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Repositioning or repurposing drugs account for a substantial part of entering approval pipeline drugs,
which indicates that drug repositioning has huge market potential and value. Computational technolo-
gies such as machine learning methods have accelerated the process of drug repositioning in the last
few decades years. The repositioning potential of type 2 diabetes mellitus (T2DM) drugs for various dis-
eases such as cancer, neurodegenerative diseases, and cardiovascular diseases have been widely studied.
Hence, the related summary about repurposing antidiabetic drugs is of great significance. In this review,
we focus on the machine learning methods for the development of new T2DM drugs and give an over-
view of the repurposing potential of the existing antidiabetic agents.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The concept of drug repositioning (also known as drug repur-
posing) was first proposed in 2004 [1]. The related terminology
usage of drug repositioning is vague and unclear due to its impre-
cise definition, which has been improved in light of drug reposi-
tioning development over the years [2,3]. Drug repositioning,
drug repurposing, drug redirecting, or drug reprofiling is the pro-
cess of finding new uses outside the scope of original drug indica-
tions. The active substances used in drug repositioning include
marketed drugs with expired patents, withdrawn drugs with safety
concerns, and compounds that have failed to achieve the expected
effectiveness and safety in clinical trials. Nevertheless, the struc-
tural modification of active compounds by de novo drug design
methods does not belong to the field of drug repositioning [3].
Although lack of precise definition, it does not deter the pharma-
ceutical industries and academic research communities from
investigating drug repositioning [4]. Compared with conventional
drug discovery and development, drug repositioning can save
development time and money by skipping several time-
consuming and costly stages, thus welcomed by the pharmaceuti-
cal industry [1].

Due to the explosive growth of drug research costs, drug repur-
posing becomes a promising drug discovery way and is commonly
used to find treatments for cancer [5], cardiac disease [6], neuropa-
thy [7], infectious diseases [8], psychosis [9], rare disease [10],
especially for type 2 diabetes mellitus (T2DM) [11]. T2DM is a
non-communicable epidemic disease but rising as a major health
issue across the globe. The major classes of antidiabetic medica-
tions for T2DM are difficult to reach a reasonable balance in the
role of efficacy, side effects, and patient tolerance [12]. Hence, drug
repositioning provides a cost-effective and promising approach to
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finding new effective drugs for T2DM [11]. Besides, metabolic dis-
orders [13] associated with T2DM such as hyperinsulinemia,
oxidative stress, inflammation, and excessive glycation can lead
to the development of cancer [14], Parkinson’s disease [15], Alzhei-
mer’s disease [16], and cardiovascular disease [17]. Antidiabetic
drugs are proven to have the repositioning potential to treat these
diseases [14–16,18]. Traditionally, drug candidates which are dis-
covered for new indications by random experiments may cost
much research capital. The computational approaches such as
machine learning and classical algorithms supply directed and
cost-saving approaches for drug repositioning. In this review, we
focus on the machine learning approaches used in finding new
drugs for T2DM and new indications for antidiabetic medicines.
2. The latest statistics and management of T2DM

Diabetes mellitus (DM) is a non-communicable disease with a
rapidly increasing number of patients worldwide. According to
the data by the International Diabetes Federation (IDF), about
537 million adults (20–79 years old) are living with diabetes in
2021, and the total number is projected to rise to 643 million by
2030 and 783 million by 2045 [19]. The increasing potential
high-risk groups of T2DM (541 million adults) and high mortality
(6.7 million deaths in 2021, corresponds to 12.2% of global deaths
from all causes in adults), coupled with the excessive global health
expenditure (USD 966 billion in 2021 for adults), make diabetes a
significant global challenge to the health and well-being of individ-
uals, families, and societies. Especially, T2DM accounts for approx-
imately 90% of all cases of diabetes worldwide [20,21].

T2DM is a chronic disease caused by the inability of faulty pan-
creatic b cells to secret a normal amount of insulin to maintain nor-
mal body consumption, or peripheral tissue has a decreased
susceptibility to insulin. As represented in Fig. 1, T2DM is mostly
determined by multiple genes [22] and environmental factors.
Too many calories intake and living a sedentary lifestyle may result
in overweight and obesity, which are believed to be closely associ-
ated with T2DM [23]. T2DM complications [24,25] are most com-
monly involved in hypertension, atherosclerotic cardiovascular
disease (ASCVD), nephropathy, retinopathy, diabetic neuropathy,
and diabetic foot. Diabetes management includes lifestyle inter-
vention, pharmacological therapy, and routine blood glucose mon-
itoring [12]. Antidiabetic medications commonly used in
pharmacological therapy contain biguanides, sulfonylureas,
glucagon-like peptide 1 (GLP-1) receptor agonists, thiazolidine-
dione (TZD), dipeptidyl peptidase 4 (DPP-4) inhibitors, sodium-
glucose cotransporter 2 (SGLT-2) inhibitors, and a-glucosidase
inhibitors. Polypharmacy or monotherapy of antidiabetic drugs is
based on the patient’s age, course of the disease, patient tolerance,
physical condition, side effects, and drug efficacy. Therefore, the
development of new T2DM drugs with better efficacy and fewer
side effects is a problem that researchers have been actively
addressing. Computational approaches provide a new insight from
the perspective of bioinformatics for drug repositioning to find
new correspondence identification based on a large number of dis-
eases, genes, targets, drugs, and prior knowledge [26].
3. Resources and methods for drug repositioning

3.1. Predicting new interactions for drug repositioning

Generally, there are three steps in drug repositioning strategy
before bringing a candidate drug into the market process: discov-
ery of novel drug-target (or drug-drug, drug-disease) pairs, mech-
anism evaluation of drug action in preclinical animal models, and
evaluation of curative effect in clinical trials [26]. Among all these
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steps, finding a highly credible new relationship between drug
molecules, therapeutic targets and diseases is crucial to the subse-
quent process of drug repositioning. Drugs often respond to disease
by acting on key targets that play a specific role in the disease.
Drug-target interactions can be measured by some binding or com-
petitive cellular assays, and then the efficacy of the drug on the tar-
get can be evaluated from the dose-effect curve and fitted EC50 or
IC50 values [27]. However, the cellular assays cannot simulate the
complex physiological environment of the body, which may result
in the failure of new drug development at later stages [28]. Pheno-
typic screening in cellular or animal models can identify drugs that
alter phenotypes in complex biological systems by measuring
model responses, and then determining disease states and mecha-
nisms of action [29]. But phenotypic screening is often limited to
one experiment at a time for a specific disease and requires a great
deal of effort and time [30]. Machine learning methods are able to
extract new potential, possibly unexpected drug-disease (or drug-
drug, drug-target) relationships from large amounts of chemical
and biomedical complex data [31] such as drugs, protein targets,
gene expression data, signaling pathways, electronic health
records, clinical medical records, and adverse drug reaction data.

Machine learning (ML) approaches such as support vector
machine (SVM), Naive Bayes and random forest (RF) (see Fig. 2)
with high prediction accuracy and technological breakthroughs
are playing an increasingly important role in drug discovery [32]
and repositioning [33,34]. Data mining, network analysis, and
semantic analysis are common methods for ML to predict drug-
target interactions (DTI), drug-drug interactions (DDI), and drug-
disease associations (DDA). Deep learning (DL), a subfield of
machine learning, has gained more attention in drug repositioning
in recent years [35,36]. DL simulates artificial neural networks and
establishes high-level learning architectures to learn more useful
features and ultimately improve the accuracy of classification or
prediction. As compared to traditional machine learning methods,
deep learning methods such as convolutional neural networks
(CNNs), graph neural networks (GNNs), and autoencoders (AEs)
have a powerful ability to automatically extract features as well
as an effective feature representation to obtain different levels of
information [37–39].

3.2. Resources for drug repositioning

Data sources for drug repositioning rely on various bioinformat-
ics and pharmacogenomics databases, several excellent reviews
have described in detail the data resources, algorithmic resources,
and research methods, which are also applicable to T2DM drug
repositioning. Tanoli et al. [40] presented an overview of 102 data-
base resources available for drug repositioning in four categories,
namely drug-target interaction, disease, chemical, and biomolecu-
lar databases, and showed their applications for drug repositioning.
Zhang et al. [41] provided a comprehensive collection of databases
for drug repositioning and described the types of data available in
each database, enumerated data representation methods and soft-
ware or servers for data transformation; they also concluded with a
list of common machine learning methods for drug repositioning.
Hodos et al. [30] provided a detailed description of the data types
available for drug repositioning, and the representation of different
types of data for machine learning input, and also listed three
superior algorithmic frameworks for drug repositioning:
similarity-based methods, network methods, and matrix factoriza-
tion. Pan et al. [42] summarized commonly used online open data-
bases and sequence-based and graph-based representation
learning methods, as well as a summary of deep learning models
for drug repositioning in recent years. Yu et al. [43] summarized
in detail the six most commonly used deep learning frameworks:
deep brief networks (DBNs), deep neural networks (DNNs), AEs,



Fig. 1. Schematic diagram of T2DM. It shows the high-risk factors, complications, and management of T2DM.
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CNNs, recurrent neural networks (RNNs), and GNNs, in addition,
the authors discussed several representative deep learning models
based on input data of varying complexity. Several other reviews
focused on machine learning methods for processing different
types of data for drug repositioning [44–46].
3.3. Machine learning methodologies in DTI, DDI, DDA prediction

There are three steps involved in predicting a new DTI, DDI or
DDA using machine learning methods. First, the input data such
as drug side effects, drug chemical structures, and disease genes
are pre-processed to obtain training data through feature extrac-
tion and feature selection; second, relevant machine learning algo-
rithms are deployed for training; third, predictive models are
utilized to obtain drug repositioning results on a test dataset. Data
are transformed into a uniform normalized format, such as a
computer-readable steering vector or matrix, before being fed into
a machine learning model for representation learning. Representa-
tion learning [47] (or feature learning) is a collection of techniques
for transforming raw data into something that can be effectively
exploited by machine learning. The main sequence-based [48]
input representations are international chemical identifier (InChI)
and Simplified Molecular Input Line Entry System (SMILES), which
use specialized syntax to encode three-dimensional chemical
structures as strings of text [49,50]. Graph-based representations
[51,52] can represent the spatial and structural relationships of
proteins and biomolecules as well as the interconnected nature
between different biological data [53]. Representation learning is
mainly divided into supervised and unsupervised learning
approaches to extract features of the input data for downstream
training tasks.
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4. Machine learning models applied in drug repositioning

4.1. Drug-target interactions (DTIs) prediction

New targets may imply new indications. Previous review papers
provide various perspectives on machine learning methods for
DTIs prediction. Chen et al. [54] summarized machine learning
methods into supervised and semi-supervised categories and gave
a detailed description of their subclasses. Lavecchia [55] described
the theoretical foundations and applications of machine learning
algorithms for predicting DTIs in the context of ligand-based vir-
tual screening. Serçinoğlu et al. [56] provided a comprehensive
overview of database resources and bioinformatics tools of compu-
tational approaches for drug repositioning. Bagherian et al. [57]
focused on machine learning methods for DTIs prediction and gave
an elaboration on four aspects of similarity/distance-based meth-
ods, deep learning methods, matrix factorization methods, and
feature-basedmethods. In addition, some new DTI prediction mod-
els with better performance have been published recently, Zeng
et al. [58] developed a network-based deep learning model named
deepDTnet to predict drug-target interactions (DTI), which used a
network embedding method to put vectors representations to
low-dimensional vector space and Positive-Unlabeled (PU)-
matrix completion algorithm to low-rank matrix completion. And
their model showed that topotecan had a good therapeutic effect
in a mouse model of multiple sclerosis. Wen et al. [59] applied
the deep belief network (DBN) to the construction of the DeepDTIs
model, it extracted drugs and targets features from the compound
substructure and protein sequences. The DeepDTIs model allows
researchers to search for all possible drug-target interactions in
the network space, without the limitations of previous target clas-



Fig. 2. The machine learning methods for drug-disease pairs prediction in drug repositioning. DTI: drug-target interaction, DDI: drug-drug interaction, DDA: drug-disease
association, DBN: deep belief network, CNN: convolutional neural network, DNN: deep neural network, RNN: recurrent neural network, FNN: feedforward neural network,
GNN: graph neural network, AE: autoencoder.
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sification. Maryam et al. [60] proposed a model named the Coupled
Tensor-Matrix Completion (CTMC), which combined matrix
factorization-based method with drug-drug and target-target ten-
sors to repurpose drug molecules, and showed a better output in
comparison with other matrix-factorization-based methods in per-
formance evaluations. Bai et al. [61,62] developed a software
named MolAICal that could study the interaction between targets
and ligands by deep learning models and classical algorithms
[63]. Ceddia et al. [64] proposed a shortest-path enhanced Non-
negative Matrix Tri-Factorization method, which used protein-
protein interaction networks for shortest-path evaluation of
drug-protein pairs, with improved number and accuracy of predic-
tions, also indicated that integrating heterogeneous network data
had significant advantages for DTIs prediction.
4.2. Drug-drug interactions (DDIs) prediction

Drugs which have similar characteristics in some respects are
likely to share targets and physiological effects to treat the same
diseases. The use of two or more drugs in a patient may have a ris-
ing risk of adverse patient outcomes due to the DDIs [65]. The dis-
covery of DDIs not only helps to address the drug administration
and patient safety caused by adverse drug reactions (ADRs) [66],
but also can explore pharmacological functions of drugs and new
drug-indication relationships for drug repositioning. In the
recently published review [44], the researchers made a compre-
hensive summary of computational methods for DDIs detection,
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which included literature-based, machine learning-based, and
pharmacovigilance-based data mining methods, as well as a
description of data sources for DDIs prediction. Zhang et al. [67]
mainly focused on the deep learning-based methods for extracting
DDIs and described them in four categories that comprised super-
vised methods, semi-supervised methods, unsupervised methods,
and distant supervision. In general, machine learning is most
widely used in DDI prediction. Wang et al. [68] proposed a graph
convolutional network with multi-kernel (GCNMK) that applied
two known DDIs graph kernels to the graph convolutional layers
and used fully connected layers to predict potential DDIs. Zhou
et al. [69] utilized the Markov Clustering Algorithm to cluster a
set of drugs into several groups according to their drug interaction
profiles, new drug-target relationships could be deduced from
known targets of a drug with its associated drugs. Mei et al. [70]
used drug target genes and signaling pathways without data inte-
gration to train a simplified DDI predictive model in a biological
background. Yan et al. [71] developed a similarity-based model
named DDIGIP which used drug Gaussian interaction profile
(GIP) kernel similarity and regularized least squares (RLS) classifier
to predict DDIs for both old and novel drugs. Moreover, deep learn-
ing methods that combine multiple characteristic information net-
works of drugs seem to have more accurate prediction behavior for
DDIs. Yan et al. [72] proposed a method named NMDADNN that
predicted DDIs well in performance testing based on a DNN by
integrating serval heterogeneous information sources and extract-
ing the unified drug mapping features.



Table 1
Repositioning studies of antidiabetic drugs in the treatment of cancer.

Antidiabetic
drug classes

Drugs Cancer Research methods

Biguanides Liraglutide Breast cancer [92] Meta-analysis
Colorectal cancer
[93]
Liver cancer
[94,95]
Pancreatic cancer
[96]
Endometrial
cancer [97]
Lung cancer
[98,99]

Sulfonylurea Glyburide Lung cancer [105] Animal study
Gliclazide Liver cancer [101] Case study

GLP-I
receptor
agonists

liraglutide Breast cancer
[113]

Meta-analysis

Prostate cancer Cell study
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4.3. Drug-disease associations (DDAs) prediction

The accumulation of vast amounts of biomedicine data and
advances in computation approaches have made it easier for
researchers to extract unknown DDAs from the complex networks,
which can provide new ideas for drug repositioning. Hu et al. [73]
used low rank tensors and matrix complement technology to con-
struct a prediction model LMFDA which could fuse multiple similar
networks and predict potential DDAs. Yang et al. [74] proposed a
multi-similarities bilinear matrix factorization (MSBMF) model
that combined matrix factorization with the alternating direction
method of multipliers algorithm to effectively measured the rela-
tionship between drugs and diseases. Wu et al. [75] proposed a
model SSGC based on a semi-supervised graph cut algorithm to
integrate multiple sources of data thus allowing the comprehen-
sive similarities measurement of drugs and diseases from multi-
view and multiple layers.
[107]
Endometrial
cancer [111]

Cell study

Exendin-4 Colorectal cancer
[108,109]

Cell/Animal study

Ovarian cancer
[110]

Cell study

Polycystic ovary
syndrome [114]

Meta-analysis

SGLT-2
inhibitors

Canagliflozin Breast cancer
[116]

Cell study

Lung cancer [117] Cell study
Dapagliflozin Breast cancer

[116]
Cell study
5. Repositioning potential of antidiabetic drugs

Because T2DM shares the same pathophysiological mechanisms
as many other diseases, antidiabetic drug repositioning has been
extensively studied for new indications. Moreover, due to the high
number of patients with T2DM and the long history of medication
use, antidiabetic drugs have relatively complete clinical safety
data, making them the drugs of choice for repositioning. The repo-
sitioning potential of antidiabetic drugs is mainly involved in can-
cer, neurodegenerative diseases, and cardiovascular diseases.
Sitagliptin Prostate cancer
[118]

Retrospective cohort
study

DPP4
inhibitors

Linagliptin Colorectal cancer
[122,124,125]

Computational/Meta-
analysis/Animal study

Gastric cancer
[123]

Cell study

Vildagliptin Colorectal lung
metastases [126]

Animal study
5.1. Repositioning antidiabetic drugs for cancer

T2DM and cancer have common potential risk factors [76]
including age, sex, obesity, physical activity, diet, alcohol, smoking,
etc. In addition, pathological surroundings such as hyperglycemia,
hyperinsulinemia [77], inflammation [78], and oxidative stress
[79], jointly contribute to the association of T2DM with the devel-
opment of various cancers [80]. A great deal of evidence proves
that antidiabetic drugs are capable of reducing the overall cancer
incidence and mortality even though most of the clinical trials
are conducted in cancer patients with diabetes. Table 1 summa-
rized the studies on antidiabetic drugs for the treatment of cancer.
Metformin is the most widely studied antidiabetic drug repur-
posed for cancer. Previous and most recent evidence-based meta-
analyses of case-control and cohort studies showed that metformin
was associated with a decreased risk of overall cancer incidence
and mortality [81–91], the same effect was also produced in site-
specific cancer such as breast cancer [92], colorectal cancer [93],
liver cancer [94,95], pancreatic cancer [96], endometrial cancer
[97] and lung cancer [98,99]. Evidence from retrospective analyses
has yielded contradictory or insignificant results regarding the
association of sulfonylurea drugs with the risk and mortality of
cancer [100–103]. Glyburide is an anti-diabetic sulfonylurea drug
extensively used for the treatment of T2DM. The glyburide may
be beneficial to the anti-cancer effect by regulating ATP-binding
cassette protein super-family and ATP-sensitive potassium chan-
nels [104]. A recent non-diabetes mice model study suggested that
glyburide might inhibit NOD-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome to attenuate inflammation-
related lung tumorigenesis [105]. Another case study showed that
gliclazide tended to have a decreased risk of liver cancer [101].

Various experimental studies on animals, cancer cell lines, and
clinical data have shown that GLP-1 receptor agonists of antidia-
betic drugs have potential clinical benefits for breast cancer
[106], prostate cancer [107], colorectal cancer [108,109], ovarian
cancer [110], endometrial cancer [111], pancreatic cancer
2843
[112,113], and polycystic ovary syndrome [114]. SGLT-2 is one of
the transporters for active glucose uptake in cancer cells. SGLT-2
inhibitors have an anti-cancer effect by inhibiting glucose uptake
in tumors expressing SGLT-2. An animal study shows canagliflozin
inhibits the growth of SGLT-2-expressing liver cancers by reducing
intracellular glucose uptake [115]. A cell study in breast cancer
proved that SGLT-2 inhibitors could reduce the viability of breast
cancer cells by inducing G1 phase arrest and apoptosis based on
the adenosine-monophosphate activated protein kinase/mam-
malian target of rapamycin (AMPK/mTOR) signal pathway [116].
Other evidence indicated that SGLT-2 could also inhibit the prolif-
eration of cancer cells in lung cancer [117] and pancreatic cancer
[118].

DPP-4 inhibitors can enhance and prolong the activity of
endogenous incretin hormones GLP-1 and glucose-dependent
insulinotropic polypeptide (GIP) by inhibiting the activity of DPP-
4 enzyme, thereby improving glycaemic control. DPP-4 inhibitors
have been shown to be associated with a reduced risk of prostate
cancer [119], oral cancer [120], and breast cancer [121]. A reposi-
tioning study showed that linagliptin had a therapeutic effect on
colorectal cancer based on molecular docking and gene expression
profiling methods, and this result was verified by in vivo experi-
ments [122]. Another cell study showed that sitagliptin had a
potential inhibitory effect on proliferation and clonality of gastric
cancer cells by activating AMPK and inhibiting Yes-associated pro-
tein (YAP) and Melanoma-associated antigen-A3 (MAGE-A3) [123].
Besides, sitagliptin was also associated with a reduced risk of col-
orectal cancer [124,125]. Animal studies showed that vildagliptin
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could suppress the development and growth of colorectal lung
metastases [126].

To sum up, although there is no final conclusion that has yet
been reached on whether antidiabetic drugs can reduce the cancer
risk, the anti-cancer activities have been studied extensively. If the
strategy of repositioning antidiabetic drugs for cancer treatment is
feasible, it will be cost-effective for both patients and pharmaceu-
tical companies.
5.2. Repositioning antidiabetic drugs for neurodegenerative diseases

In T2DM patients, insulin resistance leads to the problems of
impaired insulin metabolism, impaired glucose metabolism, neu-
roinflammation, and oxidative stress. The pathological manifesta-
tions of neurodegenerative diseases are mainly involved in the
deposition of neuritic plaques, formation of intracellular neurofib-
rillary tangles (NFTs), vasculopathy and inflammation-related
damage, and mitochondrial structural and functional abnormali-
ties. Alzheimer’s Disease (AD) [127] and Parkinson’s Disease (PD)
[128] are the two major diseases of neurodegenerative disorders.
Many studies demonstrate that the repositioning of antidiabetic
drugs is feasible for neurodegenerative disorders [129,130]. Recent
researches provide a detailed review of the epidemiological evi-
dence in regard to the associations between T2DM and neurode-
generative diseases [127,128,131], as well as the potential
mechanism of antidiabetic drugs for the treatment of neurodegen-
erative disorders [131,132].

GLP-1 receptor agonists have a significant neuroprotective and
neurotrophic role by intervening in signaling pathways of phos-
phatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and cyclic
adenosine monophosphate/protein kinase A (cAMP/PKA), as well
as regulating intracellular calcium homeostasis and inflammatory
processes [133]. A meta-analysis [134] and several clinical trials
[135,136] have demonstrated the therapeutic potential of exe-
natide in improving motor symptoms in PD patients. A larger
phase 3, placebo-controlled and 96-week clinical trial is ongoing
to investigate the time-accumulating effect of exenatide on
reduced motor deterioration in patients with PD [137].

NCT03456687 (https://clinicaltrials.gov) is a phase I clinical trial
designed to study the effects of exenatide on motor function and
brain in PD patients. NCT04269642 is a placebo-controlled, parallel
comparison, phase IIa clinical study to evaluate the efficacy and
safety of sustained-release (SR) exenatide (PT320) in the treatment
of patients with early PD. NCT04305002 is a randomized, parallel
controlled, phase 2 clinical trial designed to reveal the effect of
exenatide on disease progression in early PD patients with
T2DM. An animal study shows liraglutide can suppress neuroin-
flammation by increasing p-AMPK expression and reducing NF-
jB protein levels in the PD mice model [138]. A randomized and
placebo-controlled phase II clinical trial (NCT02953665) indicated
that liraglutide had significant improvement in motor and cogni-
tive symptoms of PD patients.

In summary, PD and AD as new fields of drug repositioning of
antidiabetic drugs have gained extensive research that indicates
the close links between the pathological mechanisms of diabetes
and neurodegenerative diseases. GLP-1 receptor agonists such as
exenatide and liraglutide have entered late-stage clinical trials.
The development of innovative treatment modalities to treat neu-
rodegenerative diseases with substantial unmet medical needs is
of great interest. But the longer follow-up duration, better-
designed, and much larger enrolled population clinical trials are
further needed for the safety and efficacy verification of the repo-
sitioned drugs in order that those drugs can be effectively used to
treat new indications.
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5.3. Repositioning antidiabetic drugs for cardiovascular diseases

People with diabetes are more likely to have cardiovascular dis-
ease (CVD) than people without diabetes (https://www.idf.org/
our-activities/care-prevention/cardiovascular-disease.html). As a
major feature of T2DM, insulin resistance has been considered an
independent risk factor for cardiovascular events [139]. In addi-
tion, lipid metabolism obstruction associated with T2DM provides
a pro-inflammatory and hyperlipidemia environment that is
another important factor in cardiovascular disease [140]. More-
over, chronic and persistent hyperglycemia caused by T2DM has
a link to the accumulation of advanced glycation end-products
(AGEs) that further damage macrovascular and microvascular
[141], thus leading to CVD-like atherosclerosis. Based on the com-
mon molecular mechanism between T2DM and CVD, studies have
gained popularity on the relationship between the use of antidia-
betic drugs and the risk of CVD [142].

SGLT-2 inhibitors can decrease the rates of cardiovascular mor-
tality and major adverse cardiovascular events (MACE) [18,143]. A
meta-analysis showed that both SGLT-2 inhibitors and GLP-1
receptor agonists reduced the risk of myocardial infarction and car-
diovascular death in T2DM patients with known atherosclerotic
cardiovascular disease (ASCVD). Meanwhile, SGLT-2 inhibitors
have a prominent effect on preventing hospitalization for heart
failure and progression of kidney disease whereas GLP-1 receptor
agonists reduce the risk of stroke [144]. Other lines of evidence also
revealed that SGLT-2 inhibitors and GLP-1 receptor agonists
reduced cardiovascular events and had a beneficial effect on kidney
outcomes [145,146]. DPP-4 inhibitors showed insignificant results
about MACE in T2DM patients in clinical trials which were
designed for testing CV safety/efficacy and cardiovascular benefits
[147]. But another clinical trial had different results that patients
with T2DM treatment with DPP-4 inhibitors were associated with
an increased risk of hospitalization for heart failure [148].

The international guidelines recommend that SGLT-2 inhibitors
or GLP-1 receptor agonists as part of glycemic management in
T2DM patients who have been diagnosed with ASCVD. SGLT-2
inhibitors are particularly recommended for T2DM patients with
chronic kidney disease (CKD) and ASCVD patients with heart fail-
ure concerns [149]. Antidiabetic agents that have beneficial effects
on the cardiovascular system can reduce the rate of cardiovascular-
related disability and premature mortality in T2DM patients, so the
studies of antidiabetic drug repositioning have positive signifi-
cance to improve the quality of life and management of T2DM
patients.
6. Conclusion

In this article, we described the current situation of T2DM and
some machine learning approaches in the candidate drug discov-
ery stage of drug repositioning. In addition, we summarized some
reliable evidence of antidiabetic drugs in repositioning treatment
for cancer, neurodegenerative disorders, and cardiovascular dis-
eases. Drug repositioning can find new uses for old drugs that
failed to show the efficacy of predetermined indications. Generic
drugs with good performance can be repurposed for new indica-
tions and ultimately maximize the therapeutic and economic ben-
efits. Repositioning antidiabetic drugs with good efficacy and
safety in the treatment of cancer, neurodegenerative diseases,
and cardiovascular diseases is a promising way for drug discovery.
Machine learning, especially deep learning approaches with pow-
erful data processing and intelligent prediction ability, can effi-
ciently and accurately find meaningful drug-disease relationships
in drug repositioning, which is the primary computational technol-
ogy of future drug discovery and research.

https://clinicaltrials.gov
https://www.idf.org/our-activities/care-prevention/cardiovascular-disease.html
https://www.idf.org/our-activities/care-prevention/cardiovascular-disease.html
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