to 2.28; log-rank P = .0034) as well as 
within subgroups defined by adjuvant treatment: 
no systemic therapy (HR, 3.19; 95% CI, 1.19 to 
8.57; P = .015) and only endocrine therapy (HR, 
2.64; 95% CI, 1.55 to 4.51; P < .001; Fig. 3A). 
Furthermore, MGC predictions added value to 
predictions of HER2, Ki67, and NHG (Figs 3B 

to 3D). After adjusting for important covari-
ates in multivariable Cox analyses, the MGC 
prediction for hormone nonresponsiveness was 
a significant stratifier among patients with his-
topathologic hormone-responsive disease who 
were treated with endocrine therapy, as were the 
MGC predictions discordant for HER2-negative  
or Ki67-high status in patients who received che-
motherapy with or without trastuzumab and/or 
endocrine therapy. Conversely, the NHG MGC 
became nonsignificant (Fig 3).

DISCUSSION

Despite efforts to develop better standards for 
clinical histopathologic evaluation of breast 
tumors, intra/interlaboratory and -reader vari-
ation remain problematic. Previously, several 
gene expression–based approaches for determi-
nation of known treatment-predictive biomark-
ers have been developed16,23-26; however, they 
are not widely used clinically in most countries. 
Supplementation of histopathologic biomark-
ers with biomarkers determined from RNA-seq 
profiling is becoming feasible today: costs are 
less than $300 per transcriptome, and projects, 
such as SCAN-B and others, that use RNA-seq 
in the clinic are emerging.17,27,28 In this study, we 
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Table 1. Concordance Among Three Pathologist Evaluations for Five Biomarkers and Multiple Stains Within the 
Training Cohort (Continued)

Biomarker Staining 
Pathology

Overall Agreement Concordance

% 95% CI κ 95% CI

Ki67 summarized

Average (v reference) 86.8 83.1 89.9 0.734 0.666 0.797

Complete concordance 80.0  
(324 of 405)

NHG (diagnostic H&E)

Routine (reference) — — — — — —

Versus 2 75.3 70.8 79.4 0.589 0.520 0.655

Versus 3 74.3 69.8 78.5 0.573 0.504 0.642

NHG summarized

Average (v reference) 74.8 70.3 79.0 0.581 0.512 0.649

Complete concordance 62.0  
(251 of 405)

NOTE. Within a biomarker staining group (left-most column headings), all comparisons presented are the reference evaluation (the 
diagnostic reading made in the clinical routine, or reader 1 in the case of Ki67) versus each specified reader number. Overall agreement 
was defined as the number of concordant determinations (assigned to the same class) divided by the total sample size. Complete con-
cordance was defined as the number of occurrences for which all readings were concordant across all stains divided by the total sample 
size (Data Supplement). 
Abbreviations: ER, estrogen receptor; H&E, hematoxylin and eosin; HER2, human epidermal growth factor receptor 2; IHC, immu-
nohistochemistry; NHG, Nottingham histologic grade; PgR, progesterone receptor; SISH, silver in situ hybridization.
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demonstrated that accurate classifiers for ER, 
PgR, HER2, Ki67 and NHG can be built with 
RNA-seq data, can provide a valuable comple-
ment to traditional histopathology, and repre-
sent the first of many potential clinical reports  
that can be delivered from a single RNA-seq mea-
surement. In the future, we foresee the develop-
ment, validation, and clinical implementation of a 
multitude of signatures, classifiers, and mutational 
profiles within the SCAN-B population-based 
infrastructure and RNA-seq platform.17,18 We also 
aim to use RNA-seq analyses in the performance 
of interventional clinical trials.29

The quality of machine-learned classifiers is cru-
cially dependent on the quality of the labels on 
which they have been trained. To ensure highly 
accurate pathology labels, we sought to reduce 
variance by generating consensus scores for each 
biomarker. Matched against routine histopatho-
logic evaluation, repeated ER, PgR, and HER2 
readings showed good concordance, whereas 
Ki67 and NHG had notably lower concordance 
between pathologists (Table 1). Reproducibil-
ity of tumor grading systems has long been 
debated,30 and Ki67 has been shown to have 
high intralaboratory but low interlaboratory 
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reproducibility.10 Here, the histopathologic vari-
ability was highest for Ki67 and NHG, which 
added uncertainty even to our consensus scores. 
It is unlikely that a classifier would perform bet-
ter than the quality of training labels; therefore, 
it is not surprising that our classifiers had the 
worst performance for Ki67 and NHG. More-
over, because we benchmarked our biomarker 
predictions in the validation cohort to the clin-
ical diagnostic histopathology results that con-
tained this inherent variability, we could not 
expect our classifiers to have higher accuracy 
than what is achievable within histopathology.

Generally, SGCs performed comparably to clin-
ical diagnostic pathology. The SGC ER and 
HER2 classifiers had substantial κ agreement 

compared with the clinical average, and PgR 
and Ki67 had moderate agreement. Likewise, 
our MGCs had comparable performance. The 
MGC ER and HER2 classifiers had substan-
tial agreement in line with the clinical average, 
whereas PgR and NHG classifiers had moderate 
agreement, and the Ki67 classifier had fair agree-
ment. Earlier work on mRNA-based classifiers  
for ER, PgR, and HER2 has been performed with 
microarrays, quantitative reverse-transcriptase 
polymerase chain reaction, and, recently, with 
RNA-seq and mainly has been restricted to sig-
natures of either one16,31 or few23,24,26,32,33 genes. 
The performance of our classifiers generally were 
in line with the results of these previous studies, 
which indicates the suitability of our RNA-seq 
approach (Fig 2B).
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Fig 3. Kaplan-Meier overall survival estimates and Cox regression survival analysis for multigene classifiers (MGCs) within the independent 
validation cohort. (A) Histopathologically hormone responsive (defined as estrogen receptor [ER] positive and progesterone receptor [PgR] posi-
tive) group stratified by MGC hormone responsive classification (concordant [blue curve] or discordant [gold curve] to histopathology) within the 
subgroup of patients who received (left) no adjuvant systemic therapy, (middle) endocrine therapy alone, or (right) chemotherapy with or without 
trastuzumab or endocrine therapy. (B) Human epidermal growth factor receptor 2 [HER2]–negative histopathology group stratified by HER2 
MGC for the same three treatment subgroups as in A.
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Discrepancies between RNA-seq–based classi-
fications and histopathology may be a result of 
staining and reader variations, as discussed in 
this paper. Discrepancies may also develop from 
tissue sampling and heterogeneity, in which the 
specimen used for sequencing may not be rep-
resentative of the piece selected for histopathol-
ogy. Another consideration is the biologic layer 
at which biomarker status is assessed: mRNA 
versus protein abundance or DNA copy number. 
The consequence is that a mismatch between 
mRNA biomarker prediction and histopathol-
ogy may be influenced by various mechanisms 
active between these layers, for example RNA 
silencing/interference/translation, protein sta-
bility and epitope availability, or tumor hetero-
geneity.

Despite these possible explanations for dis-
crepancies, when benchmarked against patient 
outcome, our classifiers exemplified enhanced 
stratification of patients with significant differ-
ences in overall survival (Fig 3; Appendix Figs 
A4 and A5). The fact that MGCs performed 
best overall suggests that a multigene signature 
captures the biologic signaling up- and down-
stream of the biomarker in question in a more 
consequential way than the expression of the 
single gene or protein alone. This conclusion 
is supported by each signature’s underlying bio-
logic themes and pathways (Data Supplement), 
and by our observation for technical replicates, 
in which MGCs had near-perfect reproducibil-
ity and an error rate that was approximately 
half that of SGCs (0.7% v 1.8%). Ultimately, 
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Fig 3. (Continued). (C) Ki67-high histopathology group stratified by Ki67 MGC for the same three treatment subgroups as in A. (D) Notting-
ham histologic grade (NHG) combined grade [G] 1 and G2 histopathology group stratified by NHG MGC for the same three treatment subgroups 
as in A. In each Kaplan-Meier plot, the histopathology to MGC concordant tumor cases are plotted in blue, the discordant tumor cases are plotted 
in gold, the log-rank P value is given, and the hazard ratio (HR) for discordant-versus-concordant result is given with a 95% CI and after multi-
variable (MV) Cox regression adjustment. Covariables included in the MV analysis were age at diagnosis, lymph node status, tumor size, and the 
variables denoted by the following symbols: †, ER, PgR, and NHG; ‡, ER, PgR, HER2, and NHG; §, HER2 and NHG; #, ER, PgR, and HER2.
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these results can be used to identify patients who 
may benefit from additional treatment. Another 
approach is to use clinical outcome as the train-
ing labels to develop new prognostic/predictive 
signatures.13,34 The SCAN-B material is excel-
lently suited to evaluate previously published 
signatures; as we accrue longer follow-up, we 
aim to develop RNA-seq signatures trained on 
clinical outcomes.

Ki67 has been introduced relatively recently in 
international guidelines.11 To our knowledge, 
this study is the first to develop a validated pre-
dictor for Ki67 status. The lower concordance 
between our Ki67 predictions compared with 
the clinical reference is related to the relatively 
larger Ki67 interrater disagreement seen within 
our consensus pathology evaluation, which is 
likely a consequence of the continuous nature of 
Ki67 expression and of the spectrum of prolifer-
ation activity and pathways in BC.

NHG is distinct from the other biomarkers. 
It has no single underlying gene but rather is  
a compound biomarker that consists of three 
morphologic properties: tubular differentiation, 
nuclear pleomorphism, and mitotic count. More-
over, NHG prediction is a three-class problem. 
Even for pathologists, NHG can be difficult to 
determine, as evidenced by the moderate κ and 
OA results within clinical pathology, in line with 
the literature.12 Most misclassified tumor cases 
in this study were histologically grade 1 (G1) or 
grade 3 that were misclassified as grade 2 (G2) 
by our predictor. Large interrater disagree-
ment, especially for G1 and G2, could explain 
the results of our classifier with only moderate 
OA to histopathology (67.7%). All histologic 
G1 occurrences were misclassified, which may 
have been a result of the imbalanced compo-
sition of the training set for NHG (48 of 405 
samples consensus-scored G1), or may have 
occurred because G1 is not a discrete entity 
but rather the lower end of an underlying con-
tinuous scale. Indeed, Kaplan-Meier analy-
sis showed that the curves G1 and G2 largely 
overlapped in the validation cohort (Appendix 
Fig A4). Another approach, instead of recapit-
ulation of the pathology grading scheme, could  
be to reduce the problem to a binary classifica-
tion of either low or high grade. This approach 
has been suggested by others as a viable gene- 
expression–based alternative to NHG for 

translation into a clinical setting35,36 and essen-
tially is what our NHG predictor has become.

An important question when building classi-
fiers is how many genes to use. We compared 
single-gene and multigene classifiers. When 
compared with clinical pathology, SGCs have 
slightly better concordance than MGCs for ER 
and HER2, whereas the SGC and MGC per-
formances were comparable for PgR and Ki67. 
This difference may have developed because 
these biomarkers are faithfully represented by 
their associated single genes. Another consider-
ation for classifiers is robustness toward missing 
values. MGCs may be more robust than SGCs, 
because they are able to classify tumors correctly 
even when the main gene that underlies a bio-
marker is poorly measured in a particular analy-
sis. When clinical outcome was considered, the 
survival analyses indicated that our MGCs gen-
erally contained greater potential clinical utility 
than SGCs to complement histopathology.

In summary, we have performed a systematic patho-
logic evaluation of 405 BC tumors, which resulted  
in consensus scores for the five conventional BC 
biomarkers and estimated a well-controlled best-
case scenario for the inherent uncertainty within 
clinical histopathology. With tumor RNA-seq data 
and the consensus scores, we trained SGCs and 
MGCs and evaluated the classifiers on an inde-
pendent set of 3,273 tumors. The accuracy of 
our classifiers was comparable to the inherent 
accuracy of clinical pathology and was highly 
reproducible. Classifiers based on the expression 
of single genes performed slightly better than 
MGCs for concordance to histopathology, but 
MGCs performed significantly better for strat-
ification of patients into groups with clinically 
meaningful differences in survival, in particular 
for histopathologic hormone-responsive BCs. In  
conclusion, RNA-seq–based classifiers may be suit-
able complementary diagnostics for BC, in partic-
ular for difficult diagnoses in which the classifier 
can add an additional vote toward the therapeutic 
choice. For future implementation of our MGCs 
in the clinical routine, additional health econom-
ics analyses and external validation are needed.
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Patients enrolled in SCAN-B
(n = 5,101: 87%)

Enrolled patients with tumor
biopsy sample for analysis

(n = 3,847: 75%)

Validation cohort with quality
controlled RNA-seq data

(n = 3,273: 85%)

Not enrolled
(n = 791)

No tumor tissue for study (n = 1,205)
or tumor tissue obtained after

neoadjuvant therapy or previous
biopsy (n = 49)

All patients with breast cancer in the
South Sweden health care region

diagnosed between September 1, 2010,
 and March 31, 2015 who underwent 

operation for invasive primary* 
breast cancer
 (N = 5,892)

Insufficient or poor quality RNA and
RNA-seq not performed or failed
(n = 464); RNA-seq data failed QC

(n = 110)

Fig A1. Flow diagram 
for Sweden Cancerome 
Analysis Network—Breast 
(SCAN-B) popula-
tion-based 3,273-tumor 
independent validation 
cohort. (*) Nonmetastatic 
primary unilateral breast 
cancer, which excluded 
patient cases that had a 
diagnosis of synchronous 
(< 3 months) contralateral 
invasive breast cancer. QC, 
quality control.

http://ascopubs.org/journal/po


ascopubs.org/journal/po JCO™ Precision Oncology 15

5.02.50.0–2.5 7.5

SGC: log2 (FPKM + 0.1)

PgR
positive

PgR
negative

(n = 2,940)

(n = 2,940)

PgR
positive

PgR
negative

10–1–2 2

MGC: δ (pos – neg)

12963

SGC: log2 (FPKM + 0.1)

(n = 3,151)

HER2
positive

HER2
negative

(n = 3,151)

HER2
positive

HER2
negative

10–1–2 2

MGC: δ (pos – neg)

420–2

SGC: log2 (FPKM + 0.1)

(n = 1,550)

Ki67
positive

Ki67
negative

(n = 1,550)

Ki67
positive

Ki67
negative

10–1–2–3 32

MGC: δ (pos – neg)

ER
negative

5.02.50.0 7.5

ER
positive

SGC: log2 (FPKM + 0.1)

(n = 3,073)

A

(n = 3,073)

ER
positive

ER
negative

10–1–2 2

MGC: δ (pos – neg)

B

Fig A2. Prediction of 
biomarker status in the 
3,273-case independent val-
idation cohort. For estrogen 
receptor (ER), progesterone 
receptor (PgR), human 
epidermal growth factor 
receptor 2 (HER2), and 
Ki67 clinical histopathology 
diagnostic results (y-axis), 
the single-gene classifier 
(SGC) gene expression 
(x-axis) (A) or the trans-
formed multigene classifier 
(MGC) score (x-axis) (B) is 
plotted for the validation 
cohort (circles). Within a 
biomarker prediction, gold 
circles were concordantly 
biomarker negative, blue 
circles were concordantly 
positive, and gray circles 
were discordant by the 
classifier or histopathology. 
Vertical dotted (SGC) and 
dashed (MGC) lines repre-
sent the classifier threshold 
that distinguished the 
classes. FPKM, fragments 
per kilobase of transcript 
per million mapped reads.
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Fig A3. Transformed 
multigene classifier (MGC) 
score (x-axis) versus single- 
gene classifier (SGC) gene 
expression (y-axis) in the 
3,273 samples of the inde-
pendent validation cohort 
(circles) for (A) estrogen 
receptor (ER), (B) proges-
terone receptor (PgR), (C) 
human epidermal growth 
factor receptor 2 (HER2), 
and (D) Ki67. Gold circles 
are negative or low by 
histopathology, and blue 
circles are positive or high 
by histopathology. Vertical 
dashed lines are drawn at 
the MGC score threshold of 
0 to distinguish the classes, 
and horizontal dotted lines 
are drawn at the SGC gene 
expression thresholds  
determined from the 
training cohort. FPKM, 
fragments per kilobase 
of transcript per million 
mapped reads. 
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Fig A4. Kaplan-Meier overall survival estimates for histopathology, single-gene classifiers (SGCs), and multigene classifiers (MGCs) 
within the validation cohort (neg, classified as negative; pos, classified as positive; grade [G]1, G2, or G3). The biomarker is indicated at the 
far left, and the number of tumor cases with complete data across pathology, SGC, and MGC for a given biomarker is shown below each 
biomarker name. In columns are plotted the Kaplan-Meier survival curves for each classification: (left) pathology, (middle) SGC, and (right 
column) MGC. The log-rank P value is displayed, and horizontal dashed lines are drawn to aid identification of Kaplan-Meier estimates with 
the poorest outcome classification group within each row. Generally, histopathology and SGCs had similar curves, whereas the MGCs had 
noticeably improved stratification, for the hormone receptors, in particular.
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Fig A5. Kaplan-Meier 
overall survival estimates for 
groups defined by pathology 
(path) versus multigene 
classifiers (MGCs) within 
the validation cohort; the 
log-rank P value is given. 
(A) The entire validation 
cohort stratified by con-
cordance or discordance 
between estrogen receptor 
(ER) histopathology and the 
ER MGC. (B) Progesterone 
receptor (PgR) status strat-
ified by histopathology and 
PgR MGC. (C) Hormone 
responsiveness status strat-
ified by histopathology and 
MGC; responsive is defined 
as ER and PgR positive; 
nonresponsive, as ER nega-
tive or PgR negative. 
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