
Vol.:(0123456789)1 3

Analytical Sciences (2022) 38:261–279 
https://doi.org/10.1007/s44211-021-00013-2

REVIEW

A review of microscopic cell imaging and neural network recognition 
for synergistic cyanobacteria identification and enumeration

Liam Vaughan1 · Arash Zamyadi1,2 · Suraj Ajjampur1 · Husein Almutaram3 · Stefano Freguia2

Received: 3 August 2021 / Accepted: 7 October 2021 / Published online: 25 February 2022 
© The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2022

Abstract
Real-time cyanobacteria/algal monitoring is a valuable tool for early detection of harmful algal blooms, water treatment 
efficacy evaluation, and assists tailored water quality risk assessments by considering taxonomy and cell counts. This review 
evaluates and proposes a synergistic approach using neural network image recognition and microscopic imaging devices 
by first evaluating published literature for both imaging microscopes and image recognition. Quantitative phase imaging 
was considered the most promising of the investigated imaging techniques due to the provision of enhanced information 
relative to alternatives. This information provides significant value to image recognition neural networks, such as the convo-
lutional neural networks discussed within this review. Considering published literature, a cyanobacteria monitoring system 
and corresponding image processing workflow using in situ sample collection buoys and on-shore sample processing was 
proposed. This system can be implemented using commercially available equipment to facilitate accurate, real-time water 
quality monitoring.

Keywords Cyanobacteria · Imaging microscopy · Cytometry · Machine learning · Quantitative phase imaging · Cell 
recognition · Workflow

Introduction

Consequences of cyanobacteria and harmful algal 
blooms

Proliferation of harmful algal blooms (HABs) consisting 
of microorganisms such as potentially toxic cyanobacteria 
has becoming an increasingly common occurrence within 
freshwater systems globally [1]. Anthropogenic activity and 
climate change has likely exacerbated HAB prevalence due 
to increases in significant cyanobacteria biomass drivers, 
including increased nutrient uptake due to urban and agri-
cultural activity, increased water temperature, and increased 
mean water residence time [2]. Risks to human populations 

arise since water reservoirs supplying potable water often 
provide environments suitable for microbial colonisation. 
Cyanobacteria can also accumulate within a water treatment 
plant due to a low influx of cyanobacteria cells, introducing 
risks to water quality and safety despite the absence of a 
HAB at the water source [3]. Growth of such microorgan-
isms poses significant health, social, environmental, and 
economic implications.

Social impacts result from the production of unpleasant 
aromatic compounds during microbial growth and decay, 
imparting undesirable odours and flavours in the water. 
These “off-flavours” occur due to both benign and harm-
ful cyanobacteria, so the growth of any cyanobacteria must 
be carefully monitored. The presence of even miniscule 
concentrations of cyanobacteria in water may thus lead to 
customer dissatisfaction and loss of confidence with water 
supplies [4].

Many cyanobacteria species found within HABs release 
cyanotoxins that cause several negative human and animal 
health effects, including respiratory and allergic reactions, 
gastritis, liver damage, and neurotoxicity [5]. Long term 
exposure is associated with increased tumour growth, while 
acute cyanotoxin exposure may be fatal. Exposure to waters 
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containing cyanobacterial cells in quantities approaching or 
exceeding 100,000 cells/mL is associated with a moderate 
probability of adverse health consequences. [6]

HABs also have considerable effects on the stability and 
health of water ecosystems. Cyanobacterial growth reduces 
the irradiance of solar energy through water columns, reduc-
ing the energy accessible to other organisms within the eco-
system. Cyanobacteria also consume free  CO2 within water 
bodies, restricting the access of other plant species. This 
interrupts the production of oxygen within the ecosystem, 
causing rapid hypoxia and death for aquatic animals. Many 
of the cyanotoxins produced by cyanobacteria that affect 
humans also harm ecological systems [7].

Economic costs arise as secondary consequences of 
HABs through reductions in value of affected water bodies 
and costs incurred in both reducing bloom risks and treating 
water. The health impacts caused by cyanotoxins negatively 
affects the usability of water for drinking and in agricul-
ture, while unacceptable tastes and odours further dimin-
ish water usability. HABs can also eliminate recreational 
usability of water bodies, potentially impacting local tourist 
industries. Recurring HABs will cause long-term declines 
in tourist activities [8]. A report prepared for the Land and 
Water Resources Research and Development Corporation 
in 2000 estimated total annual costs of HABs in Australia 
as 180–240 million AUD [9]. Climate change is projected 
to continually increase this economic cost due to increased 
water temperatures and climatic impacts on nutrient trans-
port driven by hydrology [10].

Water quality microscopy and cell imaging

Inspecting the species within a water sample at a micro-
scopic level provides detailed information regarding the tax-
onomy, quantity, and viability of microorganisms present 
within the sample. Continuously monitoring populations of 
species such as cyanobacteria can assist the early detection 
of HABs, determine the efficacy of water treatment methods 
used, and allow specific risk assessments by considering the 
taxonomy of species present and their associated cyanotox-
ins, as well as the hazard posed at specific cell densities.

Cell viability analyses are used to assess the risk posed 
by microorganisms on water quality as they determine the 
residual risk posed by water following treatment processes. 
Water treatment plants aim to improve water quality through 
the elimination of hazardous contaminants, including water-
borne microbial populations. This is achieved through sev-
eral possible treatment methods, including ozonation, chlo-
rination, ultraviolet radiation, activated carbon filtration, and 
clarification through coagulation and sedimentation [11, 12]. 
The efficacy of these treatment methods for the reduction of 
microbial activity can then be measured through cell via-
bility assessments. These assessments traditionally require 

determination of cell membrane integrity using a combina-
tion of DNA-binding labelling agents, such as cell-perma-
nent nucleic-acid dyes for living cells and cell-impermanent 
nucleic-acid dyes for dead cells [13]. Emerging label-free 
viability assessments using imaging microscopy offers 
simplified non-destructive analyses [14]. The potential for 
the techniques considered within the literature to assist cell 
viability analyses is discussed within the respective subsec-
tions and summarised within Table 1.

Traditional water quality microscopy typically involves 
cultivating microorganisms from a water sample and then 
fixing a sample of the microorganism on a slide, which is 
analysed under a brightfield microscope. This method is less 
effective than more modern techniques discussed within this 
review, as it requires a lengthy and labour-intensive sample 
preparation process and introduces experimental errors. [15].

Consideration of the advantages, disadvantages, and uses 
of these techniques within the published scientific litera-
ture, and specifications of available technologies indicates 
the limitations and practical applications of these techniques 
within the context of water quality analysis and neural net-
work recognition. This informs the potential applicability 
of these techniques to identify and enumerate cyanobacteria 
within a water sample, expanded further within the recom-
mendations section of this review.

Machine learning and cell recognition

Presence of cyanobacteria within a sample can be ascer-
tained through fluorescence microscopy, which considers the 
intensity of light scattered by pigments such as chlorophyll-a 
and phycocyanin within cells to determine cyanobacteria cell 
density and thus attain an approximate cell count [16]. This 
technique is useful for determining presence of cyanobac-
teria with a sample, however provides limited information 
about specific cyanobacteria species or quantities, requiring 
further microscopic analysis for more detailed taxonomic 
identification and enumeration.

Identification and enumeration of imaged cells using 
conventional sample preparation and brightfield microscopy 
allows direct analysis of a cyanobacterial bloom, however 
this manual method is labour intensive and requires signifi-
cant technical and morphological expertise. [17].

The literature review of recent advances in artificial intel-
ligence (AI) image recognition using machine learning-
trained neural networks determined that cell recognition 
using neural networks presents a viable alternative solution 
for specimen identification using information provided by 
microscopic imaging technology. Accurate and rapid clas-
sification of cyanobacteria using such images continues to 
present a challenge for machine learning algorithms due to 
microscopic but diverse cell sizes, polymorphism, and lack 
of taxonomically revealing sexual reproductive structures in 
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cyanobacterial cells [18]. Image recognition algorithms con-
sider information and spatial parameters contained within a 
given image to identify a subject. Increasing the number of 
measured cellular parameters allows a higher dimensional 
(the neural network increases in complexity) data analysis, 
improving recognition capabilities and providing higher-
confidence statistical results [19, 20]. Imaging methods 
with greater information uptake thus have greater potential 
to assist AI recognition, increasing the value of methods that 
provide more data to neural networks.

Proposed water quality monitoring system

Recommendations constructed following the investigation 
of published literature considered three potentially promis-
ing quantitative phase imaging (QPI) methods—a portable 
QPI unit (Method 1), QPI using Michelson interferometry 

(Method 2), and a commercially available in situ probe 
(Method 3). Table 1 compares the value of these three meth-
ods to facilitate accurate cell recognition, with Method 2 
considered the most viable approach. A proposed cyano-
bacteria monitoring system and image processing workflow 
using sample collection buoys and Method 2 is then outlined 
in Fig. 4 and discussed further.

Microscopic imaging technology

This section constitutes a literature and technological review 
of commercially available and emerging microscopic imag-
ing techniques, and the practical water quality microscopy 
applications of these techniques. Table 1 outlines a summary 
of the advantages and disadvantages of the techniques dis-
cussed in greater depth within this section.

Table 1  Microscopic imaging technology summary

Category Name/technique Advantages Disadvantages

Imaging flow cytometry FlowCam 8000 series Higher maximum magnification (×200)
Colour imaging
Organism parameters automatically 

measured
Automatic cyanobacteria detection 

using fluorescence microscopy
Wide temperature operation range 

(4–40 °C)

Low sample processing rate (0.05 mL/
min)

Minimum sample size 2 μm (too small 
for some species)

Limited in situ applications
No inbuilt cell viability assessment capa-

bilities (no dye injection)

Amnis ImageStream MkII Imag-
ing Flow Cytometer

Higher sample processing rate 
(0.25 mL/min, 5000 cells/second)

Enhanced data collection (12 images/
cell at different angles)

Automatic cyanobacteria detection 
using fluorescence microscopy

Lower maximum magnification 
(20×/40×/60×)

Limited in situ applications
Minimum sample size approximately 

5–7 μm (too small for some species)
No inbuilt cell viability assessment capa-

bilities (no dye injection)
Phase-contrast Quantitative Phase Imaging (QPI) Capable of assessing cell viability/

capturing images without labelling 
agents

Non-destructive for samples
Enhanced biophysical data availability 

(dry-mass, internal structures)
Proven integration with neural net-

works
3D cell images can be digitally recon-

structed

Limited commercial availability of QPI 
devices

Limited in situ applications
Greyscale images
Lower sample throughput compared to 

imaging cytometry

Emerging Helium microscopy Does not disturb sample during imag-
ing

Provides surface chemical composition 
data

Difficult imaging conditions (Sample 
must be in a vacuum)

Minimum sample size approximately 
50 μm

Images take hours-days to produce per 
sample

Scanning electron microscopy Very precise, high-resolution images Images are unnecessarily detailed
Expensive
Equipment is limited to laboratory 

applications
Samples must be coated with conductive 

material
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Flow cytometry

Flow cytometry involves the inspection of a cell culture 
within a flowing sample solution (the sheath fluid) using 
optical and/or fluorescence imaging devices. The primary 
advantage of this technique is that it offers a considerably 
less labour intensive, less time-consuming, and more accu-
rate water quality analysis method relative to conventional 
techniques using brightfield microscopy and heterotrophic 
plate counts [13, 21, 22].

Methods which require sample incubation or preservation 
introduce inaccuracies, as these conditions may alter sample 
composition immediately or over time. Different nutrient 
agars may inhibit certain microorganisms preferentially, 
introducing risks of substrate inhibition causing species 
within water to remain undetected after later sample analy-
sis [15]. Enumerations of cyanobacteria populations within 
preserved and live samples using FlowCam found higher cell 
counts in preserved samples due to post-collection cell mul-
tiplication [18], indicating that inaccuracies can by mitigated 
through real-time in situ live sample analysis.

Standard cultivation and analysis methods require spe-
cialised training and manual analysis by technicians, which 
takes 1–3 days for bacterial samples and up to weeks of 
incubation for viral samples [13, 15]. High sample process-
ing times are particularly problematic in water treatment 
contexts, where treated water is often directly supplied to 
consumers. Contaminated water may be distributed before 
hazards within the water are identified, introducing health 
risks to consumers [13].

Non‑imaging flow cytometry

Traditional non-imaging flow cytometry involves the analy-
sis of suspended particles within a flowing sheath fluid such 
as bacteria, viruses, protozoa, cell fragments, and inorganic 
debris based on how these particles scatter light or fluoresce 

when travelling through a laser beam. The forward scatter 
signal (FSC) is relative to particle size, while side scatter 
signals provide insight to sample complexity and granularity 
[13, 22]. The non-imaging method introduces many limi-
tations to the accuracy of cell population and morphology 
analysis. One such limitation is that light scattering is not 
an absolute quantity but is instead relative, with factors such 
as the sample’s surface roughness, refractive index, and the 
sheath fluid used found to influence the magnitude of light 
scattered. A cell with a FSC larger than a neighbouring cell 
by a factor of two will thus not necessarily have a size dou-
ble that of the neighbouring cell, complicating taxonomic 
identification efforts. Scatter signals are also affected by the 
particle’s orientation at the point of analysis if the particle 
is of an irregular shape, while clumped cell clusters may 
be registered as a single larger particle. Cells with smaller 
diameters weakly and inconsistently scatter light, while 
larger cells preferentially scatter in the forward direction, 
posing potential accuracy limitations for detection of cells 
and analysis of populations [13].

Imaging flow cytometry

Imaging flow cytometry offers an alternative approach to 
cell population and morphological analysis by capturing 
real-time images of cells in a flowing sheath fluid, which can 
then be provided to an operator or AI algorithm for further 
enumeration and taxonomic identification. As previously 
discussed, imaging cell populations using flow cytometry 
provides significantly expedited analysis with less manual 
preparation required [13, 15].

Leading commercially available imaging flow cytometry 
systems include the FlowCam (8000 Series, Yokogawa Fluid 
Imaging Technologies) and Amnis ImageStream (MkII, 
Luminex). The advantages and disadvantages of these sys-
tems are discussed in Table 1, with relevant system specifi-
cations outlined in Table 2.

Table 2  Imaging flow cytometer specification comparison [23, 24]

FlowCam—8000 Series Amnis ImageStream MkII

Min. particle size 2 µm 7 µm
Max. magnification ×200 objective magnification (50 µm field of view) ×60 objective magnification

(40 µm field of view)
Sample processing capability 0.05 mL/min at ×200 magnification 0.25 mL/min at ×60 magnification
Camera Monochrome or colour conductive metal oxide sensor (CMOS) Colour charge coupled device (CCD)
Fluidics “Micro syringe pump” to optimise flowrate “Sheath fluid syringe pump”
Physical characteristics 36 W × 38H × 44D (cm)

23 kg
89 W × 66H × 63.5D (cm)
182 kg

Operational requirements 100–240 V AC power 100–240 V AC power
Dye injection capabilities Not included Not included
Sterilisation Self-cleaning Self-cleaning
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Algal and cyanobacterial growth may range from benign 
to hazardous, depending on the species present. Risk assess-
ments that directly consider the microbial taxonomy, par-
ticularly in terms of potentially toxic cyanobacteria, of spe-
cies in a water sample thus increases the accuracy of risk 
assessment processes for humans, agriculture, and environ-
mental systems [5, 18].

Cell viability assessment methods utilising automated 
imaging flow cytometry systems also provide simplified 
and expedited assessments when compared with standard 
techniques, such as manual counting using a hemocytometer 
[25]. Using imaging cytometry, target cells are stained with 
one or more dyes to achieve optimal cell visibility (discussed 
further in Sample processing—OC-300). A combination of 
fluorescence and brightfield images of stained cells can pro-
vide total, dead, and live cell counts [25]. Viability is deter-
mined as the proportion of live cells to total cells, providing 
an indication of the performance of a water treatment pro-
cess and the residual risk posed by the treated water sample 
[11]. Table 2 outlines the automated dye injection capabili-
ties of two commercially available imaging flow cytometers, 
which indicates the ability for these cytometers to facilitate 
cell viability assessments.

Imaging flow cytometry systems aim to maximise cell 
imaging rates, while also maximising the resolution of 
images captured. Modern camera technology widely used 
in imaging flow cytometry techniques introduce fundamental 
trade-offs which must be considered to determine a tech-
nique’s feasibility [19]. Increasing fluid velocity and imag-
ing speed results in the camera collecting fewer photons for 
each specimen, leading to a reduction in sensitivity. Sample 
throughput can be increased while maintaining low fluid 
velocities and imaging speeds using imaging flow cells with 
many parallel channels. McKenna et al. [26] demonstrated 
high-throughput imaging flow cytometry using flow cells 
with 384 parallel channels, however this technique requires 
a large field of view which necessitated an imaging lens with 
a lower numerical aperture and thus compromised the spatial 
resolution of the images captured [19, 26]. Resultantly, a 
flow cytometry technique with a higher sample throughput 
rate or higher imaging resolution is not objectively supe-
rior to alternatives, with its practicality determined by its 
required application. Applications such as neural network 
recognition of microscopic cells rely on superior informa-
tion and must prioritise spatial resolution to achieve high 
recognition accuracy [17, 20, 27].

Researchers used FlowCam to enumerate and taxonomi-
cally identify cyanobacteria species present within both 
early and advanced-stage HABs across tens of freshwater 
systems in Alberta, Canada. Utilising FlowCam at its max-
imum possible objective magnification (× 20 for the model 
used by researchers) yielded the highest total cell counts, 
exceeding those yielded by a × 10 objective by a factor of 

four, and identified two to four times more cyanobacteria 
species using increased magnification [18]. This finding 
agrees with those of similar taxonomic investigations, 
which found higher magnification necessary for accurate 
species-level identification [28, 29].

Attempts to classify FlowCam images using trained 
neural networks have considered larger species including 
Oscillatoria sp. and Anabaena sp. or entire colonies of 
Microcystis sp. due to the lack of information available 
in images captured of smaller species [30]. QPI presents 
a potential solution as it provides images with additional 
quantified biophysical parameters, improving information 
availability and image recognition accuracy.

Sample preparation—OC‑300

OC-300 is a commercially available automation unit 
developed by OnCyt Microbiology. The unit is designed 
to act as an intermediate between raw samples collected 
from water bodies and flow cytometry equipment, with 
acquired water samples manually or automatically pro-
vided to OC-300. Up to 12 parallel sample streams can 
be prepared by OC-300, allowing a single flow cytometry 
setup to continuously measure cell counts from multiple 
locations. The device’s autoloaders prepare a sample to a 
desired volume between 100 and 500 µL, which can also 
be automatically labelled by a dye to facilitate easier sam-
ple analysis. [31].

Researchers studying cyanobacteria populations to track 
early and advanced-stage HABs in Alberta, Canada using 
FlowCam encountered issues with bacterial cells clogging 
smaller imaging flow cells [18]. Addition of Lugol’s solu-
tion was found to reduce cell adhesion, improving image 
capture efficiency as cells were more evenly dispersed 
across the flow cell. While adding Lugol’s solution pre-
vented chlorophyll-a autofluorescence detection [18], this 
poses fewer limitations on a system that measures cyano-
bacteria presence using image recognition via machine 
learning. If cell counts exceed a threshold at which clog-
ging is likely to occur within imaging cells, the OC-300 
may also dilute the solution to allow easier sample pro-
cessing [31].

The precisely prepared samples can then be injected 
into an adjacent imaging flow cytometer such as the 
devices outlined in Table 2 or used to prepare samples for 
analysis by QPI. Synergy between these devices allows 
precise sample preparation, providing accurate cell counts, 
providing accurate viability assessments, and facilitating 
taxonomic identification of the species present. Proposed 
integration of OC-300 into a HAB monitoring station is 
further discussed in the recommendations section.
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Quantitative phase imaging

QPI, also known as holographic microscopy, is a phase-
contrast microscopy method useful in non-intrusive cell 
morphological studies. QPI detects cells based on the scat-
tering of certain wavelengths of light as they pass through 
a sample, which creates a contrast against the background 
where the light is unobstructed and does not scatter. Exam-
ined samples create contrast proportional to their thick-
ness and internal refractive index inhomogeneity, which 
determines the total amount of light scattered and provides 
information about the internal and external biophysical 
properties of the cell. This permits precise analysis of 
internal and external cell parameters including density, 
morphology, mass, volume, membrane, and cell structures 
including organelles [32, 34].

Integration of QPI units with flow cytometry equipment 
provides capabilities for enhanced analysis relative to con-
ventional imaging flow cytometry techniques (Table 2). 
Combined flow cytometry QPI devices process samples 
at rates considerably higher than those achievable through 
manual analysis, expediating specimen identification and 
providing larger data sets for neural network training [20, 
35, 37]. In addition to capturing high resolution images, 
additional biophysical parameters not accessible through 
conventional imaging flow cytometry are made available, 
including those previously outlined [37]. These parameters 
provide valuable assistance in taxonomic identification 
efforts, and the quantitative nature of the data obtained 
through QPI is particularly useful for machine learning 
applications [32]. Synergistic cell recognition using QPI 
data and trained neural networks is discussed further later 
in this review.

Tomographic QPI techniques can be used to construct a 
3D refractive index tomogram of the specimen, revealing 
further spatial information regarding a specimen’s internal 
structure. Multiple 2D QPI images combined with a recon-
struction neural network provides a tomographic image, 
assisting taxonomic identification efforts [34, 38]. Con-
structing 3D tomograms for each cell analysed is however 
a computationally intensive process, since the tomographic 
reconstruction algorithm must be applied at many depths 
of focus to digitally capture the cell properties across its 
volume [39].

Many QPI techniques have been used within differ-
ent research contexts, including off-axis Fresnel hologra-
phy, Fourier holography, image plane holography, Gabor 
holography, in-line holography, and phase-shifting digital 
holography [34, 40]. Many of these techniques are of lim-
ited use in biological analysis as they create twin images, 
which reduce pixel array use efficiency and thus limit the 
information captured in each image. In-line and phase-
shifting holography are valuable in biological analyses, as 

these techniques suppress twin images and thus utilise entire 
hologram pixel counts [40].

Phase-shifting QPI is a common method for detailed 
microscopic analyses of samples, and uses a combination 
of mirrors, beam-splitters, and lenses to create an interfer-
ence pattern on an imaging surface [40]. Examples of this 
technique include Methods 1 and 2, discussed in the “Rec-
ommendations” section.

In-line QPI is an alternative technique used in many 
in situ contexts due to the simplicity of the optical compo-
nents required for this configuration. For samples analysed 
using in-line QPI, illumination is provided by a point source 
such as the end of a fibre-optic cable. The light waves emit-
ted from this source propagate through the sample solution 
and scatter off any objects within the region of analysis. 
The interference pattern produced when scattered waves 
interfere with the primary wave is recorded by a charge-
coupled device (CCD). A wave reconstruction algorithm is 
then applied to retrieve an image of the objects examined 
[34, 41]. Portable probes (such as Method 3) using in-line 
QPI are a valuable emerging in situ analysis technique.

Applications of QPI

The enhanced specimen information collection capabilities 
and high-resolution 3D imaging potential provided using 
QPI has driven this technique’s use within a range of scien-
tific and biomedical contexts.

Biomedical applications QPI analysis of biological samples 
has been particularly attractive within medical contexts due 
to the detailed cell-specific 3D images attainable using this 
method, providing valuable diagnostic capabilities. Red 
blood cell analysis using QPI has allowed the detection 
and identification of leukemic red blood cells, and the real-
time monitoring of T-cells terminating cancer cells [42]. 
Morphologies of red blood cells, particularly cell mem-
brane deformability, within blood samples screened using 
QPI data have allowed the identification of diabetic blood 
cells [43]. 3D tomographic images were produced during 
a study of red blood cells parasitised by malaria-inducing 
Plasmodium falciparum, providing fine detail on subcellu-
lar structures of the host blood cells and invading parasite, 
with structural and chemical characteristics recorded during 
stages of parasite maturation [44]. A similar approach to that 
used by Lee et al. [43] may be used in water quality analyses 
to diagnose the presence of specific cyanobacteria species, 
such as toxic varieties, within a particular water system. The 
monitoring of the cell viability conducted by Popescu [42] 
presents a method for determining the effectiveness of treat-
ment methods by analysing cell integrity before and after 
treatment processes.
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Portable QPIU A portable quantitative phase imaging unit 
(QPIU) was used by Jo et al. [20] for the synergistic imaging 
and recognition of Bacillus anthracis within a sample con-
taining unlabelled living cells. The neural network trained 
and used by Jo et al. [20] is discussed in greater depth later 
in this review. A further analysis of the advantages and dis-
advantages of this method is discussed in the recommenda-
tions section (Method 1).

This technique was used by researchers to obtain quanti-
tative phase images of 1 µm bacteria including B. anthraxis, 
B. cereus, and B. subtilis. This QPI data were used to train a 
CNN “HoloConvNet” for up to 96.3% recognition accuracy. 
[20].

This portable QPIU was developed with the requirement 
that it could be easily transported to and from a BSL-3 facil-
ity at the South Korean Agency for Defense Development 
[20]. It consists of a charge coupled device (CCD) camera 
mounted at the exit of a tube containing two linear polaris-
ers and a Rochon prism. Monochromatic 532 nm laser light 
is passed through a sample placed within an imaging cell, 
which enters the objective of a standard optical microscope 
at 100 × magnification under oil immersion [20]. Refractive 
index information is encoded within the spectrum of light as 
it passes through the sample [32]. The first polariser linearly 
polarises the light, which is equally divided into two beams 
with slightly different propagation angles by the Rochon 
prism. The two beams become parallel after passing through 
the second linear polariser. An interference pattern is then 
created on the surface of the CCD camera, with the posi-
tion of the linear polarisers adjusted to produce an optically 
focussed image. A quantitative phase image is then retrieved 
from the information using a standard field retrieval algo-
rithm. [20].

Further research may investigate potential optimisations 
of this design for water quality analysis, such as the inte-
gration of this QPIU with flow cytometry equipment for 
improved analysis automation.

Michelson interferometry Quantitative phase images were 
captured of tumour cells using Michelson interferometry 
(Fig.  1), allowing precise retrieval of biophysical cellular 
features including radius and dry mass. Integrated flow 
cytometry was used to transport sample solution through an 
imaging flow cell, providing automated sample processing 
and data collection [37]. Captured images were then pro-
cessed as specified in Fig. 2. The advantages and disadvan-
tages of this method are further considered within the “Rec-
ommendations” section (Method 2).

Min et al. [37] developed a QPIU that utilises phase-shift-
ing quantitative phase imaging, with an interference pattern 
created on the lens of a complementary metal–oxide–semi-
conductor (CMOS) camera by Michelson interferometry. 
As with the portable QPIU (Method 1), a 532 nm mono-
chromatic laser is used as the illumination source. The laser 
beam is directed through an imaging flow cell arranged 
perpendicular to the direction of beam propagation. Cells 
within the sample solution pumped through the flow cell 
pass through this beam, causing phase shifts due to their 
refractive indexes. A microscope objective and tube lens 
magnify the beam, which is split into two identical beams by 
a non-polarising beam-splitter cube. These beams are then 
reflected by two mirrors at slightly different angles, creating 
an interference pattern when the beams are recombined. This 
interference pattern is focussed on the surface of the camera, 
which continuously captures images at 100 frames/second. 
Quantitative phase information is then retrieved from the 

Fig. 1  Schematic diagram of 
QPI using Michelson interfer-
ometry. Figure  [37] adapted 
from Min et al.
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images using a reconstruction algorithm such as the Fourier 
transformation method. The image processing method used 
by Min et al. is outlined in Fig. 2 [37].

As indicated above, precise biophysical cellular proper-
ties were measured by Min et al. [37], which demonstrates 
significant value to a cell detection neural network. Radii of 
examined tumour cells in flow were measured with uncer-
tainties of only 50–60 nm, while dry mass values were deter-
mined with uncertainties of 4–6 picograms. The measured 
dry mass and radius values for cells in flow aligned closely 
with those attained of static cells, indicating the reliability of 
this method and that flow cytometry analyses are not associ-
ated with a significant loss of accuracy. [37].

WaterScope QPI technology has been used to develop 
WaterScope, which has been used by researchers to image 
microscopic flora and fauna in Lake Balaton, Hungary [17, 
39]. A lens-free prototype setup was used to image micro-
organisms within the 10–200 µm size range, with research-
ers estimating this method to inspect samples 50–100 times 
faster than a similar analysis conducted with conventional 
microscopy. Unlike most QPI devices, WaterScope is capa-
ble of capturing colour images of the examined specimens 
by using three different coloured lasers as the incident light. 
The researchers prioritised colour imaging as a means of 
simplifying taxonomic identification. A simple pattern 
recognition algorithm was then trained by researchers and 
subsequently used to identify imaged microorganisms with 
90–95% accuracy [39]. WaterScope, while not commer-
cially available at the time of writing, indicates the viability 
and value of QPI within water quality contexts to facilitate 
automated identification and enumeration of samples.

4Deep S7 submersible microscope The S6 submersible 
microscope presents as an early example of commercially 
available QPI designed for in  situ water quality analysis 
[34]. Researchers have used this submersible holographic 
microscope to image and identify aquatic microorganisms, 
capable of operating within environmentally hazardous 
regions including the high Artic Ocean [41].

This device uses digital in-line holographic microscopy, 
allowing simplified image collection without requirements 
for polarisers and mirrors. The design of the device utilises a 
gap between the light source and the camera through which 
natural convection transports the water. This allows the 
device to capture images of organisms within the water as 
they passively pass through the device, allowing a qualita-
tive analysis of the taxonomy of the sample and an approxi-
mation of cell counts. This passive monitoring approach 
however prohibits a quantitative analysis (i.e., no accurate 
cell counts can be attained) as the volume of water passing 
through is not precisely known [45].

Advantages of QPI

The primary advantage of QPI as a cell analysis technique 
is the increased information provided by this technique rela-
tive to brightfield microscopy and imaging cytometry. As 
previously discussed, endogenous refractive index can be 
correlated to the structural and biochemical characteristics 
of each target specimen [20]. This refractive index data also 
allows the determination of dry-mass and volume at a single 
cell level since refractive index is linearly proportional to 
cell density, providing invaluable information to assist in the 
identification of cells using a neural network [32].

An additional significant advantage of QPI analysis com-
pared with imaging and non-imaging cytometry is the label-
free analysis technique used. Labels such as cell viability 
indicators, fluorescence markers, and contrasting agents may 
affect the physical properties of a sample, reducing analysis 
accuracy. Such labels are not required in QPI, providing a 
more objective morphological method [32].

A diverse range of specimen sizes can be analysed using 
QPI since quantitative phase data can be obtained from both 
wave amplitude and phase information. Larger specimens 
will scatter or absorb more incident light and thus lower the 
amplitude of outgoing light [46], rendering them easily vis-
ible against the background light. Smaller specimens includ-
ing single celled organisms may not absorb or scatter signifi-
cant amounts of light in the visible spectrum, rendering them 

Fig. 2  Image post-processing 
workflow used by Min et al. 
[37]



269A review of microscopic cell imaging and neural network recognition for synergistic…

1 3

difficult to detect using brightfield microscopy. These small 
specimens are called phase objects as they do not signifi-
cantly affect the amplitude of light passing through them but 
instead cause a phase shift. The phase interference method 
used in QPI thus allows enhanced analysis of phase objects 
and increases the range of organisms that can be examined 
without labelling agents [32].

Disadvantages of QPI

QPI offers significantly more target cell information relative 
to brightfield microscopy, however captured images are typi-
cally monochromatic. While recognition algorithms can uti-
lise cellular information such as colour to classify a species 
[47], the provision of localised dry-mass information using 
QPI is more valuable as it provides the algorithm informa-
tion about internal and external cellular structures [32].

Reduced maximum sample throughput rates attainable 
using QPI is a significant limitation of this microscopic imag-
ing method. When compared with throughputs attainable 
using non-imaging flow cytometers (order of 100,000 cells/
second), QPI offers a maximum rate of analysis two orders 
of magnitude lower [36]. Like the fundamental compromise 
between speed and sensitivity induced by the cameras used 
in imaging flow cytometers, QPI imaging speeds are also 
limited by camera technology. Increasing sample throughputs 
thus decreases image resolution and can induce motion blur, 
with subcellular image resolutions often sacrificed to improve 
sample throughput rates. At high throughputs, image field of 
views are limited to between tens and hundreds of cells. The 
resolution of these images must be reduced to compensate 
[36]. A combination of emerging ultra-high throughput QPI 
techniques and deblurring algorithms discussed further in 
this review present a potential solution to this limitation.

Emerging QPI techniques

As a technology with many emerging applications, QPI con-
tinues to be the subject of ongoing research and improve-
ment. Synthetic aperture approaches aim to extend maxi-
mum spatial resolution by a factor of two, allowing a greater 
amount of information to be resolved from a single speci-
men. Additional specimen information can also be resolved 
by combining fluorescence microscopy with QPI, the addi-
tional data from which improves machine learning capabili-
ties and recognition accuracies [32].

Lee et al. [36] aimed to overcome the maximum through-
put limitations of contemporary QPI technology through the 
development of multiplexed asymmetric-detection time-
stretch optical microscopy (Multi-ATOM). This technique 
permits ultra-large-scale classification of single cell samples 
using integrated QPI and flow cytometry, with maximum 
sample throughput rates and analysing capabilities exceeding 

that of classical QPI by a factor of 100 [36]. Researchers 
achieved sheath fluid flowrates of up to 2.3 m/s, with images 
captured at a rate of 10,000 cells/s. The phase gradient of 
light passing through each cell was measured, with a knife 
edge used for partial beam blockage. This allowed the meas-
urement of intensity variation across the dimensions of the 
cell which provided a detailed image. Phase and amplitude 
contrast data were also used to reconstruct greyscale bright-
field contrast images of each cell [36].

The time-stretch technique used in this method is an 
emerging optical imaging concept. The combination of 
a light beam splitter and a dispersive medium (such as a 
fibreoptic cable tens of kilometres long) allows the encod-
ing of spatial cell information into the spectrum of a pulse 
of broad-spectrum light. Time-stretch images are captured at 
frame rates with a megahertz order of magnitude, compared 
with the order of 100 frames per second attainable with clas-
sical techniques [19]. This real time imaging approach is 
ideal for large scale imaging of individual cells, providing a 
method for greatly increasing data collection rates.

Emerging/developmental technologies

Scanning electron microscopy

Recent efforts have seen the use low-voltage scanning elec-
tron microscopes (SEM) in flow cytometry. This research 
aimed to use a SEM for the characterisation of objects in 
platelet concentrate storage, which required the use of highly 
sensitive equipment exceeding the capabilities of conven-
tional optical microscopy to detect objects with dimensions 
ranging from 25 to 700 nm. Conventional SEMs require 
samples to be coated with a layer of conductive metal with a 
thickness comparable to that of small extracellular vesicles, 
however low-voltage SEM approaches used by researchers 
obviated the need for this layer, enabling the examination of 
objects smaller than single cells [48, 49].

The main advantage of SEM technology is the high reso-
lutions of images captured, which provides valuable and 
detailed information to a machine learning algorithm used 
to classify the images. When combined with other data col-
lected from examined microorganisms, including dry-mass 
and fluorescence readings, greatly enhanced recognition 
capabilities and accuracies can be attained.

Despite the enhanced resolution of SEM images, this 
technology is unlikely to be applied to large scale water 
quality microscopy due to a few significant disadvantages. 
Individual SEM units are large, expensive, and must also 
be operated and stored in areas free from vibrational, elec-
tric, or magnetic interference. They must also be supplied 
with a consistent voltage to facilitate circulation of cooling 
water and require a skilled and specially trained operator. 
These requirements prohibit the use of SEM for any in situ 



270 L. Vaughan et al.

1 3

purposes due to risks of equipment damage, significantly 
impacting the applicability of this technology for water qual-
ity monitoring [50]. Further developments in SEM technol-
ogy may enhance applicability, thus future technological 
developments should be assessed as they arise [48].

Scanning helium microscopy

Helium microscopy (SHeM) presents as an additional emerg-
ing, non-destructive microscopy method. This technique uti-
lises the interaction of a ground-state neutral helium atom with 
a specimen’s surface to produce an image depicting the topo-
graphic features and local chemical composition of the surface 
of a sample without interfering with the sample’s integrity. 
SHeMs capture an image by propelling a jet of dense helium 
gas through progressively smaller nozzles until a precise beam 
of atoms is created. The atoms strike the sample surface, with 
the backscatter intensity providing information on the local 
surface’s topography and chemical composition [51].

The theoretical limit for the resolution of images pro-
duced through SHeM is the intrinsic wavelength of a helium 
atom, approximately 0.05 nm, which would provide a level 
of detail regarding the chemical composition and texture of 
a target surface that may facilitate image recognition efforts. 
This theoretical resolution has however yet to be achieved 
by practical designs [51].

Despite offering high theoretical resolution and valu-
able local chemical information, SHeM is unlikely to be 
applied to water quality analysis due to significant image 
capture time, requirements for the sample to be placed under 
vacuum, and low spatial resolution available with current 
technology. Current research efforts aim to optimise helium 
source designs and develop higher sensitivity detectors to 
improve image capture rate and spatial resolution. Future 
developments in SheM should be monitored for viability 
within a water quality context [51].

Artificial neural networks

Image recognition by artificial neural networks is a continu-
ously evolving field of research which has recently found a vast 
array of practical applications within contexts ranging from 
biometric security to self-driving vehicle guidance. Neural net-
works can be adapted for cell recognition applications using 
a range of potential neural network structures, most notably 
CNNs. Artificial neural network recognition offers an approach 
to biological data analysis for datasets that are too large for 
manual analysis, providing a faster and more objective method 
than human analysis (Shamir et al. 2010). The efficiency of 
image recognition neural networks can be improved using 
additional image processing algorithms, including segmenta-
tion, focus classification, and deblurring algorithms.

Post‑processing using neural networks

Synergistic use of post-processing and recognition algo-
rithms improves the overall efficiency of the neural networks 
used, as each component of the network can be optimised to 
perform a specific task accurately and quickly [47].

Image segmentation

Raw image data supplied to recognition algorithms can first 
be processed by a segmentation neural network to acquire 
a region of biological significance, while also eliminat-
ing optical artefacts such as dust and water droplets. This 
improves the performance of subsequent recognition algo-
rithms, as fewer irrelevant pixels must be considered and 
computational resources are instead allocated towards ana-
lysing the biological regions of interest [47].

Accurate automatic segmentation of microscopic Bacillus 
anthracis images was achieved by Hoorali et al. [52] using 
UNet, providing an accurately defined region of biological 
significance. This technique obviated the requirement for 
diagnosis by a human specialist, achieving segmentation 
accuracy of 97% on imaged samples [52]. This segmented 
image can then be considered by a neural network trained 
for bacterial recognition, with the risk of the algorithm being 
misled by optical artefacts or debris mitigated.

For high-throughput imaging methods such as the ultra-
large-scale technique developed by Lee et al. [35] segmen-
tation algorithms provide an effective data storage tool, 
as these algorithms significantly reduce total data storage 
requirements by eliminating irrelevant background regions. 
Image segmentation algorithms are thus essential in image 
post-processing and assists large-scale cyanobacteria image 
storage and processing efforts.

In‑focus/out‑of‑focus classification

Microscopic images captured using flow cytometry typically 
have shallow depths of focus and feature cells in motion, thus 
imaged cells are occasionally out-of-focus or subject to motion 
blur. These images will affect the performance of recognition 
algorithms and should be filtered out before they are supplied 
to such an algorithm. Motion-blurred images may be deblurred, 
while out-of-focus images can be classified and eliminated by 
algorithms such as DeepFocus. DeepFocus was designed to 
eliminate out-of-focus tissue cell images to simplify diagnosis 
efforts, with a similar approach viable for detecting and elimi-
nating out-of-focus cyanobacteria images [53].

Deblurring

Many of the microscopy techniques outlined in Table 1 uti-
lise flow cytometry and thus aim to capture high-resolution 
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images of cells in motion, with higher cell throughputs 
allowing faster sample processing and enhanced data col-
lection rates. Motion blur can however affect the clarity of 
images captured at higher sheath fluid flowrates, particularly 
those used in ultrahigh throughput QPI techniques. Gen-
erative adversarial networks (GANs) can be used to obtain 
unblurred (sharp) images from fast-scanned or motion-
blurred images, digitally improving the capabilities of the 
imaging hardware used [54].

Non-blind deblurring uses known algorithms designed for 
specific optical systems, introducing limitations resulting from 
changes to imaging conditions and optical configurations [55]. 
Blind deblurring is more broadly applicable method in which 
a CNN or GAN directly learns a mapping from a blurred to 
sharp image. DeblurGAN uses an end-to-end (direct blurred 
to sharp) deblurring method performed by a trained CNN with 
novel network architecture to achieve deblurring faster than 
competing algorithms [54]. Requiring no prior optical system 
data, the training process involves the estimation of a sharp 
image from a blurred training image by the CNN, with a GAN 
simultaneously trained to critique the CNN by considering the 
difference between the estimated sharp image and the actual 
sharp image. Over the training process the GAN and CNN 
are trained in an adversarial manner to improve network per-
formance and image deblurring rates [54]. Use of deblurring 
algorithms, particularly within high throughput imaging sys-
tems, vastly improves the usability of collected data, improving 
accuracies of enumeration and taxonomic identification efforts.

Convolutional neural networks

CNNs are a deep feed-forward artificial neural network 
widely used for image and pattern recognition purposes, 
offering several advantages when compared with alternative 
neural networks [56]. Neural networks have been applied 
widely within biological image recognition applications, 
including for recognition of bacteria, identification of skin 
and leaf diseases, cancer cell identification, and tissue classi-
fication [20, 57–59]. CNN recognition frameworks are rela-
tively resistant to distortions resulting from differing lighting 
conditions, optical artefacts, and different image perspec-
tives. CNNs are also less resource intensive to operate as 
the structure of CNNs reduce the memory requirements of 
the algorithm. The reduced number of network parameters 
of within a CNN typically allows a significantly expedited 
training process relative to that of an alternative neural net-
work with comparable capabilities [56, 59].

CNN structure and recognition technique

CNNs are like alternative artificial neural networks in that 
they emulate biological synapses by firing only when net 

inputs exceed a certain threshold, i.e. when enough of the 
content within an examined segment of an image is familiar to 
trigger a recognition response [20]. Typical CNNs consist of a 
stacked input layer, an output layer, and several hidden recog-
nition layers within the network. The stacked layers typically 
consist of convolution layers, non-linear layers, and pooling/
subsampling layers [59]. CNNs developed for different pur-
poses utilise different structures appropriate to their purpose.

The convolution layer examines each small block of the 
provided image to extract useful abstract features [59]. Data 
provided to the network in the form of images or physical 
parameters are inputted to the convolution layer expressed as 
a matrix. This matrix is examined by a smaller filter matrix, 
called a kernel, which extracts important information from 
the image to generate a feature map. The stride of the kernel 
is one of the CNN’s structural parameters, which determines 
the level of detail extracted from the image. Multiple kernels 
can be used to yield multiple feature maps, each expressing 
a different set of sample data [60].

The subsampling layer uses pooling operations on these 
feature maps, typically min-pooling, max-pooling, and aver-
age-pooling, to recognise similar objects in different images. 
These similarities are manifested in common abstract trends 
within the feature maps, with statistically similar images cat-
egorised by the neural network into a predefined class. For a 
neural network designed for water quality monitoring, in a 
multiclass arrangement each class may represent a particular 
species of cyanobacteria, while in a binary arrangement each 
class may represent “toxic cyanobacteria” and “non-toxic 
cyanobacteria”. The performance of recognition algorithms 
is affected considerably by the class arrangement.

Synergistic cell recognition using QPI and CNNs

A particularly promising field of research pertains to the 
combination of QPI and CNN techniques to identify the cells 
within a given sample. For a machine learning algorithm that 
recognises specimens based on learnt examples, identifica-
tion of cyanobacteria in a sample poses significant difficulty 
as they exhibit polymorphism, differ greatly in size, and lack 
taxonomically revealing sexual reproductive structures [18]. 
As a result, large training sets are required to account for all 
variations and allow identification of each subspecies.

In the biomedical field, machine learning algorithms have 
been trained to successfully identify white blood cells and 
classify them into their subtypes (i.e. B cells and T cells). 
Researchers determined a 3D refractive index map of the cells 
examined, providing the neural network with the parameters 
required for distinguishing between the cell types [32]. While 
white blood cells are considerably larger than the smaller 
species of cyanobacteria, a sufficiently high-resolution QPI 
device will provide a trained CNN sufficient data to identify 
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and distinguish cyanobacteria from other microorganisms and 
non-biological debris within a given water sample.

In another study, Jo et al. [20] used MATLAB to develop 
‘HoloConvNet’, a CNN designed to detect significant bio-
logical traits from QPI data to assist with species identifica-
tion. HoloConvNet was used to identify Bacillus anthracis 
within a dataset containing four additional bacteria strains 
with similar but differing morphological characteristics, 
with recognition accuracies up to 96.3% and computational 
rates of 1 ms/cell achieved by the algorithm [20]. The com-
parable size of B. anthracis and smaller cyanobacteria cells 
demonstrates the viability and applicability of this analysis 
technique for water quality monitoring efforts, as the results 
obtained indicate this technology is sufficiently sensitive for 
the detection of smaller cells [17, 27].

Researchers also used HoloConvNet to detect and iden-
tify Listeria monocytogenes, a strain of bacteria previously 
unseen to the neural network. HoloConvNet successfully 
identified L. monocytogenes without any modification to the 
algorithm with 85% accuracy as the algorithm automatically 
detects key biological features for each species presented. 
This result indicates the versatility of neural networks to 
identify novel species without significant human interven-
tion. The researchers indicate that a considerably higher 
accuracy would likely have been achieved if the architec-
ture and learning rules of HoloConvNet were adjusted for 
identification of this strain [20].

As indicated by the identification accuracy for L. mono-
cytogenes, HoloConvNet automatically determines a “cell 
fingerprint” of important biological traits within images 
provided to it, allowing direct training of the CNN from 
raw QPI data. Like other CNNs, HoloConvNet recognises 
the content of an image by gradually transforming data into 
a hierarchical representation of the image across several con-
volution layers, allowing separation into classes [20].

Figure 3 demonstrates the challenge faced by a CNN 
trained to recognise and distinguish between individual 
cyanobacteria species when multiple distinct species are 
present. HoloConvNet achieved the greatest recognition 
accuracy when tasked with identifying anthrax in a three 
species binary-class setup (96.3% accuracy), however when 
tasked with identifying each specific species in a five spe-
cies multiclass setup, considerably lower recognition accu-
racy (approximately 61%) was achieved. These recognition 
accuracy test results also demonstrate that CNNs achieve 
the greatest performance when the algorithm is trained to 
differentiate the data into binary classes (i.e. anthrax or 
non-anthrax in the case of HoloConvNet). This indicates 
that greater accuracy can be expected of a cyanobacteria 
recognition CNN trained to classify specimens within QPI 
images into such a binary class, such as potentially toxic 
and established non-toxic species or cyanobacteria and non-
cyanobacteria. This approach will provide insight into the 

health and environmental hazards posed by an examined 
HAB by quantifying toxic cell presence while minimising 
the computational resources required.

Figure 3 also reveals the value of the additional infor-
mation provided by QPI when compared with conventional 
microscopy. In all testing arrangements, QPI data achieved 
greater recognition accuracy than conventional brightfield 
microscopy data. Accuracies 15% higher were achieved 
using QPI in a three species binary-class test, a trend that 
was reflected in the five species binary and multiclass tests. 
These results also indicate that the importance of the imaging 
method has higher weighting relative to the importance of the 
neural network used when comparing deep and conventional 
neural networks [20]. Further research directly comparing the 
recognition accuracies of AI trained using QPI vs. conven-
tional images should be undertaken to confirm these findings.

Training CNNs

The training process of a CNN utilises similar mechanisms and 
techniques required for the training of other neural networks. 
Artificial neural networks trained by machine learning attempt 
to replicate the recognition process occurring within biological 
neural networks, with the structure of the network consist-
ing of layers of neurons connected by weighted synapses. An 
activation function regulates the firing strength of the neurons, 
which may fire when net inputs exceed a certain threshold. 
The cost function of the algorithm (typically the algorithm’s 
mean square error) is determined by a comparison of the 
expected versus actual output of the network, which deter-
mines the algorithm’s output error. Backpropagation through 
the network adjusts the weighting of synapses and allows the 
iterative improvement of the network through several epochs. 
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The iterative improvements enable learning, which allows the 
neural network to identify previously unseen images [60, 61].

Training neural networks is a time consuming and com-
putationally intensive process due to the large number of 
iterations required to form versatile neural pathways [60]. 
Image recognition neural networks are typically trained 
through supervised machine learning, an approach in which 
the algorithm is trained using known examples to learn the 
distinguishing factors between groups of objects and is then 
tested on a previously unseen dataset to determine recogni-
tion capabilities [47, 61].

While artificial neural network image recognition provides 
a labour reduction method, the requirement for algorithms to 
be trained on identified samples requires significant initial 
labour and expertise to image and identify training specimens. 
Training set augmentation provides a method for artificially 
enhancing training set sizes by digitally altering pre-classified 
images. Identified training images are rotated, flipped, and 
have noise added through random variation of pixel values 
[59]. A single data point (e.g. an image of an identified toxic 
cyanobacteria cell) can be enhanced using this approach to 
yield over a hundred statistically distinct training examples, 
which each provide the neural network with an alternate per-
spective to assist the machine learning process [20, 59].

Despite network architecture improvements relative to 
other neural networks, the training process for a CNN is still 
both time and resource intensive. Image recognition neural 
networks such as those used by researchers to identify bac-
teria typically take up to two weeks to train on a computer 
with dedicated graphics processing units (GPUs) [20, 57]. 
For each trainable category, between 1000 and 10,000 images 
are required to achieve high accuracy, with 80–85% of these 
used for training and 15–20% used for testing [57, 61, 62]. 
Using data augmentation methods described above, the total 
number of raw images required to train a class can be sig-
nificantly reduced. Despite this, training a CNN capable of 
identifying hundreds of distinct cyanobacteria species and 
determining their viability will pose a significant challenge.

Methods with emerging viability

Capsule neural networks

Capsule Neural Networks (CapsNets) are an emerging network 
structure offering an alternative mechanism for image recog-
nition to traditional CNNs, with the first successful network 
developed in 2017 [63]. CapsNet architecture varies from that 
of a CNN in that they accept and output vectors rather than 
scalars, allowing CapsNet to learn and account for deformations 
and altered viewing conditions of the image in addition to learn-
ing image features [60]. Each capsule within CapsNet consists 
of a group of neurons with the output of each neuron represent-
ing a different property of the same feature of an object. The 

network identifies an entire object by first identifying its parts, 
improving CapsNet’s resilience to alterations of conditions, 
distortions, and cases in which components of the object are 
obscured or missing [63]. The ability to recognise a deformed 
object without additional training may simplify monitoring of 
water treatment effectiveness by CapsNet, as cell fragments or 
non-viable cells can be identified and compared against remain-
ing viable cell populations. A CNN trained for this role would 
require specific training using images of damaged cells and 
cell fragments. Improved network performance and reduced 
computational resource reliance relative to CNNs is achieved 
through a reduction of network parameters, by connecting cap-
sules to other capsules rather than individual neurons connect-
ing to individual neurons (i.e. one capsule to one capsule is one 
connection, 9 neurons to 9 neurons is up to  92 connections) 
[60]. Further research aims to determine online trainability of 
CapsNets, which is not possible in traditional CNNs due to 
excessive computational resource requirements [60].

Conclusions from research

A review of machine learning and AI image recognition 
presented factors that must be prioritised when considering 
appropriate microscopic imaging techniques. These factors 
included:

1. The rate and ease of image capture neural networks 
require large and diverse training sets to allow accurate 
recognition of a certain class. As discussed previously, 
multiple classes may exist for each species of cyano-
bacteria due to polymorphism and investigations of cell 
fragments during viability analysis. Resultantly, many 
images must be captured of each class in every possible 
configuration (e.g. images of different cell orientations, 
cell fragments, etc.). The microscopic imaging method 
must therefore allow a rapid sample throughput.

2. The information provided by captured images Enhanced 
information availability provides a detailed “cell finger-
print” and improves the ability for a neural network to 
identify classes. Information can be enhanced through 
improved spatial resolution, imaging in three dimen-
sions, or by using an imaging method that captures addi-
tional biophysical cell parameters. For a target class that 
lacks an abundance of distinguishing physical charac-
teristics (such as bacteria) the availability of additional 
biophysical cell information is of crucial importance

After considering the range of microscopic imaging methods 
used within the scientific literature and the capabilities of com-
mercially available equipment, quantitative phase imaging was 
identified as the most viable approach. Considering the above 
factors, QPI equipment can be readily integrated with flow 
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cytometry to allow rapid sample processing, and the enhanced 
information availability allows for greater identification accu-
racy when compared to brightfield microscopy images.

Recommendations

This section further outlines and considers techniques dis-
cussed within this review to propose an optimised design 
of a water quality monitoring system. Consideration of the 
reviewed microscopic imaging methods and the reviewed 
training requirements, strengths, and weaknesses of AI 
image recognition, quantitative phase imaging presents the 
most promising potential technique. This section outlines the 
advantages and disadvantages of three approaches to QPI 
successfully used within the literature for cell imaging. The 
methods are then compared, revealing Method 2 (QPI using 
Michelson interferometry) as the most viable technique. This 
allowed the construction of a preliminary design for a water 
quality monitoring station (Fig. 4).

Method 1: portable quantitative phase imaging unit

A small device (discussed in section “Portable QPIU”) 
attached to the output of a standard brightfield microscope 
(designated Method 1 hereafter) is considered for its poten-
tial to assist recognition of cells by a trained convolutional 

neural network. Viability of this technique is indicated by 
the recognition accuracies approaching 95% achieved by the 
previously discussed trained CNN “HoloConvNet” [20].

Advantages

The primary advantage of Method 1 lies in the simplicity 
and portability of the design, offering a valuable potential as 
a proof-of-concept design. The image collection method is 
simple and optical calibration requires the consideration of 
few components. The assembly process for this device is also 
simple and does not require disassembly between data record-
ing instances, so can be easily transported between locations.

As previously discussed, data provided by Method 1 has 
been successfully used for bacteria recognition by a trained 
CNN. Following appropriate adjustments of algorithm 
parameters, bacteria imaged using this method were rec-
ognised with accuracies up to 96.3%. The same QPIU and 
CNN was also used to image and successfully identify L. 
monocytogenes without any modification to the algorithm 
with 85% accuracy, indicating the versatility of this design.

Disadvantages

The primary disadvantage of Method 1 is the manual 
sample analysis and preparation process. As discussed 

Fig. 4  Cyanobacteria monitoring workflow from sample collection to image processing
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previously samples must be manually placed within an 
imaging chamber in the space between two microscope 
slides. The microscope must be manually focussed and 
must be immersed in oil to achieve high spatial resolu-
tion (discussed below). The manual sample preparation 
and analysis technique will considerably reduce sample 
throughput rates relative to automated techniques such 
as Method 2, which captures 100 images/second of cells 
in flow. Manual sample preparation also requires techni-
cal expertise from the microscope operator, introducing 
unnecessary labour costs and training requirements [15]. 
This method has the potential for integration with flow 
cytometry equipment by substituting the imaging chamber 
with an imaging flow cell; however, this would require a 
redesign of the experimental setup and require additional 
equipment purchases.

Method 1 provides a portable device for capturing QPI 
images, however the portability is limited as a brightfield 
microscope in a laboratory context is required for maxi-
mum magnification. As such, portability of this device 
between laboratories is simple; however, the in situ appli-
cations are very limited.

This method provides images with high (comparable 
with Method 2) spatial resolution; however, this resolu-
tion relies on an oil immersion technique to achieve 100X 
objective magnification. This complicates the imaging pro-
cess as each individual slide containing a new sample must 
have oil manually applied prior to imaging.

Method 2: QPI using Michelson interferometry

A QPIU using Michelson interferometry (discussed in 
section “Michelson interferometry”), Method 2 hereafter, 
provides detailed analysis of biophysical cellular features 
including radius and dry mass utilising phase-shifting 
quantitative phase imaging. Automated sample process-
ing and data collection using integrated flow cytometry 
enhances data collection rates [37]. The advantages and 
disadvantages of this method are further considered within 
this section.

Advantages

The primary advantage of Method 2 is the high spatial 
resolution attainable in images captured using this method, 
providing precise information on biophysical cellular prop-
erties. Unlike Method 1, this accuracy does not rely on oil 
immersion, which removes a preparation step and simplifies 
the imaging preparation process. The viability this method 
was demonstrated through the accurate images captured of 
tumour cells with diameters of 7–9 μm, which is compa-
rable to the sizes of smaller cyanobacteria species [17]. If 

examined cyanobacteria species are too small to be accu-
rately imaged with this method, the modular design allows 
for components such as the microscope objective to be sub-
stituted with higher-magnification equivalents.

Another significant advantage of Method 2 is the auto-
mated sample analysis method provided through integra-
tion with flow cytometry equipment to significantly improve 
sample processing rates, allowing accelerated data collection 
relative to manual analysis techniques [15].

Considering the costs for the three methods outlined in 
this section, Method 2 provides the most economical design. 
The cost is comparable to that of Method 1, but significantly 
cheaper than that of Method 3.

Disadvantages

While the interferometry design allows a precise interfer-
ence pattern to be created, this also poses as a disadvantage 
of Method 2. The interferometer requires precise calibration 
to achieve an interference pattern on the scale of tens of 
nanometres. The considerable number of components also 
introduces difficulty in troubleshooting potential issues, as 
there are more possible fail points in the design.

Method 2 suffers from the lowest portability of the three 
methods considered, which is an additional symptom of the 
complexity of the design. Any transportation of the inter-
ferometer will require disassembly and recalibration upon 
reassembly, with vehicular transportation preferable. The 
components used in this design are sensitive and thus must 
be protected from environmental affects to preserve preci-
sion and calibration. While a laboratory is not necessarily 
required, somewhat stable conditions (e.g. within a weath-
erproofed shed) are required.

Method 3: QPI using 4Deep S7 submersible 
microscope

Method 3 is an early example of commercially available QPI 
technology, manufactured by 4Deep. The device (discussed 
in section “4Deep S7 submersible microscope) is a small, 
portable probe designed for in situ analyses, and has been 
used to image microscopic marine life in the high Arctic 
[41].

Advantages

Method 3 is a small device designed for in situ analyses, 
offering significant flexibility when compared with Method 
1–2. Since it is designed for oceanic applications in which 
considerable temperature and pressure variations are antici-
pated, the conditions experienced within a lake are unlikely 
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to pose significant operational issues. The small physical 
size of the device simplifies transportation, allowing rapid 
relocation between testing instances.

Method 3 is a commercially available product, with manu-
facturer support and software offered along the physical prod-
uct. Method 3 has inbuilt quantitative phase reconstruction 
capabilities, eliminating a step of the potential image processing 
method outlined in Fig. 2. Manufacturer support also simpli-
fies the equipment preparation stage, since the optics will have 
already been calibrated and optimised by the manufacturer.

Disadvantages

The fundamental disadvantage of Method 3 is the design of 
device as a passive probe, complicating quantitative analy-
ses. A similarly designed device utilising a small-scale flow 
cytometer would allow accurate cell counts; however, at the 
time of writing such a device is not commercially available.

Relative to Methods 1–2, the considerable price of 
Method 3 poses a significant disadvantage for prospective 
end users. Since an ideal cyanobacteria monitoring setup 
will utilise multiple instruments at multiple locations of a 
body of water, the improved image information provided by 
such an expensive device relative to standard fluorescence 
monitoring is difficult to justify.

Another disadvantage of Method 3 is the low spatial 
resolution of images captured using this device relative to 
Methods 1–2. The manufacturers indicate that specimens no 
smaller than 20 µm can be accurately imaged, which prohib-
its the analysis of many smaller cyanobacteria species and 
resultantly limits the value of Method 3 as a water quality 
microscopic imaging technique [17].

QPI comparison

Table 3 outlines a comparison of the performance of three 
QPI methods discussed in this section with respect to 

important attributes. Considering the attributes outlined 
above, Method 2 presents the greatest ability for workflow 
optimisation. The low portability of this method is unlikely 
to pose a significant disadvantage if the device is assembled 
within a fixed monitoring location (Fig. 4). The disadvan-
tages posed by such an arrangement are considered in below 
with potential mitigation measures discussed. Excluding the 
previously mentioned low portability, Method 2 performs 
at an equivalent or superior level to the alternative methods 
outlined within Table 3.

Experimental design

Figure 4 outlines a proposed implementation of Method 2 
(QPIU using Michelson interferometry) to an in situ moni-
toring location. The QPIU is assembled within a small 
weatherproof structure such as a shed located adjacent to a 
monitored body of water, or within a water treatment plant. 
Sample collection buoys are situated across the body of 
water in desired regions and connected by tubing to the pro-
cessing station, using a small pump mounted on the buoy to 
transfer sample solutions. This tubing must be periodically 
flushed out or replaced to prevent build-up of cyanobacteria/
algal biomass, which may affect the accuracy of cell counts 
and taxonomic identifications. Tubing can be submerged in 
waterways with high vehicular traffic, preventing disruptions 
and mitigating risks of the tube sustaining damage. Using 
a sample preparation unit such as the OC-300 (discussed in 
section “Sample Preparation – OC-300”), up to 12 parallel 
streams can be processed from 12 separate sample collection 
buoys. The sample buoys have a length of tubing extended a 
desired depth into the water, at the end of which a filter mesh 
is positioned to allow cyanobacteria to enter the tubing but 
prevent debris such as plant matter and small animals from 
entering. This mesh will also require periodic maintenance 
to prevent blockages.

Table 3  QPI unit comparison, colour coded for simplified visual analysis

Attribute Method 1 (portable QPIU) Method 2 (QPI using 
Michelson interferometry)

Method 3 (4Deep S6 submersible microscope)

Portability High Low High
In situ applications (without 

additional equipment)
Low Low High

Sample processing/prepara-
tion

Manual Automatic N/A

Spatial resolution High (relies on oil immer-
sion)

High Low

Cost Low Low High
Commercial availability N/A N/A Yes
AI image recognition Proven (HoloConvNet) Unproven but applicable Insufficient for smaller 

(< 20 µm) cells
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Initial implementations will require manual relocation of 
sample buoys if monitoring of alternate locations is desired. 
Future improvements may involve a renewably powered 
GPS-linked buoy with a small electric motor, allowing 
automatic remote-controlled relocation to different regions 
of interest.

The water samples are then processed with 100 images 
per second captured of any specimens or debris pass-
ing through the imaging flow cell using Method 2. Flow 
cytometry performance can be improved by programming 
the OC-300 to introduce Lugol’s solution during the sam-
ple preparation phase, which will reduce adhesion between 
cells in the sheath fluid.

A Fourier reconstruction algorithm is then used to retrieve 
quantitative phase images from the interference pattern cap-
tured by the CMOs camera. The reconstructed QPI images 
are then provided to a series of post-processing neural net-
works (discussed in “Post-processing using neural networks”) 
to improve the overall performance of the network. These 
networks include an out-of-focus classifier, a deblurring 
algorithm, and an image segmentation algorithm. A neural 
network trained to identify cyanobacteria in QPI images then 
analyses approximately 1 cell/millisecond, delivering a quan-
titative summary of the taxonomic composition of the sample 
and determines a cell count per millilitre using the precise 
volume of the sample prepared by the OC-300. For measure-
ments conducted in treatment plants, the neural network can 
be trained to determine cell viability and the portion of cells 
destroyed by treatment process. The number of out-of-focus 
images, as well as the number of unidentified objects in the 
sample, are then used to determine an uncertainty interval 
for the cell count and sample composition. Unidentified cells 
are flagged by the network for inspection and identification 
by an operator, from which the neural network can undergo 
further training. Initially a neural network developed using 
MATLAB can provide limited recognition capabilities. The 
post-processing and recognition process will likely require a 
dedicated computer to facilitate continuous sample process-
ing from several sample collection buoys.

This data can be summarised and used to provide addi-
tional training samples for further AI development, evaluate 
the efficacy of water treatment processes used, and be pro-
vided to a risk assessment team to assists tailored water qual-
ity risk assessments considering cyanobacteria taxonomy 
and cell counts.

Recommendation for further research

The proposal outlined above represents only a preliminary 
design. A practical implementation will require further 
research and consideration of many additional factors and 
design parameters. Several key considerations for further 
research have been outlined below:

• Determination of pertinent interferometer design infor-
mation (e.g. distances between components, lens angles, 
total desired magnification, etc.)

• Compatibility of optics components
• Optimal imaging conditions (e.g. external lighting)
• Field retrieval method used to reconstruct QPI images 

(e.g. Fourier transforms and numerical propagation by 
angular spectrum method)

• Optimal segmentation algorithm
• Optimal refocussing/deblurring algorithm
• Optimal CNN platform and parameters for image inter-

pretation
• Investigation of the performance of image recognition 

for 2D vs 3D QPI images (2D is less computationally 
intensive but 3D offers enhanced information)

• Cost optimisation

QPI is the subject of continued research and development. 
Method 3 highlights the growing commercial interest in this 
technology. Increasing prevalence of machine learning as a 
means of processing large data sets is likely to foster fur-
ther development. A future design comparable to the in situ 
(4Deep S7 Submersible Microscope) device but utilising 
integrated flow cytometry capabilities and improved spatial 
resolution will provide a sophisticated platform from which 
cyanobacteria populations can be monitored in real time.

Conclusion

Technologies and techniques within the published literature 
were reviewed to propose a real-time cyanobacteria moni-
toring process using quantitative phase imaging microscopy 
and machine learning neural network cell recognition. Real-
time microscopic monitoring and evaluation of microbial 
activity allows early HAB detection, water treatment effi-
cacy evaluation, and informs accurate risk assessments by 
considering taxonomy and cell counts. Three potential QPI 
techniques (Method 1–3) were evaluated, the most viable 
of which were used to propose an optimised cyanobacteria 
monitoring station (Fig. 4). The recommendations within 
this report thus provide a theoretical basis from which a 
practical water quality monitoring system can be constructed 
to simplify and improve HAB and cyanobacteria monitoring.
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bution 4.0 International License, which permits use, sharing, adapta-
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