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Systematic genetics and single-cell imaging reveal
widespread morphological pleiotropy and
cell-to-cell variability
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Abstract

Our ability to understand the genotype-to-phenotype relationship
is hindered by the lack of detailed understanding of phenotypes at
a single-cell level. To systematically assess cell-to-cell phenotypic
variability, we combined automated yeast genetics, high-content
screening and neural network-based image analysis of single cells,
focussing on genes that influence the architecture of four subcellu-
lar compartments of the endocytic pathway as a model system.
Our unbiased assessment of the morphology of these compart-
ments—endocytic patch, actin patch, late endosome and vacuole—
identified 17 distinct mutant phenotypes associated with ~1,600
genes (~30% of all yeast genes). Approximately half of these
mutants exhibited multiple phenotypes, highlighting the extent of
morphological pleiotropy. Quantitative analysis also revealed that
incomplete penetrance was prevalent, with the majority of
mutants exhibiting substantial variability in phenotype at the
single-cell level. Our single-cell analysis enabled exploration of
factors that contribute to incomplete penetrance and cellular
heterogeneity, including replicative age, organelle inheritance and
response to stress.
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Introduction

Although we understand that most phenotypes including diseases

are influenced by the genetic variation encoded in individual

genomes, our ability to predict when a genetic lesion will cause a

specific phenotype remains limited. Pioneering work in yeast and

other model systems has made use of quantifiable phenotypes, such

as cell growth, to systematically survey the consequences of single,

double and higher-order genetic perturbations in populations of

mutant cells (Costanzo et al, 2019; Domingo et al, 2019). While

measuring growth phenotypes in cell populations has enabled infer-

ence of gene function, biological pathways and networks, the mech-

anistic underpinnings of a particular phenotype are typically

difficult to infer from bulk population measurements. Moreover,

using population-level measurements as a phenotypic read-out

precludes a quantitative analysis of single-cell phenotypes and thus

an analysis of cell-to-cell variability, which is a key consideration

for prediction of the consequences of genetic perturbation.

High-throughput (HTP) approaches for monitoring single-cell

phenotypes include single-cell transcriptomics, mass spectrometry

and automated imaging, among others (Ziegenhain et al, 2018;

Chessel & Carazo Salas, 2019; Yin et al, 2019). High-content screen-

ing, which combines HTP microscopy with multiparametric image

and data analyses, provides rich phenotypic information about the

spatio-temporal properties of biological systems at the single-cell

level (Boutros et al, 2015; Mattiazzi Usaj et al, 2016; Chessel &

Carazo Salas, 2019). Large-scale screens have been productively

combined with image analysis to explore different aspects of cell

biology in yeast and in higher eukaryotes. For example, data on

protein localization and abundance, cell shape and compartment

morphology, and the prevalence of cell-to-cell variability can be
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quantified from cell images and the influence of genetic or environ-

ment perturbation on these cell attributes can be systematically

assessed (Yin et al, 2013; Chong et al, 2015; Styles et al, 2016; de

Groot et al, 2018; Heigwer et al, 2018).

Endocytosis is a highly conserved bioprocess that plays a central

role in eukaryotic cell biology, mediating the internalization of

receptors, nutrients and other molecules, controlling the lipid and

protein composition of the plasma membrane and the coupling of

different intracellular compartments (Goode et al, 2015). Endocyto-

sis initiates with vesicle formation at specific sites at the plasma

membrane. This process requires the coordinated action of proteins

involved in distinct functional modules (Lu et al, 2016). In yeast,

these include coat proteins, which function as adaptors to link

cargo, coat, plasma membrane and actin network components, and

actin module proteins, which represent a later stage in internaliza-

tion; their appearance coincides with the membrane invagination

and coat internalization step (Weinberg & Drubin, 2012). After

cargo uptake, endocytic vesicles fuse with early endosomes, allow-

ing cargo to be recycled to the plasma membrane, or targeted

through more mature endosomes and multivesicular bodies (MVBs)

for vacuolar (lysosomal) degradation. The endocytic intracellular

trafficking pathway, which is largely recapitulated in mammalian

cells (Taylor et al, 2011), impinges on a number of cellular physio-

logical processes and is often associated with the pathology of

human diseases, including atherosclerosis, some cancers and

Alzheimer’s disease (McMahon & Boucrot, 2011; Maxfield, 2014).

Several large-scale studies have been conducted to identify a

number of core components and regulators of the endocytic path-

way in yeast and higher eukaryotes, but have largely been based on

population measurements or have analysed only a subset of genes

(Bonangelino et al, 2002; Seeley et al, 2002; Burston et al, 2009;

Collinet et al, 2010; Liberali et al, 2014).

To explore how single-cell analysis can be used to assess cell-to-

cell variability, morphological pleiotropy and incomplete penetrance,

we used the yeast endocytic pathway as a model system, combining

systematic genetic analysis with high-content screening. We examined

5,292 unique yeast genes for roles in endocytic compartment

morphology, applying live-cell fluorescence microscopy and neural

network-based, single-cell image analysis. In total, we identified

~1,600 genes whose perturbation affects at least one endocytic

compartment, revealing both new biology and insights into mecha-

nisms underlying cellular heterogeneity. The experimental and

computational pipeline developed here can be generalized to other

unrelated compartments, pathways or phenotypes, which will allow

us to expand our knowledge on the inner workings of a cell. Impor-

tantly, the computational analysis framework we developed is also

species-independent, and we provide the tools for its implementation.

Results

Combined experimental–computational pipeline for quantitative
single-cell assessment of mutant phenotypes

To enable a quantitative analysis of subcellular compartment

morphology, we developed a high-throughput (HTP) image-based

pipeline coupled to single-cell image analysis (Fig 1A). We

constructed a series of query strains with a fluorescent protein (FP)

at the C terminus of four endogenous yeast proteins, each serving as

a marker for a unique endocytic compartment. We focused on (i)

SLA1, encoding an endocytic adaptor protein, marking the coat

complex associated with early endocytic sites at the plasma

membrane; (ii) SAC6, encoding yeast fimbrin, marking actin patches

that are also required for early endocytosis events; (iii) a late endo-

somal marker, SNF7, encoding a subunit of the ESCRT-III complex

involved in the sorting of transmembrane proteins into the multi-

vesicular body (MVB) pathway; and (iv) a marker for the vacuolar

membrane, VPH1, encoding subunit “a” of the vacuolar ATPase

(V-ATPase) VO domain (Fig 1B).

We introduced each marker into both the yeast deletion collection

(Giaever et al, 2002), and the collection of temperature-sensitive

(TS) mutants of essential genes (Li et al, 2011; Costanzo et al, 2016),

using the synthetic genetic array (SGA) approach (Tong & Boone,

2006). We acquired live-cell images of log-phase cultures with an

automated HTP microscope. CellProfiler (Carpenter et al, 2006) was

used to identify individual cells and subcellular compartments, and

extract quantitative features describing these segmented compart-

ments. The final dataset included quantitative data for ~16.3 million

cells from 5,627 mutant strains (5,292 unique ORFs or ~90% of yeast

genes), with an average of 640 cells for each mutant strain.

First, we defined the phenotypes associated with each compart-

ment. We used an automated unsupervised method to identify

“outlier” cells with non-wild-type morphology (see Materials and

Methods). To identify mutant morphologies, we visually inspected

the strains with a significant fraction of outlier cells, assessed their

phenotypes and compiled a set of positive control strains by

combining published data with selected mutants (Table EV1). This

approach enabled the discovery of both well-characterized and

novel phenotypes. In total, we defined 21 endocytic phenotypes: a

wild-type phenotype for each compartment and 17 showing aber-

rant morphology (Fig 1C).

We then labelled a representative set of cells displaying these 21

phenotypes using a custom-made, single-cell labelling tool; this

“training set” was used to train a neural network to automatically

classify other cells. To confirm that the CellProfiler features derived

from the cell images were sufficient to distinguish the different

mutant phenotypes, we performed hierarchical clustering of the

average feature values across all single cells labelled in each pheno-

type’s training set (Fig EV1A) and non-linear dimensionality reduc-

tion using t-SNE (Maaten & Hinton, 2008) on the training set feature

vectors (Fig EV1B). We then used the labelled dataset to train a 2-

hidden-layer fully connected neural network (2NN) for each of the

endocytic markers. For each single cell, the marker-associated 2NN

estimated the probability of each phenotype and we assigned each

cell the phenotype with the highest probability. The average classifi-

cation accuracy on held-out data across all markers and phenotypes

was 88.4%, and 18 of the 21 phenotypes had an average classifi-

cation accuracy > 80% (Fig EV2A and B, Table EV1, see Materials

and Methods).

Statistical analyses validated the quality of our pipeline, con-

firming reproducibility and accuracy of the single-cell phenotypic

classifications (see Materials and Methods; Fig EV2C and D). Apply-

ing our 2NN to the entire dataset allowed us to accurately detect

even a small fraction of aberrant cells, enabling quantification of the

variety and penetrance of mutant phenotypes associated with a

given mutation (see below).
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Hundreds of yeast genes affect endocytic
compartment morphology

To capture the spectrum of phenotypes associated with each mutant

strain, we determined the fraction of cells in a mutant strain popula-

tion that displayed each of the 21 phenotypes using our classifiers

described above (Fig 1C). We called a strain a specific phenotype

mutant (SPM) if the fraction of cells assigned an aberrant phenotype

was significantly greater than that assigned the same phenotype in a

control wild-type strain population (see Materials and Methods). In

total, we identified 1,486 mutants as SPMs (Fig 1D), with many

mutants classified as SPMs for more than one phenotype. We

defined a subset of 363 mutants as stringent SPMs, as they had a

relatively larger fraction of cells with a specific defect (see Materials

and Methods). We also identified a small set of non-phenotype-

specific mutants (137 unique genes; Fig 1D) which showed a signifi-

cant increase in the total percentage of the cell population display-

ing an aberrant phenotype for a given compartment, even if none of

the individual phenotype fractions were high enough for a given

strain to be classified as an SPM. In total, we identified 1,623 yeast

genes (~30% of screened ORFs) that affect the morphology of one

or more endocytic compartments (referred to as morphology

mutants; Table EV2; https://thecellvision.org/endocytosis). Thus,

yeast endocytosis is remarkably sensitive to single-gene perturba-

tion, consistent with previous siRNA screens in mammalian cells

(Collinet et al, 2010).

We next examined the extent of morphological pleiotropy, which

we define as occurring when a mutant has two or more aberrant

morphological phenotypes. It is important to note that morphologi-

cal pleiotropy does not necessarily imply functional pleiotropy,

where a gene affects multiple functionally distinct processes (Paaby

& Rockman, 2013). For each marker, some of the morphology

mutants showed multiple phenotypes (Fig 1D). Overall, approxi-

mately half of the 1,623 morphology mutants showed aberrant

phenotypes with more than one of the four markers screened, and

approximately half of the SPMs displayed more than one of the 17

aberrant phenotypes (Fig 1E), indicating that morphological pleio-

tropy is prevalent within this conserved pathway and that numerous

genes impinge on multiple stages of endocytosis. The most

pleiotropic mutants (those causing six or more specific phenotypes;

116 SPM genes) were involved in vesicle organization, exocytosis,

protein lipidation and membrane fusion. Genes associated with

multiple morphological outcomes tended to affect a larger fraction

of the cell population (Fig 1F). Morphology mutants were also

enriched for TS alleles of essential genes (Fig EV3A and B) and the

fraction of essential gene mutants increased with the number of

morphological phenotypes (Fig EV3C). However, morphological

pleiotropy was not confined to essential genes. For example,

mutants of both the essential exocyst complex and the non-essential

ESCRT complexes led to phenotypic defects spanning the early and

late endocytic compartments (Table EV2).

Genes annotated with roles in a wide range of functions appear

to impinge on the endocytic pathway. Only 286 (~18%) of the iden-

tified mutant genes were annotated to GO Slim biological process

terms associated with endocytosis and the endomembrane system

(Table EV2). Similarly, while morphology mutants were enriched

for genes conserved between yeast and human (~40% of conserved

morphology mutants compared to ~26% on the array, P < 0.0001;

Fig EV3D), this enrichment was not due to known endocytosis

machinery components (Fig EV3E), but included genes involved in

a range of bioprocesses, such as DNA replication and repair, tran-

scription and splicing.

Automated image analysis identifies the spectrum of possible
endocytic compartment morphologies

Of the 17 aberrant morphological phenotypes associated with the

four endocytic markers, 15 correspond to previously described

phenotypes (Table EV1). The unsupervised outlier detection analy-

sis identified two novel phenotypic groups: mislocalization of the

late endosomal marker to the vacuolar membrane (“late endo-

some: membrane” in Fig 1C) and a previously unappreciated

vacuolar mutant phenotype characterized by small vacuoles and

increased cytosolic localization of the vacuolar marker, Vph1.

Because most of the SPMs in this class were genes involved in

various aspects of Golgi vesicle transport, we refer to this vacuolar

morphology as the “class G” phenotype. We confirmed that the

class G was a distinct phenotype, and not an intermediate stage of

◀ Figure 1. Twenty-one subcellular endocytic phenotypes identified using computational analysis of single-cell images (see also Figs EV1 and EV2, Tables
EV1 and EV2).

A Diagram of the experimental and computational workflow. Yeast mutant arrays harbouring fluorescently tagged proteins marking specific endocytic compartments
were constructed using the synthetic genetic array (SGA) method and imaged using automated high-throughput microscopy. Image and data pre-processing steps
included object segmentation and feature extraction, low-quality object clean-up and data standardization. Positive controls and classification training sets were
used to train a fully connected 2-hidden-layer neural network (2NN), allowing assignment of phenotypes at the single-cell level and calculation of penetrance.

B Illustration of the endocytosis process and compartment markers. The four endocytic compartment markers used in this study are indicated: Sla1 as a marker of the
protein coat component of the endocytic patch (light purple); Sac6 as a marker of the actin component of the endocytic patch (blue); Snf7 as a marker of the late
endosome (orange); and Vph1 as a marker of the vacuolar membrane (red). The colours chosen for each marker are used throughout this study. FP: fluorescent
protein.

C Example micrographs of yeast cells for each of the 21 subcellular endocytic phenotypes identified in this study. The relevant markers are listed to the left of the
micrographs. Dashed lines indicate cell outlines. Scale bar: 5 lm.

D Pie charts showing the proportion of specific phenotype mutants (SPMs) that have one or more distinct aberrant phenotypes, and non-phenotype-specific mutants
for each of the compartments screened.

E Pie charts showing the proportion of mutant strains that are morphology mutants for one or more markers (left) and specific phenotype mutants (SPMs) that cause
one or more aberrant morphological phenotypes (right). The number of mutants in each category is listed within each section.

F Box plot illustrating the distribution of the fraction of non-wild-type cells for specific phenotype mutants grouped by the number of phenotypes they cause.
** denotes a significant difference between two groups (P < 0.01; significance was determined using analysis of variance (ANOVA) with a post hoc Bonferroni test).
Central lines represent the median. The number of specific phenotype mutants in each group ranges from 71 to 751. See Table EV2 for details. Whiskers extend to the
5th and 95th percentile.
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one of the known vacuolar phenotypes, by imaging in a 24-h time

course at 37°C (Fig EV4A). Since Golgi vesicle transport affects

trafficking pathways to the vacuole, the class G phenotype could

be a consequence of abnormal vacuolar membrane composition

that leads to defects in vacuole formation or membrane fusion and

fission.

Comparisons to a panel of gene attributes (Fig EV4B, Table EV3)

revealed that morphology mutants in all four compartments were

enriched for the same set of features: high conservation across dif-

ferent species, ample genetic interactions (GIs) and protein–protein

interactions (PPIs), pleiotropy and multifunctionality, fitness defects

and tendency to act as phenotypic capacitors.

Mutants with aberrant phenotypes were often enriched in multi-

ple bioprocesses, both closely related and apparently unrelated to

the compartment associated with the aberrant phenotype, suggest-

ing that multiple mechanisms can lead to a particular phenotype

(Fig 2, Table EV3). For example, a decrease in actin patch numbers

could be due to defects in mRNA processing and transcription, DNA

replication and repair, exocytosis or the cell cycle (Table EV3).

Stringent SPMs were enriched for more specific protein complexes

and biological pathways, which may be suggestive of the mecha-

nisms underlying their aberrant morphological phenotypes

(Table EV3). Phenotypes that occur in a relatively high fraction of

the population in wild-type strains, such as depolarized patches or

multilobed vacuoles (Fig 2), may result from a general cellular

response to different stress conditions (environmental or genetic)

and tend to be associated with a larger number of SPMs (Fig 2).

The comparison of SPMs for several markers allowed us to

search for new connections both within and between the endocytic

compartments. We found that different morphology defects can be

enriched among genes with roles in the same bioprocesses

(Table EV3), possibly reflecting a common biological mechanism.

To better understand the relationships between different pheno-

types, we measured the pairwise correlations between each of the

17 mutant phenotypes across all SPMs (Fig EV4C, Table EV5). As

expected, this comparison revealed a large number of correlated

phenotype pairs; however, 86 phenotype pairs (of the 136 possible)

were either not significantly correlated or were anti-correlated

(Table EV5), suggesting orthogonal or opposite cellular events. For

example, enlarged and multilobed vacuoles are anti-correlated,

consistent with defects in either membrane fission or fusion. We

next evaluated whether pairs of phenotypes shared more stringent

SPMs than expected by chance (Table EV5). Of the 136 possible

phenotype pairs, 36 pairs shared a significantly (P < 0.05,

FDR < 0.2) overlapping set of causative gene mutations, and for 15

of these pairs, the overlapping set was enriched in specific protein

complexes (Fig 3A, Table EV5). This conservative analysis identified

a core set of 13 protein complexes that affect endocytic compartment

morphology at multiple levels, including several protein complexes

with well-characterized roles in vesicle trafficking (Fig 3B), such as

the HOPS, the vacuolar t-SNARE and the retromer complexes, which

are involved in anterograde and retrograde trafficking between the

Golgi, endosomes and the vacuole. Mutants of these complexes have

defects at the late endosome-vacuole fusion step, or defects in recy-

cling leading to depletion of sorting machinery components, result-

ing in multiple “fragmented” endosomes (Balderhaar & Ungermann,

2013; Ma & Burd, 2019). Some of the related endocytic morphology

defects are likely sequential, while others may stem from indepen-

dent events. For example, mutations in genes encoding components

of the ESCRT complexes caused three connected phenotypes: coat

aggregates, condensed late endosomes and class E vacuoles. Defects

in ESCRT complex assembly and MVB formation lead to accumula-

tion of cargo at the late endosome—all three phenotypes therefore

mark an exaggerated prevacuolar endosome-like compartment

(Coonrod & Stevens, 2010). In contrast, mutation of genes encoding

general transcriptional regulators such as TFIIH and the core media-

tor caused pleiotropic endocytic phenotypes which may reflect a

series of independent defects in transcription. Another core complex

with effects on multiple endocytic compartments is the functionally

conserved Dsl1 multisubunit tethering complex, a resident ER

complex involved in retrograde Golgi-to-ER trafficking (Andag et al,

2001; Reilly et al, 2001). As the upstream step in many intracellular

vesicle trafficking pathways, disruption of ER-Golgi trafficking can

alter both sorting through the secretory/exocytic and Golgi-to-endo-

some pathways, affecting both early and late endocytic compart-

ments.

To explore the extent to which the 17 aberrant endocytic

compartment morphologies translate into a defect in endocytic inter-

nalization, we compared our list of SPMs with the published results

of a quantitative assay for endocytic recycling of the non-essential

gene-deletion collection, based on a GFP-Snc1-Suc2 chimeric protein

(Burston et al, 2009). All sets of SPMs derived from the 17 aberrant

phenotypes were associated with a decrease in endocytic internal-

ization (P < 0.01; Fig EV4D, Table EV6), with the exception of SPMs

for the vacuolar class G phenotype, which were mostly essential

genes (58/79 SPMs, including all of the stringent SPMs, Fig EV3B).

We next tested each phenotype class to determine whether the

mutants with a more penetrant version of the phenotype were more

likely to have an endocytic internalization defect. We compared the

defect levels of stringent SPMs to non-stringent SPMs and found a

significant increase in defects for four phenotypes: decreased

number of actin patches, coat aggregate, condensed late endosome

and class E vacuole (Fig EV4D, Table EV6). These phenotypes are

likely directly linked to an endocytic internalization defect. The

internalization defects of the stringent SPMs for actin patches were

the highest of the four compartments (Tables EV2 and EV6). The

actin module is the driving force in endocytic internalization and

studies have previously shown that mutants with a reduced number

of actin structures have defective endocytosis (Weinberg & Drubin,

2012). The remaining three phenotypes linked with internalization

defects were those associated with defects in ESCRT complex and

MVB formation.

▸Figure 2. The spectrum of endocytic compartment morphologies: properties of 17 mutant phenotypes. (see also Fig EV3, Table EV3).
Representative images of wild-type and mutant cells organized by marker and phenotype (labels on the left of each panel). For each phenotype, three cells labelled for the
training set (labelled single cells) and three cells identified by the 2NN classifier (identified single cells) are shown. The table to the right of the images shows (from left to right): (i)
the occurrence of each phenotype in a wild-type population (% inWT); (ii) the number of specific phenotypemutants (all) and stringent specific phenotypemutants (str) for each
of the 17mutant morphologies; (iii) the most significantly enriched GO Slim biological process; and (iv) the most significantly enriched protein complex. # denotes term below
statistical significance.
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Subcellular morphology information and phenotype profiles
support prediction of gene function

For virtually all 17 aberrant morphological phenotypes, we found

several genes that had not been previously linked to the assessed

morphological defects, including ~130 morphology mutants corre-

sponding to largely uncharacterized genes. For example, YDL176W

caused a decrease in the number of actin patches and concomitant

increase in the number of coat patches when mutated. This suggests

a defect in actin patch assembly that causes a delay in patch

A

B

Figure 3. Analysis of the common morphology mutants of endocytic compartment phenotypes and the relationship to known protein complexes (see also
Table EV5).

A Matrix showing significant overlap of stringent specific phenotype mutants (P < 0.05; significance was determined using Fisher’s exact tests). Circle size corresponds
to the log value of the overlap odds ratio. Orange circles denote same-compartment phenotype pairs. Dark blue fill colour indicates phenotype pairs with at least one
enriched protein complex in the overlapping set. LE: late endosome.

B Diagram illustrating co-occurrence of endocytic morphology phenotypes associated with protein complex perturbation. Shown are significant protein complexes from
(A) with biological processes and linked phenotype pairs. # denotes a phenotype pair without significant enrichment. Phenotype names are colour-coded by
endocytic marker, using the colour key described in Fig 1 and indicated on the yeast cell diagram.
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internalization and accumulation of upstream components. Indeed,

a ydl176wD mutant harbouring Sla1-GFP and Sac6-tdTomato mark-

ers exhibited a 55% increase in the lifetime of Sla1-GFP patches

(P < 0.0001) and a modest but significant increase in the lifetime of

Sac6-tdTomato (7.6% increase, P = 0.0012) (Fig 4A). Moreover,

the YDL176W deletion mutant has an endocytic internalization

defect (Burston et al, 2009), and YDL176W shows a strong negative

GI with SLA2 (Costanzo et al, 2016), which encodes an adapter

protein that links actin to clathrin and endocytosis. We thus named

the YDL176W open reading frame IPF1 for involved in actin patch

formation.

As we have shown, half of our SPMs affect multiple compartments

and some lead to phenotypes that are present only in a small fraction

of the population. To facilitate functional prediction for these genes,

we used a multivariate approach that considers all the morphology

phenotype classes. For each mutant strain, we assembled a pheno-

type profile composed of the fraction of cells with aberrant morphol-

ogy for each of the 17 mutant classes and computed the similarity of

phenotype profiles between each pair of morphology mutant genes.

Functionally related gene pairs exhibited significantly higher pheno-

type profile similarities, indicating that phenotype profiles were

predictive of a functional relationship (Fig EV5A). Hierarchical clus-

tering of phenotype profiles identified clusters enriched in function-

ally related genes, including clusters of genes involved in ER to Golgi

transport, vacuole organization and exocytosis (Fig 4B). Interestingly,

one cluster contained genes encoding regulators of actin and RNA

splicing. Unlike most yeast genes, many actin regulatory genes, such

as COF1 and ARP2, as well as ACT1 itself, contain introns and thus

depend on mRNA splicing to produce functional proteins and normal

regulation of actin cytoskeleton organization (Fig 4B). The same clus-

ter also includes the newly named IPF1 gene (see above), additionally

linking its function to actin cytoskeleton regulation.

Two poorly characterized genes, YEL043W and NNF2 (YGR089W),

had highly correlated phenotype profiles (PCC = 0.89) that were most

similar to profiles of genes involved in Golgi vesicle and endosomal

transport (Figs 4C and EV5B). Both gene products are localized to the

ER (Huh et al, 2003; Chong et al, 2015; Kraus et al, 2017) and contain

coiled-coil domains that are often associated with vesicle tethering

proteins (Cheung & Pfeffer, 2016). Moreover, the coiled-coil domains

of Yel043w and Nnf2 physically interact with each other (Newman

et al, 2000; Wang et al, 2012) and the GI profiles of YEL043W and

NNF2 are both enriched for interactions with genes involved in vesicle

trafficking (Costanzo et al, 2016), suggesting a possible role for these

two proteins in Golgi vesicle trafficking. We named the YEL043W gene

GTA1, for Golgi vesicle trafficking associated.

In addition, many protein complexes that affect at least one of

the screened endocytic markers had a high within-complex pheno-

type profile correlation (Fig EV5C, Table EV7). Phenotype profiles

were more similar between components of the same protein

complex structure that are in direct contact when compared to those

that are not (Fig 4D). In some cases, these profiles were able to dif-

ferentiate between closely related complexes and between func-

tional subunits of a complex. For example, ESCRT complex mutants

led to the vacuolar class E and related phenotypes. Phenotype pro-

files were able to differentiate between ESCRT-I and ESCRT-II/III

components (and to a lesser extent also between ESCRT-II and

ESCRT-III components) (Fig 4E). In another example, phenotypic

profiles differentiated two distinct functional subunits of the SPOTS

complex, involved in sphingolipid homeostasis (Fig 4F). This modu-

larity is consistent with the known biochemistry: the catalytic activ-

ity depends on Lcb1 and Lcb2 and is stimulated by Tsc3, whereas

Sac1, Orm1 and Orm2 are believed to play regulatory roles (Fig 4F)

(Breslow et al, 2010).

Penetrance is an informative indicator of gene function

Besides specific phenotype information, an important output of our

single-cell analysis was quantification of penetrance, defined as the

total percentage of the population with an aberrant phenotype, in

each mutant for each compartment. Among the morphology

mutants were 1216 penetrance mutants that had a significant

increase in penetrance compared to the control strain (Table EV2).

For ~90% of these mutants, the morphology defect was incom-

pletely penetrant (Fig 5A). We binned mutants based on low, inter-

mediate or high penetrance and found that each group of genes was

enriched for distinct functions (Table EV8). We previously showed

that a network based on genetic interaction profiles provides a

global view of the functional organization of the cell (Costanzo

et al, 2016). Thus, we next examined where these genes localized

relative to biological process-enriched clusters on the global genetic

◀ Figure 4. Predicting gene function from phenotype profiles (see also Fig EV4).

A Endocytic patch formation dynamics in the ydl176wD (ipf1D) strain. Patch dynamics were examined using time-lapse fluorescence microscopy of wild-type (WT)
and ipf1D deletion strains carrying reporters for the coat (Sla1–GFP; green) and actin (Sac6-tdTomato; red) modules. Upper: Representative kymographs for the WT
and ipf1D strains. Scale bar: 10 s. Lower: Box plot illustrating the distribution of lifetimes of Sla1-GFP and Sac6-tdTomato patches. The box represents IQR
(interquartile range). Whiskers extend to the 5th and 95th percentile. Central lines represent the median. At least 100 patches were analyzed per strain and marker.
**, ***denote a statistically significant difference between the two groups (P < 0.01 or P < 0.001). Significance was determined using unpaired t-tests.

B Examples of gene clusters obtained with hierarchical clustering of phenotype profiles composed of the 17 specific phenotype fractions. Phenotypes 1–17: [1] coat:
increased patch number; [2] coat: aggregate; [3] vacuole: class E; [4] late endosome: condensed; [5] actin: bright patches; [6] late endosome: membrane; [7] actin:
aggregate; [8] coat: decreased patch number; [9] actin: decreased patch number; [10] late endosome: fragmented; [11] coat: depolarized patches; [12] actin:
depolarized patches; [13] vacuole: multilobed; [14] vacuole: fragmented; [15] vacuole: enlarged; [16] vacuole: class G; [17] vacuole: V-ATPase defect.

C Interaction network of NNF2 and YER043W (GTA1). Genes with phenotype profiles with a correlation > 0.7 and genetic interaction profiles with a correlation > 0.2,
and at least two significant correlations to NNF2 and/or GTA1 were included in the network.

D Analysis of phenotype profile similarity between mutants in genes encoding proteins in same or different protein complex structures. Box plot indicates distribution
of PCCs between pairs of phenotype profiles for genes that encode protein pairs in direct contact in a protein complex experimental structure (Yes - Direct), code
for protein pairs in the same protein complex structure but not in direct contact (Yes - Indirect) and code for protein pairs that do not belong to the same protein
complex structure (No). The box represents IQR (interquartile range). Whiskers are Q1-1.5*IQR and Q3+1.5*IQR. Central lines represent the median. The number of
pairs evaluated in each set is shown on the left side. Significance was determined using one-sided Mann–Whitney U-tests. ***P < 0.001.

E, F Differentiation of functionally related protein complexes and protein complex organization using phenotype profiles. Heatmaps showing PCCs between
components of the ESCRT complexes (E) and the SPOTS complex (F). A more intense blue colour indicates a higher PCC (scale bar at the top left of each heat map).
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interaction profile similarity network using spatial analysis of func-

tional enrichment (SAFE) (Fig 5B) (Baryshnikova, 2016). Highly

penetrant mutants localized to bioprocesses that are closely related

to the function of the screened marker, genes corresponding to inter-

mediate penetrance mutants mapped to “neighbouring” processes

and low penetrance mutants localized to clusters enriched for more

functionally “distant” processes. For example, genes with highly

penetrant Snf7-GFP phenotypes reflecting defects in late endosome

morphology, mapped to clusters on the global genetic network

representing multivesicular body sorting and vesicle trafficking,

while genes exhibiting intermediate penetrance were located within

vesicle trafficking-, glycosylation- and polarity-enriched network

clusters. Finally, low penetrance mutants tend to localize to regions

of the global genetic network corresponding to vesicle trafficking,

polarity, mRNA processing and transcription (Fig 5B). Thus, pene-

trance alone is informative about the functional relationship

between processes.

Replicative age, asymmetric inheritance and stress all contribute
to incomplete penetrance in an isogenic cell population

Several factors have been suggested to affect penetrance in isogenic

populations, including cell cycle position, cell size, replicative age,

asymmetric segregation of molecular components, daughter-specific

expression and environmental factors (Colman-Lerner et al, 2001,

2005; Avery, 2006; Newman et al, 2006; Henderson & Gottschling,

2008; Levy et al, 2012; Knorre et al, 2018). Our quantitative single-

cell analysis of the morphological defects associated with each

marker provided a unique opportunity to explore some of the poten-

tial molecular and cellular mechanisms underlying incomplete

penetrance.

Replicative age and penetrance
In yeast, replicative age can be assessed by staining chitin-rich bud

scars to distinguish mother cells of different ages (Guthrie & Fink,

2002). The average replicative lifespan for our wild-type BY4741

strain is 20–30 generations (Liu et al, 2015; McCormick et al, 2015);

thus, old mothers are rare in a cell population. We examined wild-

type control cells and five mutants with vacuole defects that had

incomplete penetrance, including three mutants (rrd2D, cka2D and

rpl20bD) that are known to display a modestly extended replicative

lifespan (McCormick et al, 2015), and two vacuole inheritance

mutants (vac8D and vac17D) (Tang et al, 2003). We quantified the

amount of bud scar staining in each cell, binned cells roughly corre-

sponding to number of bud scars, thus in bins of unequal size, and

assessed whether each cell had a vacuole defect.

For wild-type and all five mutants, the fraction of outliers was

lowest in the cells with lowest bud scar staining, corresponding to

new daughters, and increased in mother cells with each cell division

(Fig 6A, upper panel). In the bin with highest bud scar staining,

corresponding to 5+ generations and consisting of ~3% of the popu-

lation, approximately half of the wild-type cells (53%) and from 51

to 94% of the mutant cells had a vacuolar morphology defect

(Fig 6A and B). Thus, aberrant vacuolar morphology increases with

the number of cell divisions even in young cells. When compared to

wild type, for four mutants (cka2D, rpl20bD, vac8D and vac17D), we

see that the relative contribution of the gene mutation decreases

with each cell division (Fig EV6). This suggests that as cells get

older, age-specific effects may contribute more to penetrance than

gene-specific effects.

Much of the work on replicative ageing has been done on old

mother cells but more recent studies have identified a number of

factors that accumulate in relatively young mothers including

oxidized proteins, protein aggregates and reactive oxygen species

(Knorre et al, 2018). Multiple studies have reported that cell size

increases in old mother cells (Zadrag-Tecza et al, 2009; Janssens &

Veenhoff, 2016). We quantified the size of our bud scar-stained cells

and confirmed that mother cells increased in size with replicative

age, even in their first five generations (Fig 6A, lower panel), with

no significant difference in cell size between wild-type cells and the

mutants we assayed. In summary, in these experiments, increased

penetrance seems to correlate with increased replicative age.

Asymmetric organelle inheritance and penetrance
Organelle inheritance is an intrinsic component of cell division and

mutations that affect this process can lead to cellular heterogeneity.

In yeast, VAC8 and VAC17 are required for vacuole movement and

partitioning between the mother and daughter cell (Tang et al,

2003). We imaged cells of wild-type and vac17D strains, with mark-

ers for vacuole and nucleus, stained for bud scars and compared

vacuole morphology defects in old and young cells of the two

strains (Fig 6C). In these inheritance mutants, multilobed vacuoles

were associated with ageing and appeared at a much younger age

compared to the wild-type strain, leading to an increase in the frac-

tion of the population that had a vacuolar morphology defect

(Fig 6A and C). Thus, the observed cell-to-cell variability in deletion

mutants of these two genes is a result of at least two factors: (i)

defects in vacuole inheritance where daughter cells do not inherit a

vacuole from their mother, but rather have to make one de novo

(mother–daughter heterogeneity) and (ii) replicative ageing

contributing to the accumulation of vacuole fission products with

each cell division cycle, leading to multilobed vacuoles of increasing

severity (replicative age-dependent heterogeneity). Similar to these

vacuole mutants, asymmetric inheritance of many cellular compo-

nents could affect penetrance.

Stress response and penetrance
Exposure to stress can lead to heterogeneous survival rates of

isogenic yeast cells (Levy et al, 2012), and can reduce penetrance in

Caenorhabditis elegans (Casanueva et al, 2012). Single-cell analysis

allowed us to address whether there was any relationship between

levels of stress response and penetrance of morphology defects. We

examined the unfolded protein response (UPR), which monitors

folding of membrane and secreted proteins in the endoplasmic retic-

ulum (Wu et al, 2014). We first compared penetrance mutants with

a study that had assayed UPR in the gene-deletion collection using

flow cytometry (Jonikas et al, 2009). For actin and coat, but not

vacuole, an increased UPR was associated with mutants that had

high penetrance in our screens (Table EV8). To explore the relation-

ship between penetrance and the stress response in single cells, we

crossed a reporter gene under the control of unfolded protein

response elements (UPREs) (Jonikas et al, 2009) into mutants that

had incomplete penetrance for actin or vacuole defects (Table EV8).

We then measured reporter activity as a proxy for the stress

response level in each cell, divided by the cell area to normalize for

cell size and quantified penetrance as a function of stress response.
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The relationships between penetrance and the UPR were dif-

ferent for the two assayed compartments, and the results were

consistent with our correlation analysis (Table EV8). For approxi-

mately half of the mutants affecting actin, an increased UPR was

associated with increased penetrance (Fig 6D, left panel, clusters 1

and 2), while the penetrance of vacuolar morphology was fairly

constant across different levels of UPR for most mutants (Fig 6D,

right panel, cluster 1). These findings indicate that UPR activation is

correlated with penetrance of actin-based endocytosis phenotypes.

At the molecular level, the UPR has been proposed to indirectly

affect actin cytoskeleton remodelling by activating the cell wall

integrity pathway (Bonilla et al, 2002; Bonilla & Cunningham, 2003;

Levin, 2005), which suggests that the connection between the UPR

and actin-based endocytosis phenotypes may be causal.

These experiments show that replicative age, organelle inheri-

tance and response to stress are among the possible factors that

contribute to incomplete penetrance in isogenic populations.

Discussion

To explore how single-cell analysis can be used to assess cell-to-cell

variability, morphological pleiotropy and incomplete penetrance, we

developed a high-content screening pipeline that allowed us to inter-

rogate sets of yeast mutants for effects on subcellular compartment

morphology of a conserved pathway. Using a single-cell-level neural

network classifier, we assigned over 16 million cells to one of 21

distinct endocytic phenotypes and obtained penetrance information

for four markers for ~5,600 different yeast mutants (corresponding

to ~5,300 genes, or ~90% of the genes in the yeast genome). We

found that ~1,600 unique yeast genes affect the morphology of one

or more endocytic compartments. This dataset provides rich quanti-

tative phenotypic information revealing roles of specific genes in

shaping compartment morphology and the functional connections

between genes and the compartments they perturb.

We used machine learning to perform outlier detection followed

by classification of phenotypes to describe endocytic compartment

morphology. These data allowed us to define possible morphologies

for several functionally important cell compartments and also to

build phenotype profiles, which links all assayed phenotypes associ-

ated with a specific genetic perturbation. The resulting phenotypic

profiles enabled us to predict gene function and revealed functional

information at the level of bioprocesses and protein complexes that

was not evident by considering individual phenotypes.

A

B

Figure 5. Functional analysis of incomplete penetrance (see also
Table EV8).

A Stacked bar graph with fractions of penetrance mutants belonging to each
penetrance bin for the four endocytic markers. act: actin; LE: late
endosome; vac: vacuole.

B SAFE (Spatial Analysis of Functional Enrichment) of penetrance mutants
grouped according to penetrance. Top: Bioprocess key for interpreting the
global similarity network of yeast genetic interactions visualized using
SAFE, which identifies regions of the network enriched for specific biological
processes (Costanzo et al, 2016). Coloured dots denote the localization of
the 4 marker genes within the global similarity network. Below: SAFE of
penetrance mutants grouped according to their penetrance and marker.
Orange: genes whose mutation caused high penetrance; grey: intermediate
penetrance genes; blue: low penetrance genes. Numbers in brackets refer to
the number of unique ORFs in each group.
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Our analysis focused on markers that report on endocytosis, but

the combined experimental and computational pipeline that we

describe can be readily extended to unrelated markers and pheno-

types, enabling broader functional resolution. At this stage, the

budding yeast system remains ideally suited to a large morphologi-

cal survey of subcellular compartment morphology, given the avail-

ability of arrayed reagents for assessing loss- and gain-of-function

perturbations in both essential and non-essential genes, and the

A

B D

C

Figure 6. Factors contributing to incomplete penetrance (see also Table EV8).

A Penetrance as a function of replicative age. Top: Bar graph showing the fraction of outliers in populations of increasing replicative age (# of divisions) for wild-type
(WT), and 5 mutant strains (rrd2D, rpl20bD, cka2D, vac8D and vac17D). Data are presented as mean of three biological replicates � SD. Bottom: Box plot with the
distribution of cell sizes for the same populations of cells. Central lines represent the median. Whiskers extend to the 5th and 95th percentile. At least 6,800 cells were
analyzed per strain (up to 19,500 cells).

B Micrographs of young (top row of images) and older (bottom row of images) wild-type (WT) cells expressing Vph1-EGFP (green vacuole) and stained with CF640R
WGA (magenta bud scars). Dashed lines denote cell outlines. Scale bar: 5 lm.

C Combined effect of replicative age and a vacuole inheritance defect on penetrance. Micrographs of wild-type and vac17D cells expressing Vph1-EGFP (green vacuole)
and Hta2-mCherry (red nucleus), stained with CF640R WGA (magenta bud scars). Cells with increasing bud scar staining (replicative age) are shown from left to right.
Dashed lines denote cell outlines. Scale bar: 5 lm.

D Relationship between stress response and penetrance. Single-cell UPRE-RFP levels were measured in ~60 different mutant strains that we had identified as
penetrance mutants with intermediate penetrance with defects in actin or vacuole morphology. Cells were binned into equal-sized bins, from low to high stress
response, assessed as outlier or inlier and clustered based on their penetrance profile (composed from the fraction of outliers in each stress response bin). Each line
plot represents a penetrance profile. * denotes the cluster with a profile most similar to wild type. Inset pie charts show the proportion of mutant strains in each
cluster.
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ease of live-cell imaging of strains carrying fluorescent markers

(Ohya et al, 2015; Mattiazzi Usaj et al, 2016). No matter the system

used, a systematic analysis of phenotype profiles will greatly

enhance our understanding of cellular function and lead to a more

refined hierarchical model of the cell.

The rich phenotype information associated with single-cell

images enables the precise quantification of the prevalence of

morphological phenotypes in a given cell population. We discovered

that both incomplete penetrance, in which only a fraction of cells

in a population have a mutant phenotype, and morphological pleio-

tropy, in which a specific mutation causes several phenotypically

distinct subpopulations, are prevalent among mutant strains with

defects in endocytic compartment morphology. More than half of

the morphology mutants we identified showed aberrant phenotypes

for more than one of the four screened compartments, with the most

pleiotropic mutants (those causing six or more specific phenotypes)

being the most penetrant. Systematic analysis allows us to begin to

explore the biological relevance and mechanisms of variable pene-

trance. For example, we were able to associate specific bioprocesses

with high and low penetrance mutants and to identify a number of

protein complexes whose mutation is associated with morphological

pleiotropy.

Studies in yeast and mammalian cell systems have begun to

address cellular heterogeneity using single-cell transcriptomics to

identify subpopulations of cells in specific states, such as cancer, or

during the cell cycle, cell differentiation and exposure to stress

(Patel et al, 2014; Buettner et al, 2015; Dixit et al, 2016; Marques

et al, 2016; Gasch et al, 2017). Others have used cell imaging tech-

niques to quantify both the structural and spatio-temporal properties

of complex biological systems at the single-cell level (Bakal et al,

2007; Loo et al, 2007; Liberali et al, 2014; de Groot et al, 2018).

Regardless of the read-out, phenotypic heterogeneity appears to be a

general feature of cell populations, and so far, most studies have not

directly addressed the biology underlying incomplete penetrance.

Our ability to systematically assess single-cell phenotypes in mutant

cell arrays enabled us to show that replicative age, asymmetric orga-

nelle inheritance and stress response all contribute to the incom-

plete penetrance of single-gene mutations.

A number of other deterministic and regulated factors, such as

noise in biological systems, micro-environment, epigenetic regula-

tion, and the lipid and metabolic state of the cell have the potential

to affect the penetrance and expressivity of a trait. In fact, for the

majority of mutants, variability in morphological phenotypes

between individual cells in an isogenic cell population is likely not

driven solely by a genotype-to-phenotype relationship, but rather by

a combination of smaller contributions from various effects that

impact single cells differently depending on their physiological state.

A deeper understanding of this variability may also have broad

medical implications and should provide insight into the variable

penetrance of genes affecting developmental programs and disease

genes (Cooper et al, 2013; Kammenga, 2017; Li et al, 2019; Xavier

da Silveira Dos Santos & Liberali, 2019).

Materials and Methods

Reagents and Tools table

Reagent/Resource
Reference or
source

Identifier or
catalog number

Experimental models

Saccharomyces cerevisiae: DMA#, DMA-SLOW#
MATa xxxD::KANMX his3D1 leu2D0 ura3D0 met15D0

Yeast Deletion
Collection (Giaever
et al, 2002)

N/A

S. cerevisiae: TSA#
MATa xxx-ts::KANMX his3D1 leu2D0 ura3D0 met15D0

Yeast Collection of
Temperature-
sensitive Strains (Li
et al, 2011; Costanzo
et al, 2016)

v6.0

S. cerevisiae: BY4741
MATa his3D1 leu2D0 ura3D0 met15D0

Brachmann et al
(1998)

ATCC: 9483801

S. cerevisiae: Y7092
MATa can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

(Tong & Boone, 2006) N/A

S. cerevisiae: Y8835
MATa ura3D::NATMX; can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

Costanzo et al (2010) N/A

S. cerevisiae: BY5841
MATa VPH1-GFP::HIS3 HTA2-mCherry::NATMX can1pr::RPL39pr-tdTomato::CaURA3::can1D::STE2pr-LEU2 lyp1D his3D1
leu2D0 ura3D0

This study N/A

S. cerevisiae: BY6285
MATa SAC6-yEGFP::NATMX ura3D0::URA3::UPRE-CYC1pr-mCherry can1D::STE2pr-Sp_His5 lyp1D leu2D0 his3D1
ura3D0 met15D0

This study N/A
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Reagents and Tools table (continued)

Reagent/Resource
Reference or
source

Identifier or
catalog number

S. cerevisiae: BY6279
MATa VPH1-yEGFP::NATMX ura3D0::URA3::UPRE-CYC1pr-mCherry can1D::STE2pr-Sp_His5 lyp1D leu2D0 his3D1
ura3D0 met15D0

This study N/A

S. cerevisiae: Y15247
MATa VPH1-yEGFP::NATMX SLA1-tdTomato::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15248
MATa SLA1-yEGFP::NATMX SAC6-tdTomato::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15249
MATa SLA1-yEGFP::NATMX SNF7-tdTomato::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15250
MATa SNF7-yEGFP::NATMX VPH1-tdTomato::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15251
MATa VPH1-yEGFP::NATMX can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15252
MATa SNF7-yEGFP::NATMX can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15253
MATa SAC6-yEGFP::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15254
MATa SLA1-yEGFP::NATMX can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15255
MATa VPH1-tdTomato::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

S. cerevisiae: Y15256
MATa SAC6-tdTomato::URA3 can1D::STE2pr-Sp_his5 lyp1D his3D1 leu2D0 ura3D0 met15D0

This study N/A

Oligonucleotides

Primer: URA3pr-F:
CAAAGAAGGTTAATGTGGCTGTGGTTTCAGGGTCCATAAAGCTTTTCAATTCATCATTTTTTTTTTATTCTTTTTTTTGATTTCGG

This study N/A

Primer: dn_mCherry-R:
CTGTTACTTGGTTCTGGCGAGGTATTGGATAGTTCCTTTTTATAAAGGCCCCTCGAGGTCGACGGTATCG

This study N/A

Primer: MMU-Sla1-F: CAAGCCAACATATTCAATGCTACTGCATCAAATCCGTTTGGATTCGGTGACGGTGCTGGTTTA This study N/A

Primer: MMU-Sla1-R: TTGCCATTTTCACGAGTATAAGCACAGATTGTACGAAACTATTTCGATATCATCGATGAATTCG This study N/A

Primer: MMU-Sac6-F: CGTGCAAGATTAATTATTACTTTTATCGCTTCGTTAATGACTTTGAACAAAGGTGACGGTGCTGGTTTA This study N/A

Primer: MMU-Sac6-R: CGTATAACGGAGCATTGGAACAAGAAAGCTGAGTAGAAAACAGGTGATATCATCGATGAATTCG This study N/A

Primer: MMU-Snf7-F: GAAGATGAAAAAGCATTAAGAGAACTACAAGCAGAAATGGGGCTTGGTGACGGTGCTGGTTTA This study N/A

Primer: MMU-Snf7-R: AGAACACCTTTTTTTTTTCTTTCATCTAAACCGCATAGAACACGTGATATCATCGATGAATTCG This study N/A

Primer: MMU-Vph1-F: GACATGGAAGTCGCTGTTGCTAGTGCAAGCTCTTCCGCTTCAAGCGGTGACGGTGCTGGTTTA This study N/A

Primer: MMU-Vph1-R: GTGGATTGGATTGCAAGTCTAACGTTTTCATGAGATAAGTTTGGCGATATCATCGATGAATTCG This study N/A

Recombinant DNA

pPM47 Merksamer et al
(2008)

Addgene_20132

pKT209 Sheff and Thorn
(2004)

Addgene_8730

pFA6a-link-yEGFP-NATMX4 The Boone lab N/A

Chemicals, enzymes and other reagents

Dextran Alexa Fluor 647 Molecular Probes,
Invitrogen

D22914

FM 4-64 Molecular Probes,
Invitrogen

T13320

CF640R WGA Biotium 29026

Concanavalin A MP Biomedicals 195283

L-Canavanine sulphate salt Sigma-Aldrich C9758
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Reagents and Tools table (continued)

Reagent/Resource
Reference or
source

Identifier or
catalog number

Nourseothricin Werner BioAgents CAS 96736-11-7

S-aminoethyl-L-cysteine Sigma-Aldrich A2636

Geneticin Life Technologies 11811098

High-Speed Plasmid Mini Kit FroggaBio PD300

QIAPrep Spin Miniprep Kit Qiagen 27106

QIAQuick PCR Purification Kit Qiagen 28106

MasterPure Yeast DNA Purification Kit Epicentre MPY80200

PerfectTaq Plus MasterMix 5 Prime 2200095

Expand High Fidelity PCR System Roche, Sigma-Aldrich 11732650001

Software and Algorithms

CellProfiler https://cellprofiler.org
(Carpenter et al,
2006)

v2.0

SGATools http://sgatools.ccbr.
utoronto.ca/ (Wagih
et al, 2013)

N/A

STEM: Short Time-series Expression Miner http://www.cs.cmu.ed
u/~jernst/stem/
(Ernst & Bar-Joseph,
2006)

N/A

TheCellMap http://thecellmap.org/
(Usaj et al, 2017)

N/A

ImageJ https://imagej.
nih.gov/ij/ (Schneider
et al, 2012)

v1.46 or newer

Volocity PerkinElmer v6.3

Other

BM3 Benchtop System S&P Robotics

PerkinElmer Opera HCS System PerkinElmer

PerkinElmer Opera Phenix HCS System PerkinElmer

DMI 6000B fluorescence microscope with ImagEM CCD camera Leica Microsystems
and Hamamatsu

Methods and Protocols

Query strain construction and construction of mutant arrays
for imaging
To visualize endocytic compartments in living yeast cells, we C-

terminally tagged 4 yeast proteins selected to visualize the endocytic

compartments of interest with the yeast enhanced green fluorescent

protein (yEGFP) or tdTomato. We used the polymerase chain reac-

tion (PCR) to amplify an integration fragment containing: (i) homol-

ogous regions 45 bp up- and downstream of the target ORF’s C

terminus; (ii) the fluorescent protein (FP) ORF; and (iii) the selection

marker. Plasmids pKT209 (pFA6a-link-yEGFP-CaURA3) (Sheff &

Thorn, 2004) and pFA6a-link-tdTomato-CaURA3 were used as

templates. Plasmid pFA6a-link-tdTomato-CaURA3 was constructed

by replacing the yEGFP-ADH1term fragment between sites SalI/BglII

in pKT209 with the tdTomato-ADH1term fragment. Switcher plasmid

p4339 was used to exchange the CaURA3MX4 cassette with the

NATMX4 resistance cassette to generate yEGFP-NATMX4-tagged

strains (Tong & Boone, 2007). Primers (starting with MMU_*) used

to PCR FP-tagging cassettes for genomic integration are listed in the

Reagents and Tools Table. The lithium acetate transformation

method was used to introduce the PCR product into yeast cells

(Gietz, 2014). The yeast proteins used as markers were as follows:

Sac6 for the actin module of actin cortical patches; Sla1 for the coat

module of actin cortical patches; Snf7 for late endosomes; and Vph1

for vacuoles. All four proteins have been used previously as markers

for these compartments (Kaksonen et al, 2005; Teis et al, 2008;

Zhao et al, 2013). Saccharomyces cerevisiae strains and oligonu-

cleotides used in the study are listed in the Reagents and Tools

Table.

To test for possible growth or other functional defects associated

with the fluorescent protein tags, we performed the following tests:

(i) staining with FM 4-64 to check for a potential defect in endocytic

internalization; (ii) real-time fluorescence microscopy imaging to
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check for potential fluorescent tag-effects on Sla1 and Sac6 endo-

cytic patch formation dynamics; (iii) assessment of growth using

serial spot dilutions on standard rich YPD media (1% (w/v) yeast

extract, 2% (w/v) peptone, 2% (w/v) dextrose, 2% (w/v) agar) at

different temperatures; d) mating of constructed FP-tagged query

strains with strains carrying mutations in genes that had genetic

interactions with SAC6, SLA1, SNF7, or VPH1, followed by diploid

selection, sporulation, and tetrad dissection to assess the growth of

the double mutant progeny. A list of genetic interactions was

obtained from Costanzo et al (2010, 2016). All of these experiments

revealed no effect of the fluorescent tag on the tagged protein’s func-

tion, except for Snf7-GFP (and Snf7-tdTomato), where we confirmed

an effect of the C-terminal fluorescent tag on Snf7p’s function, as

has been observed previously with all ESCRT-III complex compo-

nents (Teis et al, 2008).

The constructed FP-tagged query strains were crossed to the

haploid MATa deletion collection (Giaever et al, 2002) and to a

collection of mutant strains carrying temperature-sensitive (TS) alle-

les of essential genes (Li et al, 2011; Costanzo et al, 2016). Haploid

strains carrying both the fluorescent protein marker and the gene

mutation from the mutant strain collections were selected using the

SGA method (Tong & Boone, 2006). All SGA selection steps involv-

ing a TS allele were conducted at permissive temperature (26°C).

All SGA selection steps involving non-essential gene-deletion

mutants were conducted at 30°C. Sporulation was conducted at

22°C. For secondary, medium-scale screens, used also to determine

penetrance reproducibility, false-positive (FPR) and false-negative

rates (FNR), 1,910 strains (36% of the complete array) were chosen

from strains with both significant and non-significant phenotype

fractions and SGA was done in biological duplicate. Strains included

in the secondary array are marked in Table EV2.

Preparation and imaging of live yeast cells
High-throughput microscopy

Yeast cell cultures were prepared for microscopy and imaged as

previously described (Chong et al, 2015; Cox et al, 2016), with

some modifications. Briefly, haploid mutant MATa strains express-

ing tagged FPs derived from SGA were grown and imaged in low flu-

orescence synthetic minimal medium (Sheff & Thorn, 2004)

supplemented with antibiotics and 2% glucose. Non-essential gene-

deletion mutants were grown and imaged in logarithmic phase at

30°C, and TS mutants of essential genes were first grown to mid-

logarithmic phase and imaged at 26°C and then incubated for 3 h at

37°C and imaged at 37°C. Cells were transferred to a Concanavalin

A (ConA) coated 384-well PerkinElmer CellCarrier Ultra imaging

plate and centrifuged for 45 s at 500 rpm before imaging. To aid in

cell segmentation, Dextran Alexa Fluor 647 (Molecular Probes) was

added to cells in low fluorescence medium to a final concentration

of 10 lg/ml before imaging.

For genome-wide screens, micrographs were obtained on the Opera

(PerkinElmer) automated spinning disc confocal microscope. Three

fields with Z-stacks of 5 optical sections with 0.8-lm spacing were

collected per well, with each field of view containing 50–150 cells.

Secondary screens were imaged on an Opera Phenix (PerkinElmer)

automated microscope. All imaging was done with a 60×water-immer-

sion objective. Acquisition settings included using a 405/488/561/

640 nm primary dichroic mirror. yEGFP was excited using a 488 nm

laser and emission collected through a 520/35-nm filter. tdTomato was

excited using a 561-nm laser, and emission collected through a 600/

40-nm filter. Dextran Alexa Fluor 647 was excited using a 640 nm

laser, and emission collected through a 690/50 nm filter.

Monitoring the formation and progression of vacuolar class G

phenotype with time-lapse fluorescence microscopy

Strains his3D (DMA1) and sec18-1 (TSA54) from the MATa deletion

and TS collections were crossed to strain Y15251. Haploid FP-tagged

mutant clones were selected using the SGA method. Imaging plates

were prepared as described above. Imaging was done using the Opera

Phenix (PerkinElmer) automated system. Z-stacks of 5 optical sections

with 0.8-um spacing were first acquired at room temperature, the

temperature was then shifted to 37°C, and images were acquired at 1-

h time intervals for 24 h. Maximum z-projections, adjustment of

intensity levels to optimize phenotype visualization, and image

sequences were made with ImageJ (Schneider et al, 2012).

Assessing endocytic vesicle formation dynamics with live-cell imaging

Strains deleted for YDL176W (DMA754) or HIS3 (DMA1; wild-type

control) expressing Sla1-GFP and Sac6-tdTomato were grown to

mid-log phase, immobilized on ConA-coated coverslips and sealed

to standard glass slides with vacuum grease (Dow Corning). Imag-

ing was done at room temperature using a spinning disc confocal

microscope (WaveFX, Quorum Technologies) connected to a DMI

6000B fluorescence microscope (Leica Microsystems) controlled by

Volocity software (PerkinElmer) and equipped with an ImagEM

charge-coupled device camera (Hamamatsu C9100-13, Hamamatsu

Photonics) and 100×/NA1.4 Oil HCX PL APO objective. Images

were acquired continuously at a rate of 1 frame/s and analysed

using ImageJ (Schneider et al, 2012). One hundred patches from

10 to 20 cells from two independent replicates were analysed per

strain. Statistical significance was assessed with the unpaired t-

test.

Follow-up experiments related to the assessment of
incomplete penetrance
Penetrance as a function of replicative age or vacuole inheritance

Strains his3D (DMA1), rrd2D (DMA4876), rpl20bD (DMA4693),

cka2D (DMA4484), vac17D (DMA520), and vac8D (DMA1262)

from the haploid MATa deletion collection were crossed to strain

BY5841. Haploid mutants expressing the three FPs (VPH1-GFP

HTA2-mCherry and RPL39pr-tdTomato) were selected using the

SGA method. Cells were grown to logarithmic phase in standard

conditions, washed in PBS and stained with 400 ll 0.5 lg/ml

CF640R wheat germ agglutinin (WGA) conjugate (CF640R WGA;

Biotium) in PBS, nutating for 20 min at room temperature in the

dark. Cells were then washed 3× with PBS, placed in low fluores-

cence medium and transferred to a ConA treated imaging plate.

Acquisition of z-stacks was done on the Opera Phenix (Perki-

nElmer) automated microscope as described above. Maximum z-

projections, channel merging and adjustment of intensity levels to

optimize subcellular signal visualization (used only for figures)

were made with ImageJ (Schneider et al, 2012). The experiment

was done in biological triplicate.

Effect of the UPR pathway

A URA3::UPRE-mCherry cassette, which encodes mCherry driven by

a minimal CYC1 promoter and four tandem unfolded protein response

16 of 27 Molecular Systems Biology 16: e9243 | 2020 ª 2020 The Authors

Molecular Systems Biology Mojca Mattiazzi Usaj et al



elements (UPREs), was amplified using PCR from pPM47 (Merksamer

et al, 2008) and integrated at the URA3 locus in BY4741. Primers used

(URA3pr-F and dn_mCherry-R) are listed in the Reagents and Tools

Table. Plasmid pPM47 was a gift from Feroz Papa. The strain with

integrated UPRE-mCherry was crossed to query strains containing

SAC6-GFP::NATMX4 or VPH1-GFP::NATMX4 and tetrads were

dissected to obtain query strains with a GFP-tagged morphology

marker and UPRE-mCherry (strains BY6279 and BY6285).

A mini-array of gene-deletion strains identified as intermediate

penetrance mutants for actin was chosen and crossed to BY6285.

Likewise, a mini-array of vacuole mutants was crossed to BY6279.

SGA was used to select haploid strains with both the marked

morphology compartment and the stress reporter. Cells were grown

for imaging using standard conditions and imaged in low fluores-

cence medium containing 5 lg/ml Dextran Alexa Fluor 647 on an

Opera Phenix (PerkinElmer) automated system as described above.

Determining Single Mutant Fitness (SMF) of the
DMA-SLOW collection
In order to determine the single mutant fitness for slow-growing

non-essential gene-deletion strains (DMA-SLOW collection), that

were previously excluded from the global genetic interaction analy-

sis (~400 ORFs) (Costanzo et al, 2016), we carried out 5 SGA

screens where a WT query strain carrying a NATMX marker inserted

at a neutral locus (Y8835) was crossed to the KANMX-marked DMA-

SLOW collection. SGA screens were performed at 30°C. Colony size

was quantified using SGATools (Wagih et al, 2013).

Image analysis and object quality control
Image pre-processing, object segmentation and quantitative

feature extraction

Acquired stacks were compressed into a maximal z-projection using

ImageJ (Schneider et al, 2012). CellProfiler (Carpenter et al, 2006)

was used for object segmentation and quantitative feature extraction.

Cells were segmented from intensity-inverted Dextran Alexa Fluor

647-channel images. Cell intensity measurements of the Dextran

Alexa Fluor 647 channel were collected for quality control purposes.

Segmented cell boundaries were then applied to the endocytic marker

channel to segment secondary objects (endocytic compartments),

define tertiary objects (cytoplasm) and extract area, shape, intensity

and texture measurements of the segmented endocytic compartments,

cytoplasm and whole cell. Two additional features were calculated

from the extracted CellProfiler features: (i) fraction of the cell occu-

pied by the screened compartment(s) (compartment_areashape_area

divided by cell_areashape_area) and (ii) compartment diameter ratio

(compartment_areashape_maxferetdiameter divided by compart-

ment_areashape_minferetdiameter). In total, we extracted quantita-

tive information for approximately 21 million single cells and

approximately 73 million individual endocytic compartments. The

raw data were imported into a custom-made PostgreSQL database.

Cell quality control

To reduce noise in the analysis due to segmentation artefacts and

ensure only high-quality objects were included in downstream anal-

yses, a quality control filter was applied to all segmented cells. First,

the quality control filter discarded low-quality cell objects based on

shape, size and intensity measurements collected from the Dextran

Alexa Fluor 647 signal. These low-quality objects included badly

segmented cells, ghost objects (segmented background), clumps of

cells and dead cells. Second, all images with < 5 cells were

excluded. Third, all wells with only 1 good site (out of the 3

acquired) were excluded. Additionally, we trained a 2-layer fully

connected neural network to identify and exclude from the dataset

small buds that had been segmented independently of mother cells,

and bad cells missed by other quality control filters (see below for

details). Across all screens, the used filters discarded 20% of cell

objects, leaving approximately 16.3 million good cells for subse-

quent analysis. On average, 640 good cells for each strain from 2.6

biological replicates were retained for downstream analyses.

Data processing, outlier detection and classification
Data pre-processing

The extracted features were standardized by computing mean and

standard deviation of features from wild-type control strains (nega-

tive controls) to remove feature means and scale to unit variance

separately for each imaged 384-well plate in a screen. Means and

standard deviations of features from each imaged plate were anal-

ysed to identify potential batch effects on plates.

Selection of positive controls

Positive control mutants were selected based on phenotypes anno-

tated in the Saccharomyces genome database (SGD, https://www.

yeastgenome.org) and published literature (Table EV1). Only

mutants for which we were able to visually confirm the published

phenotype in our images were included in the positive control set.

Additionally, to ensure all main phenotypes were included in our

classifier, an unsupervised outlier detection approach was used to

search for mutants with unpublished or poorly annotated pheno-

types (see below for details). The two approaches combined gave us

a set of 21 different subcellular morphologies, comprising 4 wild-

type and 17 mutant phenotypes. We note that our vacuole pheno-

types do not perfectly overlap with the vacuolar morphological

classes that have been described previously (classes A to F) (Ray-

mond et al, 1992). To avoid confusion, we adopted descriptive

names for most of our vacuolar phenotype classes (Figs 1C and 2).

The lists of positive control strains associated with each mutant

phenotype were subsequently used to compile the classifier training

set (see below for details). Visual inspection of all micrographs from

positive control mutants was used to assign each mutant to a pene-

trance bin (100–80%, 80–60%, 60–40%, 40–20%, 20–0%). These

manual penetrance assignments were used to validate the accuracy

of computational penetrance assignments obtained through classifi-

cation (see below for details). Positive control mutants and their

manual penetrance assignments are listed in Table EV1.

Unsupervised outlier detection

An unsupervised outlier detection approach was used to identify

additional positive control strains (see Selection of positive controls).

First, principal component analysis (PCA) was applied to the

extracted CellProfiler features to reduce the redundancy and correla-

tion of features in the data (Hotelling, 1933). The number of PCs

was selected so that at least 80% of the variance in the complete

data was explained. Next, to identify mutant strains that affect the

morphology of the imaged subcellular compartment, an outlier

detection method was implemented with the goal of detecting cells

whose morphology differed substantially from the negative (wild-
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type) controls. In the feature space, we identified cells with non-

wild-type morphologies based on their distances from the negative

control distribution. To quantify these distances, we implemented a

one-class support vector machine (OC-SVM)-based outlier detection

method (Scholkopf et al, 2000). We used OC-SVM implemented in

Python’s scikit-learn package with default hyper-parameters (radial

basis function kernel, kernel hyper-parameter gamma set to 1/N

where N is the number of used PCs, and hyper-parameter nu set to

0.5 in order to define a stringent population of negative control

cells). For each single cell in the complete dataset, we calculated the

distances to OC-SVM decision function. Next, we applied a thresh-

old on the calculated distance at the 20th percentile of the negative

control cells to differentiate in- and outliers.

For each mutant strain, unsupervised penetrance was defined as

the percentage of outlier cells obtained from the unsupervised

outlier detection approach. The statistical significance of penetrance

was calculated using a hypergeometric test (identical to one-tailed

Fisher’s exact test) (Rivals et al, 2007), with negative controls as the

background. For each endocytic marker, top-scoring mutant strains

were visually inspected to identify mutant phenotypes and addi-

tional positive control strains (see above).

Single-cell labelling and classification

Single-cell labelling tool The custom-made single-cell image viewer is

a Django-based web application written in Python which allows the

user to input different parameters or filters and then view the cells

satisfying the set conditions. The web interface is developed using

HyperText Markup Language (HTML 5), Cascading Style Sheets

(CSS3) and JavaScript. Taking advantage of Django’s capability to

use multiple databases, the primary PostgreSQL database containing

raw CellProfiler features and unique cell IDs was used in this tool to

pull the information needed to display each single cell. The informa-

tion needed was as follows: the image to which the cell belongs, the

image’s location on the server and the x- and y-coordinates of the

cell. The tool allows the user to label and save a phenotype for a

specific cell which would then be saved to the single-cell viewer data-

base and used to compile the cells’ features for the training set.

Manual labelling of single cells For each marker, and separately for

the primary genome-wide and secondary medium-scale screens,

single cells from positive control mutant strains as well as negative

control wild-type strains were manually assigned to a mutant or

wild-type phenotype class using the single-cell labelling tool. In

total, 42 sets of labelled cells were compiled (2 types of screens × 21

phenotypes; i.e. 4 wild-type and 17 mutant phenotypes).

For cell quality control purposes (see Cell quality control above),

for each Sla1 and Sac6 screen, we manually labelled approximately

320 small buds, that had been segmented independently of their

mother cells (“small bud” class), and approximately 250 badly

segmented cells (“bad” class). We trained a 2-layer fully connected

neural network (see below for details) with these two cell quality

control classes and the wild-type class to identify small buds that

had been segmented independently of mother cells, and bad cells

missed by other quality control filters. All cells that were assigned

to the “small bud” or “bad” classes with an average prediction prob-

ability across 10 random initializations of ≥ 85% were excluded

from the final set of good cells.

Training set clean-up To identify cells in the training set that were

mislabelled, we did an initial training run with all of the labelled

positive and negative control cells, as described above. For train-

ing, fivefold cross-validation on the labelled dataset was used. Each

fold was split into 80% for training set (20% of training set is used

for validation set) and 20% for test set during neural network train-

ing. Each fold was used for training a fully connected 2 hidden-

layer neural network (2NN) 10 times with different random initial-

izations. With this approach on fivefold cross-validation and 10

random initializations, we obtain 10 separate predictions for each

of the labelled cells. Any cells that were incorrectly classified in

two or more random initializations were manually inspected and

cells that were originally mislabelled were removed from the final

labelled set. Up to 12% of the labelled cells were removed from

each training set using this approach. All subsequent training of

the 2NNs was on this cleaned dataset. The final number of labelled

cells in each phenotype ranged from 35 to 982, with an average of

420 cells.

Visualization of the training set feature space with t-SNE To assess

whether the extracted CellProfiler features could be used to accu-

rately distinguish between different phenotypes, the high-dimen-

sional feature space for each of the single cells from the training sets

was visualized using a non-linear dimensionality reduction tech-

nique —t-distributed stochastic neighbour embedding (t-SNE)

(Maaten & Hinton, 2008). Python’s scikit-learn package (version

0.19.0) was used for t-SNE with default hyper-parameter settings

except for perplexity. The perplexity hyper-parameters chosen for

the 4 markers were as follows: 50 for Sac6, 30 for Sla1, 10 for Snf7,

and 50 for Vph1.

Classification: single-cell level assignment of mutant phenotypes To

classify all cells from the final dataset (see Cell quality control

above) into different mutant phenotypes, the training sets

comprised of labelled single cells were used to train a fully

connected 2 hidden-layer neural network (2NN). We trained a 2NN

for each of the endocytic markers and screen types, totalling eight

trained 2NNs. We opted for separate training sets for the two screen

types (genome-wide and secondary screen), as this strategy gave us

better classification accuracy (possibly because the two screen types

were imaged using different microscopes). The 2NN was imple-

mented using Keras (https://keras.io) with TensorFlow backend

(https://tensorflow.org).

The input layer consisted of the scaled single-cell CellProfiler

features and we used a soft-max output layer (Bishop, 1995). The

first hidden layer had 54 units and the second hidden layer had 18

units. The hidden layers used ReLU activation functions (Hahnloser

et al, 2000). All the hyper-parameters used in the training for the

Stochastic Gradient Descent optimizer (Kiefer & Wolfowitz, 1952)

are specified at https://github.com/BooneAndrewsLab/ODNN. We

used the same architectures and hyper-parameter settings for each

network; these hyper-parameters were selected to provide good

performance without overfitting, with a short training period on the

whole unfiltered training sets.

For training, fivefold cross-validation on the labelled dataset was

used. Each fold was split into 80% for training set (20% of training

set is used for validation set) and 20% for test set during neural

network training. Each fold was used for training a 2NN 10 times
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with different random initializations, resulting in 10 predictions for

each cell in the test set. The final probability of each cell in the test

sets was calculated by averaging the probabilities from these 10

randomly initialized 2NNs. The class with the maximum average

probability was used for the predicted label. The combined test set

predictions were displayed in a confusion matrix and used to assess

the neural network’s performance. Most phenotypes could be classi-

fied with very high accuracy, except those with the smallest training

sets (Fig EV2A and B).

The 2NN employs a relatively new strategy for creating an

ensemble classifier; to ensure that this strategy did not create bias in

its classifications, we compared it to two more traditional

approaches to creating an ensemble classifier. Specifically, 10 base

classifiers in the ensemble differed only in their random initializa-

tions but shared hyper-parameters and training sets. This strategy

permits us to use the entire training set to train each classifier rather

than only the ~68% used in bagging. For classifiers with multiple

local optima, such as neural networks, the new strategy has shown

better performance generalization and uncertainty calibration than

bagging (Lakshminarayanan et al, 2017). However, to validate this

method in our context, we compared it to two other approaches

using the Sac6 and Vph1 genome-wide screens. One approach

(2NN – CVx1) employed the same training strategy as 2NN, but

predictions of unlabelled cells in the full dataset were done during

each of the 10 random initializations and fivefold cross-validations.

In other words, we averaged the output of 50 networks trained on

five different, partially overlapping, training sets. The second

approach (2NN – CVx10) did not include 10 random initializations,

and the training was done using 10 independent runs of fivefold

cross-validations. Here, we averaged the output of 50 networks

trained on 50 different, partially overlapping, training sets. Similar

to 2NN – CVx1 approach, with this third approach, we predicted the

entire dataset of unlabelled cells during each of the 10 independent

runs and fivefold cross-validations. We assigned cells in a screen

the phenotype with the highest average probability across the 50

2NNs for both 2NN – CVx1 and 2NN – CVx10. The average correla-

tion between these three approaches on penetrance values and

phenotype fractions across all genes in the two genome-wide data-

sets was 0.95 (Table EV1). We thus concluded that our use of the

same training sets and hyper-parameters in the ensemble in our

2NN classifier did not introduce biases compared to a scheme which

employed different training sets on each classifier.

After estimating the general performance of the 2NNs using

cross-validation, to make predictions on the entire dataset of unla-

belled cells, we retrained the networks on the entire filtered training

set. Similar to the approach described above, we trained 10 separate

2NNs starting from different random initializations and assigned

cells in a screen the phenotype with the highest average probability

across the 10 2NNs. Mean single-cell prediction probabilities are

included in Table EV1. The 2NN classifier assigned the highest clas-

sification probabilities to those cells that were most similar to those

in the manually labelled training sets (Fig 2), but at the same time

allowed us to correctly assign cells with different severity of a partic-

ular phenotype to the same class.

Additionally, to identify any strains with phenotypes not

included in our classifiers, we assigned all cells with low classifi-

cation probabilities to a “None” class. Cells were assigned to the

“None” class when the maximum probability was lower than 2/N

(where N = number of phenotypes). Visual inspection of strains

with the highest fraction of cells assigned to the “None” class for

each marker revealed no additional phenotypes (Table EV2). This

approach does not exclude the possibility that cells with additional

rare or non-penetrant phenotypes were incorrectly classified. For

example, we did not include the class F phenotype (large central

vacuole surrounded by several fragmented vacuolar structures)

(Raymond et al, 1992) in our vacuole classifier, since none of the

previously reported mutants had significant fractions of the popula-

tion displaying the phenotype. The class F cells were therefore clas-

sified as wild-type, enlarged or multilobed.

All cells assigned a non-WT phenotype were defined as outliers.

For each strain, the fraction of the cell population displaying each

phenotype (specific phenotype fraction), as well as the penetrance

(defined as: penetrance = 1 - % WT cells) were calculated. The

phenotype fractions and penetrance calculated from 2NN classifi-

cation were used in all subsequent analyses.

Custom scripts for data pre-processing, running the supervised 2

hidden-layer fully connected neural network for single-cell classifi-

cation, and penetrance calculation are available at: https://thecellvi

sion.org/tools.

Penetrance reproducibility
Estimating penetrance reproducibility

To assess the quality of our computed penetrance values, we first

compared them to visually assigned penetrance estimates and found

a strong agreement for all four screened markers (average Pearson

correlation coefficient (PCC) = 0.87) (Fig EV2C, Table EV1). We

next assessed penetrance reproducibility by determining: (i) the dif-

ference in the calculated penetrance and (ii) the Pearson correlation

coefficient (PCC) between replicates of mutant strains for each

marker and screen type. Across all screens and markers, the average

PCC between replicates is 0.65 (two-tailed P = 0). Finally, we

focused on the replicate pairs with a penetrance difference > 30 and

determined the prevalent causes leading to penetrance irrepro-

ducibility. Cell number had the biggest impact on penetrance repro-

ducibility, since replicates with low cell counts represented 60% of

replicate pairs with highest penetrance differences (Fig EV2D).

Among low cell count replicates, 2/3 were from strains with consid-

erable growth defects, making single mutant fitness (SMF) a good

indicator of penetrance reproducibility. For the remaining 40% of

replicates with a large penetrance difference, 42.6% could be attrib-

uted to temperature-sensitive strains (35.2% of large difference

replicates) and technical artefacts (cross-contamination, bad

segmentation, failed quality control or misclassification) (7.4% of

large difference replicates), while for 57.4% of replicates, we could

not identify a clear cause. The increased penetrance difference

between biological replicates of TS strains could be a consequence

of small differences in growth and imaging temperature between

replicates.

Bootstrapping to determine sufficient cell count

Since different strains and plates varied greatly in the number of

imaged cells, we used a bootstrapping approach to determine the

standard deviation between replicates of varying cell counts and to

estimate the minimal cell number required to obtain a confident

penetrance calculation (Fig EV2E). Increasing numbers of cells were

sampled from every screen individually, screens combined by
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marker, and all screens combined. Sampling was done on two

scales: first on a small scale ranging from 10 to 100 cells in incre-

ments of 10 and then on a larger scale ranging from 125 cells to

1,000 cells in increments of 25. Cell sampling was done one

hundred times from populations of approximately 200,000–670,000

cells (for individual screens), and the average penetrance and stan-

dard deviation of the 100 independent samplings for each sample

size were calculated and plotted (Fig EV2E). Based on the wide

distribution of wild-type replicate penetrances (Fig EV2F), we chose

a relative standard deviation of 0.2 (which is equal to approxi-

mately � 4 penetrance points for a wild-type population) as our

confidence threshold. The average minimum required cell number

across different markers and screens was 98 cells, and this criterion

was satisfied by 83.4% of imaged samples.

We next examined the potential impact of cell density effects,

such as gradients, on penetrance, and observed no significant effects

(Fig EV2G). R2 between cell number and calculated penetrance for

all replicates that met the minimum cell count was 0.0047.

Identification of morphology mutants, calculation of accuracy, and
false-positive and false-negative rates
Specific phenotype mutants (SPMs)

For each phenotype (17 mutant phenotypes representing 4 for patch

actin module, 4 for patch coat module, 3 for late endosome, 6 for

vacuole) and screening condition (room temperature, 30°C or 37°C),

the threshold (thr) for the specific phenotype fraction was defined

as the phenotype fraction value corresponding to the 98th percentile

of the distribution of the specific phenotype fraction across all wild-

type replicates. Since each 384-well imaging plate had wild-type

strains at 76 positions (all border wells), a full genome-wide screen

had more than 1,800 wild-type replicates. In cases where this calcu-

lated threshold was < 0.05, the threshold was set to 0.05. Addition-

ally, the stringent threshold for the fraction of a specific phenotype

was defined as: str = (max – thr) × 0.25 + thr, where max is the

highest observed penetrance for that phenotype.

The final specific phenotype fraction for each mutant strain was

calculated from the genome-wide and secondary screen values as

the replicate number-weighted mean phenotype fraction. Each

mutant strain had to satisfy the following criteria in order to be

considered an SPM: (i) weighted mean phenotype fraction ≥ pheno-

type fraction threshold (or stringent threshold for stringent SPMs);

(ii) ≥ 50 good cells and; (iii) ≥ 10 cells assigned with the phenotype

in question. SPMs, stringent SPMs and thresholds are listed in

Table EV2.

Penetrance mutants

For each marker (Sac6, Sla1, Snf7 and Vph1) and screening condi-

tion (room temperature, 30°C or 37°C), the penetrance threshold

was defined as the penetrance value corresponding to the 95th

percentile of the penetrance distribution of all wild-type replicates.

The final penetrance for each mutant strain was calculated from the

genome-wide and secondary screen values as the replicate number-

weighted mean penetrance. Each mutant strain had to satisfy the

following criteria in order to be considered a penetrance mutant

for a given marker: (i) weighted mean penetrance ≥ calculated pene-

trance threshold; (ii) ≥ 50 good cells; and (iii) Bonferroni-corrected

P < 0.05 (for strains not included in the secondary array). Pene-

trance mutants and thresholds are listed in Table EV2.

The specific phenotype and penetrance mutant groups comprise

1,623 yeast genes, of which 66.5% (1,079) were both SPMs and

penetrance mutants, 25.1% were only SPMs (407), and 8.4% (137)

were only penetrance mutants (also referred to as non-phenotype-

specific mutants; see Fig 1D). In general, the ORFs that qualified as

only non-phenotype-specific mutants or only SPMs were either (i)

SPMs with significant but smaller mutant phenotype fractions that

did not qualify as penetrance mutants, or (ii) non-phenotype-

specific mutants with one or more mutant phenotypes with fractions

below the specific phenotype significance thresholds. For example,

a deletion mutant of RRD2, which encodes a component of a serine/

threonine protein phosphatase involved in Tor1/2 signalling, had

42% of cells with aberrant vacuolar morphology, which is above

the ~32% penetrance threshold for the vacuolar marker. However,

none of the six specific vacuolar phenotype fractions exceeded the

respective SPM thresholds (see Table EV2 for details).

We note that although a number of TS strains displayed

increased levels of non-wild-type-looking cells even at room temper-

atures (data available at thecellvision.org/endocytosis), consistent

with previous work (Li et al, 2011), we used only data from TS

strains grown at 37°C for the identification of morphology mutants

and downstream analyses.

Accuracy, FPR, FNR

The accuracy, false-positive (FPR) and false-negative (FNR) rates

were calculated from biological replicates (same query strain, same

screening condition, same microscopy setup) of mutant strains as

follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

FPR = FP/(FP + TN)

FNR = FN/(FN + TP)

A replicate pair was called a true positive (TP), if both measure-

ments satisfied the criteria for penetrance mutants described above

(penetrance > threshold, ≥ 50 cells and corrected P < 0.05). Simi-

larly, a replicate pair was called a true negative (TN) when neither

of the two replicates satisfied the criteria for penetrance mutants.

False positives (FP) and false negatives (FN) were those pairs

where one replicate was a penetrance mutant, while the other was

not. The estimated average accuracy was 86.6%. The estimated

false-positive rate was 9.5%. We estimate that the false positives

are mainly found in the intermediate penetrance range. The false-

negative rate was higher at ~24.9%, as expected from a stringent

cut-off.

List of consensus morphology mutants

A consensus rule for genes with multiple screened alleles was used.

For each marker and phenotype, a gene was considered a pene-

trance mutant or SPM if half or more of its alleles satisfied the

respective significance criteria. Consensus morphology mutants are

listed in Table EV2 (labelled as consensus_*).

For penetrance bin-dependent analysis, for genes with multiple

alleles and with a penetrance mutant in the consensus list, we

defined the penetrance as the maximum penetrance among the

screened alleles that qualified as a penetrance mutant (see above).

Penetrance bins of all consensus morphology mutants are listed in

Table EV2.
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Enrichment and correlation analyses
Data standards used in the analyses

Protein complex standard The protein complex standard was down-

loaded from the EMBL-EBI Complex Portal (https://www.ebi.ac.

uk/complexportal/home) and is included in Table EV4.

Gene ontology biological process standard Biological process cate-

gories for functional enrichment were derived from a standard set of

GO Slim biological process term sets downloaded from the Saccha-

romyces Genome Database (www.yeastgenome.org/).

Biological pathway standard The pathway standard was down-

loaded from the KEGG database (Kanehisa et al, 2014) and is

included in Table EV4.

Gene features used in the analyses: numeric features

Marker abundance data For each mutant strain, the mean FP inten-

sity (CellProfiler feature cell_intensity_meanintensity) extracted

from the genome-wide screens was used to calculate the relative

marker abundance (“Marker relative abundance”) and relative stan-

dard deviation of marker abundance (“Marker abundance CV”). For

each mutant strain, the calculations were normalized to the per-

plate wild-type strain values. The relative marker abundance and

marker abundance CV data are included in Table EV4.

Cell size data For each mutant strain, raw single-cell size data (cor-

responding to cell area in pixels; CellProfiler feature cell_ar-

eashape_area) extracted from the genome-wide screens was used to

calculate the relative mean cell size (“Relative cell size”) and rela-

tive standard deviation of cell size (“Cell size CV”). For each mutant

strain, the calculations were normalized to the per-plate wild-type

strain values. The relative cell size and cell size CV data are

included in Table EV4.

Single mutant fitness Single mutant fitness (SMF) values for non-

essential gene-deletion strains (DMA), and essential gene tempera-

ture-sensitive strains (TSA) were taken from Costanzo et al (2016).

For the slow-growing non-essential gene-deletion collection (DMA-

SLOW), mean colony size measurements from 5 wild-type SGA

screens were used to estimate single mutant fitness. Colony size

was quantified using SGATools (Wagih et al, 2013). SMF was calcu-

lated as the relative colony size compared to wild type (Barysh-

nikova et al, 2010). The SMFs of all strains used in this study are

listed in Table EV2.

Broad conservation Broad conservation is a count of how many

species, out of a set of 86 non-yeast species, have an ortholog of a

given gene. Broad conservation was assessed as described in Cost-

anzo et al, 2016; (Costanzo et al, 2016).

Positive, negative and total number of genetic interactions The

numbers of positive, negative and all genetic interactions (“Positive

GI/Negative GI/Total GI”) for each mutant strain were extracted from

TheCellMap (www.thecellmap.org) (Usaj et al, 2017). For genes with

multiple alleles, the number of GIs was averaged across alleles.

PPI degree Protein–protein interaction data were retrieved from

BioGRID (Stark et al, 2011) and refer to the union of five high-

throughput studies (Gavin et al, 2006; Krogan et al, 2006; Tarassov

et al, 2008; Yu et al, 2008; Babu et al, 2012).

Pleiotropy Pleiotropy data were from Dudley et al (2005). The

number of conditions (out of 22 tested) that lead to reduced fitness

was used as a measure of pleiotropy.

Multifunctionality The total number of annotations across a set of

functionally distinct GO terms described in Myers et al (2006) was

used as a multifunctionality index. Multifunctionality was assessed

as described in Costanzo et al (2016).

Phenotypic capacitance The phenotypic capacitance was used

directly from Levy and Siegal (2008) and captures variability across

a range of morphological phenotypes upon deletion of each of the

non-essential genes.

Co-expression degree This measure is derived from a co-expres-

sion network based on integration of a large collection of expres-

sion datasets (Huttenhower et al, 2006). Co-expression degree

was assessed as described in Costanzo et al (2016). Pairs of

genes with a MEFIT value above 1.0 were defined as co-

expressed.

Expression level and transcript counts The expression level values

reflect the mRNA transcript levels of all yeast genes in wild-

type cells grown in YPD measured using DNA microarrays

(Holstege et al, 1998). Transcript counts indicate the number

of mRNA copies of each transcript per cell (Lipson et al,

2009).

Molecules per cell Protein abundance data were derived from the

unified protein abundance dataset compiled from 21 quantitative

analyses (Ho et al, 2018). The “mean molecules per cell” values

were used for analysis.

Expression variance measured under different environmental condi-
tions For each gene, the variance in expression across all conditions

surveyed in Gasch et al (2000) was measured. This dataset contains

yeast gene expression levels measured in response to a number of

different environmental conditions. For details, refer to Costanzo

et al (2016).

Protein abundance and localization variation Data on protein

abundance variation (“Protein abundance RV”) and subcellular

spread (“Subcellular spread RV”) were from Handfield et al

(2015).

UPRE level Data for UPR levels was from Jonikas et al (2009).

Gene features used in the analyses: binary features

Whole-genome duplicates This binary feature reflects whether each

gene has a paralog that resulted from the whole-genome duplication

event (Byrne & Wolfe, 2005).
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Other datasets

Endocytic internalization dataset Data on endocytic internalization

levels in non-essential gene-deletion mutants were from Burston

et al (2009). Deletion strains with an invertase score below the

median (no assigned value in the published dataset) were assigned

a value of 0.

Orthologs A set of Homo sapiens orthologs of S. cerevisiae were

obtained from the InParanoid eukaryotic ortholog database version

8.0 (http://inparanoid.sbc.su.se).

Essential and non-essential gene sets The essential and non-essen-

tial gene lists were obtained from Saccharomyces Genome Database

(SGD; www.yeastgenome.org/).

Morphology mutant enrichment analyses

GO slim biological process We performed the GO biological process

enrichment analysis for each set of SPMs using the GO Slim

mapping file available through the Saccharomyces Genome Data-

base (www.yeastgenome.org/). SciPy’s hypergeometric discrete

distribution package was used to calculate P-values. P-values were

adjusted using the Bonferroni correction. Fold enrichment was

calculated as (mutants in term/all mutants)/(term size/all back-

ground).

Protein complex and biological pathway For each phenotype, we

calculated the number of mutants that coded for members of each

protein complex and tested for enrichment by using one-sided Fisher’s

exact tests. To identify specific enrichments associated with pheno-

types, and not associations caused by genes that were morphology

mutants in many phenotypes, we randomized the phenotype–gene

associations. Then, for each randomized network, we calculated the

number of morphology mutants that belonged to each complex. We

only reported phenotype/complex enrichments with a Fisher’s P-value

(see “P_greater”) below 0.05 and with phenotype/complex overlaps

in the real network (see “P1”) higher than 95% of the overlaps

observed in the randomized networks (see “P_rnd”). The same

approach was used to evaluate morphology mutant enrichment of

KEGG biological pathways. Used standards are included in Table EV4.

Enrichment results are included in Table EV3.

Gene feature We compared the values of morphology mutants and

genes not identified as morphology mutants against a panel of gene

features. We computed statistics by performing one-sided Mann–

Whitney U-tests for numeric features (P < 0.05) and by one-sided

Fisher’s exact tests for binary features (P < 0.05). For features with

data for multiple alleles, values for different alleles were averaged.

For each numeric feature, we performed a z-score normalization in

which we used the median (instead of the mean) and standard devi-

ation of non-morphology mutants. Since all median z-scores of the

non-morphology-mutant sets were centred to zero, in plots we

reported only the median z-score values for morphology mutants.

For each binary feature, we calculated the fraction of morphology

mutants (f_hits) and non-morphology mutants (f_nonhits) with that

particular feature. Then, we calculated the fold enrichment as the

logarithm of f_hits divided by f_nonhits.

We followed the same approach to compare (i) morphology

mutants and non-morphology mutants of each individual marker

(vacuole, late endosome, coat and actin); (ii) penetrance mutants

with high (≥ 75%), intermediate (75% > × ≥ 50%) and low

(< 50%) penetrance values versus non-morphology mutants for

each individual marker; and iv) SPMs versus genes that were not

morphology mutants for each of the 17 mutant phenotypes. Results

of these analyses are provided in Tables EV3 and EV8.

46 ORFs that are present in the screened array, but have been

deleted from SGD, were excluded from analysis (list of excluded

ORFs is available at thecellvision.org/endocytosis).

Comparison of direct and indirect protein contacts

We used Interactome3D (version 2019_01) (Mosca et al, 2013) to

select available protein complex structures in the PDB with three or

more yeast proteins and identified which of the proteins in the

complex were in direct contact. Interactome3D defines direct

contacts between two proteins if they have at least five residue–

residue contacts, which can include disulphide bridges (i.e. two

sulphur atoms of a pair of cysteines at a distance ≤ 2.56 Å), hydro-

gen bonds (i.e. atom pairs N-O and O-N at a distance ≤ 3.5 Å), salt

bridges (i.e. atom pairs N-O and O-N at a distance ≤ 5.5 Å) and van

der Waals interactions (i.e. pairs of carbon atoms at a distance

≤ 5.0 Å). We classified proteins in the same complex structure that

did not meet our criteria for direct contact as indirect contacts. Addi-

tionally, we compiled a list of protein pairs belonging to different

protein complex structures.

For each screened gene, we built a profile with its 17 specific

phenotype fractions (phenotype profile; phenotype fraction data are

provided in Table EV2). For genes with several screened alleles, we

used the mean specific phenotype fraction across alleles. Strains

with incomplete profiles (missing data for any of the 4 markers)

were excluded from the analysis. For each pair of profiles, we calcu-

lated their Pearson’s correlation. Correlation values were then

grouped by the relationship of proteins in experimental structures:

(i) protein pairs in contact in a protein complex structure; (ii)

protein pairs in the same experimentally solved protein complex

structure but not in direct contact; or (iii) protein pairs that do not

belong to the same solved protein complex structure. Difference

between the sets of correlation values was evaluated by one-sided

Mann–Whitney U-tests. Files with gene-averaged specific phenotype

profiles, and profile PCCs are available at thecellvision.org/endocy-

tosis.

Functional similarity of penetrance mutants and SPMs versus

non-morphology mutants

We calculated Pearson’s correlation for every pair of phenotype

profiles as described above. Next, we grouped gene pairs by dif-

ferent functional criteria: (i) gene pairs that encoded members of

the same protein complex or members of different protein

complexes; (ii) gene pairs that encoded proteins in the same path-

way or in different pathways; (iii) gene pairs that had significantly

correlated genetic interaction profiles or not (PCC > 0.2, GI PCC

dataset downloaded from thecellmap.org) (Costanzo et al, 2016;

Usaj et al, 2017); and (iv) gene pairs that were co-expressed or

not. Functionally related gene pairs were defined as those that

belong to the same protein complex or pathway, have a significant

GI profile similarity, or are co-expressed. We used one-sided
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Mann–Whitney U-tests to evaluate whether differences between

the correlation sets were significant.

Mean specific phenotype fraction per protein complex and

within-complex PCC

For each protein complex and mutant phenotype, we calculated the

mean specific phenotype fraction and standard deviation across

genes encoding members of the complex. For genes with more than

one allele screened, we used the mean phenotype fraction across

alleles. We calculated Pearson’s correlation for every pair of mutant

phenotype profiles for genes coding for members of the complex,

and calculated the mean PCC of all complex gene pairs. Results are

included in Table EV7.

Assessing mutant phenotype relatedness

Common SPMs between mutant phenotypes For each pair of pheno-

types, we evaluated whether they tended to share more stringent

SPMs than expected by chance. We calculated P-values using one-

sided Fisher’s exact tests and the false discovery rate (FDR) to

correct for multiple tests.

Phenotype similarity For every phenotype, we built a profile using

specific phenotype fraction values of all SPMs (matrix of 17 mutant

phenotypes by 1,486 genes). Next, we computed Pearson’s correla-

tion coefficients across all pairs of phenotype profiles. Results are

included in Table EV5. Hierarchical clustering was done using a

correlation distance measure and average linkage.

Enrichment of protein complexes between mutant phenotypes For

each pair of phenotypes, we retrieved the set of SPMs that shared

both phenotypes and calculated if the common set was enriched for

protein complexes. Protein complexes with P < 0.01 and at least 2

shared protein complex components were considered significant.

Additionally, we required the overlap of common SPMs with

members of a complex to be higher than 95% of the overlaps

obtained in randomized phenotype–gene networks. Results are

included in Table EV5.

Quantification of follow-up experiments related to the assessment
of incomplete penetrance
Quantifying penetrance as a function of replicative age

CellProfiler (Carpenter et al, 2006) was used for cell segmentation

and quantitative feature extraction (including cell size and mean

WGA intensity). A 2NN was used to assign each cell a phenotype

class and WGA intensity was used as a proxy for replicative age. For

each mutant strain, cells were sorted based on their mean WGA

intensity and grouped into 6 bins as follows: 50% of cells with the

lowest mean WGA intensity corresponding approximately to virgin

daughters; the next 25% of cells corresponding approximately to

mother cells that had undergone 1 division; the next 12.5% of cells

corresponding approximately to mother cells that had undergone 2

divisions; and so on, up to the last bin containing 3.13% of the cell

population with the highest WGA intensities that were assumed to

have undergone 5 or more cell divisions. For each strain and ageing

bin, we then determined the fraction of outliers. On average,

approximately 3,800 cells were analysed for each strain for each

replicate.

Effect of the UPR pathway: clustering of penetrance profiles

CellProfiler (Carpenter et al, 2006) was used for cell segmentation and

quantitative feature extraction (including mean UPRE-mCherry inten-

sity). OC-SVM outlier detection was used to assign each cell to the

wild-type or outlier group. For each mutant strain, cells were sorted

based on their stress response level (mean UPRE-mCherry signal

intensity) and grouped into 10 bins of equal cell numbers. For each

bin, we determined the fraction of outliers (unsupervised penetrance).

STEM software (Ernst & Bar-Joseph, 2006) was used to cluster mutant

strains into groups with distinct UPR profiles using k-means clustering.

On average, 600 cells were analysed for each strain.

Data availability

Data

All penetrance and phenotype results are available at: https://thecel

lvision.org/endocytosis.

Normalized feature data of single cells used for neural network

training and additional files that support the analyses are available

at: https://thecellvision.org/endocytosis/supplemental.

Raw extracted quantitative features of segmented single cells

used in the analysis were deposited to the Image Data Resource

(https://idr.openmicroscopy.org) under accession number idr0078.

Images

All images are available for browsing at: https://thecellvision.org/

endocytosis. Raw and processed images were deposited to the Image

Data Resource (https://idr.openmicroscopy.org) under accession

number idr0078.

Source code

Code for the single-cell labelling tool, unsupervised ocSVM for

outlier detection, and 2 hidden-layer fully connected neural network

for single-cell classification is available at: https://thecellvision.

org/tools and has been deposited on GitHub:

• ODNN (https://github.com/BooneAndrewsLab/ODNN.git): scripts

for data pre-processing, running supervised two hidden-layer fully

connected neural network for single-cell classification, and pene-

trance calculation.

• One-Class SVM (https://github.com/BooneAndrewsLab/ocSVM.

git): Outlier Detection with One-Class SVM.

• Single Cell Labeling Tool (https://github.com/BooneAndrewsLab/

singlecelltool): custom-made graphical user interface (GUI) appli-

cation that allows users to view and label single-cell images in a

grid layout. Users can save a phenotype for each cell and then

export the data.

Expanded View for this article is available online.
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