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Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and
the function of developing neuronal networks. The relationship between critical dynamics and neural
development is both theoretically and experimentally appealing. However, whereas it is well-known that
cortical networks exhibit a rich repertoire of activity patterns at different stages during in vitro maturation,
dynamical activity patterns through the entire neural development still remains unclear. Here we show that
a series of metastable network states emerged in the developing and “aging” process of hippocampal
networks cultured from dissociated rat neurons. The unidirectional sequence of state transitions could be
only observed in networks showing power-law scaling of distributed neuronal avalanches. Our data suggest
that self-organized criticality may guide spontaneous activity into a sequential succession of
homeostatically-regulated transient patterns during development, which may help to predict the tendency
of neural development at early ages in the future.

he emergence of patterned activity spontaneously generated by transiently coupled neurons is a ubiquitous

phenomenon in developing neuronal networks in vitro and in vivo'*. Understanding these patterns is the

key to reveal how brain works and what happens during neural development'~*. It is well known that a large
diversity of spontaneous activity patterns was encountered in neuronal cultures and could be roughly classified
corresponding to stages of maturation"®. However, it remains unclear that how the network activity changes its
pattern through developmental stages, especially, whether developmental dynamics changes abruptly or
smoothly between successive developmental states.

Recently, evidence has been found suggesting that neural systems operating close to a critical dynamical state
show advantages in information processing and pattern formation of developing neuronal networks®".
Interestingly, even in the mature stage, developing neuronal networks were not always driven into the critical
regime during development. Little is known about the role of criticality in shaping the dynamics in the entire
development process and in the progressive refinement of neural activity patterns. In this study, we address these
issues by analysing dynamical network states and neuronal avalanches in dissociated hippocampal networks
cultured on multi-electrode arrays. Particularly, when we focus on the state transition of spontaneous activity in
developing network, the question is: what is the difference between networks in the critical regime and those out
of the critical regime?

Results

Mapping changes of network activity patterns in a complete in vitro developmental process. To examine
developmental changes of spontaneous network activity, multi-electrode recordings were made from primary
dissociated hippocampal cultures of E18 Wistar rat embryos (23 cultures from 20 plating batches, typical network
and electrodes layout were shown in Supplementary Fig. 1). Spikes were detected using an adaptive amplitude
threshold, and then were used to construct a neural activity vector (see Methods). To capture the global dynamics
of network activity patterns (Typical firing patterns during development were shown in Supplementary Fig. 2), we
first built a similarity matrix between vector pairs which respectively denoted a spatial neural activation pattern at
the corresponding time point (Fig. 1a). Afterwards, we inspected the similarity matrix in a reduced dimensional
space using principal component analysis (PCA, Fig. 1b). Network activity patterns were then mapped as dots in
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Figure 1| Unidirectional sequence of network state transitions during in vitro maturation. (a), Similarity matrix of spatiotemporal firing
patterns of a developing network. The colorbar indicates the range of similarity index. (b), Data in the PC coordinate shows a trail of clusters sequentially
emerged through stages of development. The colorbar indicates the range of recorded life span. The arrow indicates the direction of sequential state

transitions during development. DIV: days in vitro.

the PC (principal component) space where the distance between two
dots were used for measuring the difference between the
corresponding spatial patterns.

State transitions during development illustrated a homeostatically-
regulated trajectory. After examining the entire development
process in the PC space, we found a U-shape trajectory left by the
sequential emergence of dot clusters which were referred to network
states here (in 18 of 23 long-term recordings of hippocampal
cultures, examples shown in Fig. 1b and in Supplementary Fig.
6a). Spatiotemporal activity patterns in the same recording session
shared similar characteristics, but changed gradually in successive
sessions.

From early to late stages, the trail of sequential network state
transitions formed a unidirectional path, indicating that the

predominant activity pattern in each stage changed progressively
during development. By visualising and examining the devel-
opmental dynamics in long-term cultures, we found the trajectory
was a common phenomenon which may reflect the network
dynamics in the entire developing process.

Previous studies have suggested that it is the excitation-inhibition
balance that homeostatically maintains dynamical states and pre-
vents external perturbations from driving the network towards
pathological states'” . To test whether the disturbance could alter
the shape or direction of the trajectory, we added 50 pM bicuculline
(BIC, a specific antagonist of GABA-A receptors) and 100 pM (2R)-
amino-5-phosphonovaleric acid (APV, a specific antagonist of
NMDA receptors) to the medium respectively (see Methods). In
the presence of bicuculline, the network activity pattern changed to
stereotypic rhythmic bursting. After washing out bicuculline by
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Figure 2 | Disturbing the excitation-inhibition balance alters the
developmental trajectory. (a—c), The application of Bicuculline (50 uM),
APV (100 uM) and Octanol (0.25 mM) breaks the excitation-inhibition
balance and alters the trajectory. In the PC space, the inherent

developmental sequence is shown by the grayscale trajectory (black to
white) and the recovering track left by firing patterns after washing out
drugs is indicated by colorized dots (light yellow to dark red). The green
dots indicate the original firing patterns before the drug was applied. The
black arrow and the red arrow indicates the direction of sequential state
transitions during development, and the direction of changing firing
patterns after the drug was washed out, respectively. Note firing patterns
return to the approximately original position through the unidirectional
recovering process, leaving a track pointed to the position where firing
patterns before drug was applied (green dots). (Total recorded life span of
the cultured network: 147 DIV, Experiment Day: APV: 33 DIV; BIC: 51
DIV, OCT: 101 DIV). Data are available online. DIV: days in vitro.

changing the entire medium three times, the network state did not
immediately return to its original site in the PC space. Instead, it took
approximately 10 minutes to recover from the overexcited state,
leaving a markedly trail pointed towards the former trajectory
(Fig. 2a). After the APV application which led to the inhibition of
neural activity, the recovering network activity also left a similar trail
(Fig. 2b). Such phenomenon was also observed after the application
of 0.25 mM octanol (OCT, a putative blocker of electrical synapses,
Fig. 2c). These observations suggest that network activity patterns in
the development were homeostatically-regulated. After external per-
turbation was removed, the network could autonomously restore the
global dynamics to a “preset” dynamical state corresponding to the
“current” developmental stage (for more examples, please see
Supplementary Fig. 10).

Networks activities were looking more similar in the middle
stages. To investigate the changes of spatiotemporal activity
patterns in the course of entire development process, we next
examined the network states in different developmental stages. In
the early and the late stages, the activity patterns were sparsely
scattered in the PC space. In the first and the last few recordings,
we could only distinguish individual “clusters” by responding
recording dates. In contrast, clusters gradually became densely
distributed in the middle stages when most neural ensembles were
activated and acting correlatively (Supplementary Fig. 3a, 4, 5, 9),
indicating enhanced pattern stability and greater activity
synchronization over the network. By examining other cultures, we
found this phenomenon of changing cluster distribution was
common in the in vitro development. It is well known that the
impact of topology on dynamics in complex networks is a
fundamental but yet to be fully explored problem. Previous studies
have suggest that maturation of functional connectivity leads into an
intrinsic exploratory dynamics characterized by more stable and
organized activity patterns™'"*'. While the tightness of the cluster
may reflect the similarity of spatiotemporal activity patterns,
crucial changes in network topology needs to be explored. We then
estimated the global functional connectivity of in vitro neuronal
networks (see Methods). In the first and the last few weeks, only
seldom weak connections were identified in the network. The
number of connections showed an age-dependent increase and the
connectivity patterns became richer and more complex in the middle
stage (the time range of middle stages varies from batch to batch, for
example, 3-7 weeks in vitro as the example shown in Supplementary
Fig. 3b). The above observation of network connectivity was in line
with previous studies®. Next, we calculated betweenness centrality
and assortativity of the functional network to quantitatively
characterize statistical properties of its topology of individual
stages. The results showed that hubs with high degrees and
betweenness centrality emerged (Supplementary Fig. 3b, 5, 9,
please note that hub nodes and “core” populations shares some
common electrodes but not exactly identical) only in the middle
stages. Consistent with previous extracellular recording studies, the
assortativity coefficient in our hippocampal networks was less than
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zero>*. The negative assortativity coefficient indicates that neural
assembly which has many connections tends to connect to neural
assembly that has a relatively small amount of connections.
Interestingly, this coefficient increased and approached zero in
middle stages (Supplementary Fig. 4), suggesting that the degree
distribution turned to be more homogenous in the middle stages
when the network was becoming more interconnected, even
though the network showed disassortative mixing in the early and
late stages. Considering the fact that more neural assemblies were
engaged in the global firing activity during middle stages and that
hub nodes were emerged in the same period, we suggest that these
changes in network connectivity may help to diminish the diversity
of spatiotemporal activity patterns.

The developmental trajectory was only showed in the self-organized
network. Recent studies have implicated self-organization as a
fundamental process in the formation of spatiotemporal activity
patterns'>'****>. The presence of self-organized criticality (SOC) in
cultured networks has been characterized by power-law scaling of
distributed neuronal “avalanche” activity®'*'**¢. To examine SOC in
the course of entire development process, we tracked and analysed
both avalanche events (“global”) and spike events (“individual
units”) of all recordings (see Methods). In neuronal avalanche
assay, the fitted slope value () found for the avalanche size distri-
bution was —1.95 = 0.79 (mean * S.D., n = 1763 recordings), and
the branching parameter which is a common metric describing
avalanche propagation was close to unity: 1.07 * 0.41 (mean *
S.D., Fig. 3), both suggesting emerging critical dynamics in the
network. In addition, the Hurst exponent of the inter-spike
intervals of individual spike trains was 0.71 = 0.08 (mean * S.D.),
indicating strong long-range temporal correlations in the spon-
taneous activity of individual network units. These observations
demonstrate the presence of SOC in networks which exhibited
unidirectional sequential state transitions in the course of develop-
ment (“with the trajectory”). However, we also noted that not all cul-
tures exhibited such transitions. In those networks (6 of 23 cultures),
we found irregular/abrupt transitions or reversible transitions of
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spontaneous activity patterns during development (Supplementary
Fig. 6, 7, 8). The fitted slope value («) was far from the universal
power-law exponent value —1.5 (x = —3.25 * 0.91, mean * S.D,,
with the branching parameter: 046 *= 0.21, mean * S.D.,, n =
231 recordings), suggesting that subcritical dynamics (random-
ness) existed in the developing process of these networks. Further,
Hurst analysis showed that activity of individual neuronal ensembles
in such networks exhibited very weak temporal correlation (Hurst
exponent: 0.52 * 0.07, mean * S.D.). Taken together, the above data
suggest that metastable state transitions may only occur in
temporally evolving networks operating at or close to critical,
which for the first time experimentally confirms the theoretical
prediction of the close link between self-organized criticality and
metastable transient dynamics in living neural networks®.

Discussion

Self-organized criticality in cultured neuronal networks is widely
suggested in previous studies>'>'®'***. To demonstrate this, we
recorded electrical activities from long-term cultured hippocampal
networks and performed both neuronal avalanche assays and long-
range correlation estimation on the data. There were two types of
cultured networks in our study: the majority showed self-organized
criticality, and the rest remained mostly in the subcritical regime.
Our data confirms that not all neuronal networks stayed in the
critical regime during development, which has been reported prev-
iously'"". It was still unknown that how different activity propagat-
ing mode (critical or non-critical) could affect the developmental
process. From the perspective of the entire development process,
what is the influence of self-organized criticality on the devel-
opmental dynamics? On the ground of previous studies, our raw data
contained all recordable network activities during the entire develop-
ment of cultured network. We analysed the dynamical states which
emerged successively in the developing networks. We observed a
unique and unprecedented phenomenon that the majority of the
neuronal networks showed progressively-changed activity patterns
through developmental stages. Interestingly, we found the observed
trajectory of metastable state transitions only showed in the networks
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Figure 3 | Network dynamics varies in cultures with/without developmental trajectory. (a—d), Parameters of network dynamics between cultured
networks with/without developmental trajectory: Data distribution of the fitted slope values in avalanche size distribution (a), the branching parameter of
avalanche propagation (b), the assortativity coefficient of functional connectivity of networks (c), and the Hurst exponent of spiking activity of individual
units (electrodes) of networks (d) with/without developmental trajectory are shown in box plots. In the box plot, 25" percentile, median, 75™ percentile of
data are represented by the box (the bottom, the band near the middle, and the top of the box, respectively), the mean value is represented by the square
dot inside the box, and the standard deviation is represented by the whiskers of the box.

| 3:1081 | DOI: 10.1038/srep01081



in which population activity propagated in the critical mode. As a
self-organized system, neural networks are believed to be able to
optimise two critical aspects of neural computation: one aspect is
in information transmission which is believed to be optimised while
the system operates in the critical region'®"; the other aspect is in
information storage which is optimised while metastable dynamics
exists in the system®”?”. The simultaneously existence of critical and
metastable dynamics confirms the previously reported theoretical
prediction which based on mathematical models”.

Further, we tried to find whether the homeostatic plasticity in
developing networks could be reflected by the trajectory. In our
study, homeostatic mechanisms closely related to AMPA-A and
NMDA receptors and gap junctions were examined using commonly
used chemical blockers. We found that disrupting the excitation-
inhibition balance could alter the trajectory in shape and direction.
After re-establishing the balance, the network returned to the ori-
ginal dynamical state, suggesting that homeostatic plasticity in devel-
oping networks may not only holds the activity level (firing rates) to a
set point®®, but more importantly, maintains nontrivial activity pat-
terns and dynamical network states during development. The tra-
jectory in our results showed that a progressively-changed activity
pattern dominated the global mode in each stage, and that such firing
patterns could be rebuilt even when it was disrupted.

In summary, we used long-term cultured hippocampal networks
to demonstrate that large random developing networks showed
sequential global dynamics during in vitro maturation, capturing
metastable transitions in the entire developmental process. Our data
suggest that a self-organized criticality mechanism with long range
interactions hereby plays a potential role in the emergence of meta-
stable activity states in an evolving network.

In temporally evolving networks, the coexistence of self-organized
criticality and metastable state transition showed in our results pro-
vides an unprecedented experimental evidence for the hypothesis
that critical networks should simultaneously exhibit criticality and
metastability. Understanding the self-organized nature of developing
networks may hold the key to elucidating the network-level mechan-
isms of brain development. Based on our result, it may be possible to
predict how the network will evolve by examining the criticality in
early stages. It will open a door to the investigation of age-related
neuronal dysfunction, and ultimately to the forecasting of devel-
opmental dynamics of the brain.

Methods

Dissociated hippocampal cultures. As previously reported, hippocampi from E18-
19 Wistar rat embryos were dissected and the hippocampal neurons were dissociated
by enzymatic digestion with trypsin (10 min at 37°C) and mechanical dissociation®.
Cells were then plated at a density of 2500 cells/mm? onto multielectrode array dishes
(Ayanda Biosystems SA, Lausane, Swiss) coated with poly-L-lysine. The culture
medium in MEA dishes contained 1 ml Neurobasal medium with B27 (Invitrogen),
0.5 mM Glutamax (Invitrogen), and 10% equine serum (Hyclone). MEA dishes were
keptina 37°C, 5% CO, water jacketed incubator, and half of the medium was changed
every 2 days. All experimental procedures used in this study were approved by the
Animal Ethics Committee of Huazhong University of Science and Technology.

Recording. Signals from 59 recording electrodes in the MEA dish were acquired
simultaneously with a MEA1060 recording system (Multichannel Systems,
Reutlingen, Germany). For each culture, after electrical activities became detectable
by electrodes (~ after 1 week in vitro), extracellular signals were continuously
sampled with a fixed schedule at 25 kHz for atleast 1 hour every 2 days until no valid
signal could be detected due to network deterioration (typical observation period last
for 100-150 days in vitro). For each electrode, a threshold automatically set by 5X
standard deviation of the noise was used to convert raw waveform data into a spike
train.

Drugs. Bicuculline methiodide (Sigma), D(—)-2-amino-5-phosphonopentanoic acid
(Sigma) and 1-Octanol (Sigma) were dissolved in culture medium. The volume of
medium in the MEA chamber was maintained at 1 ml. Drugs were added directly to
the MEA chamber, and the reaction was terminated by aspiration of the entire
medium and replacement with fresh culture medium.

Data analysis. To capture slow changing dynamics of network firing patterns during
the entire development process, raster plots of all valid recordings of a network during

development were binned every 1-10 s. The binning was determined by the
distribution of inter-spike interval (ISI) and inter-burst interval (IBI). Cultures with
small ISIs and IBIs would be applied a smaller binning window. Detected spikes of
individual electrodes were counted in each bin to construct a set of M-dimension
activity vectors g,8, . . . §v (M: Total electrode number, N: Total bin number) which
represents changing spatiotemporal pattern (i.e., active neural assembles and their
activity levels) of network activity with time. We constructed the similarity matrix S; ;
by calculating cosine similarity between g; and g;:

Sij=cos(0)= &,
e/l
which has a value between 0 and 1. To visualize and identify possible network states
emerged during development, we then applied PCA to the matrix. After PCA, the first
two principal components (PC) spanned an orthogonal space where each pattern was
mapped as a dot.

To follow the state transition, we used graph theory to analyze the functional
topology of the network. To evaluate connection strength between nodes, mutual
information between spike trains recorded by individual electrodes was computed by
evaluating joint and single probabilities of two spike trains (X, Y):

MICY) = 3 play) log, (252 )
xy

()p(y)

where x, y denote a spike event and p(x,y) represents the joint probability (binning
window = 1 ms). Then, the values are normalized between 0 and 1, which are used to
measure the strength of the functional connectivity link between two assemblies™.
Betweenness centrality of node i was computed by considering the number of shortest
paths between the other two nodes that pass through i:

1 Pii(i)

bi= n—1)(n—2)

h.jeN P
hjh#ij#i
where pj; denotes the number of shortest paths between the other two node h and j,
and py,;(i) denotes the number of shortest paths between them but also passes through
i*®. Assortativity of a network was computed by the Pearson correlation coefficient of
the degree distribution:

2
e S ke~ {m S Lo+
o X g R k@] - {m X okl

Where k;(e) and k;(e) denotes the degrees of nodes at ends of link e, and  is the total
number of links?. The network is assortative when r > 0 (correlated), disassortative
when r < 0 (anti-correlated), and uncorrelated when r = 0.

The generation and propagation of network activity was examined by detecting
and evaluating neuronal avalanches in the network. Self-organization criticality in
network activity during development was identified by both properties of neuronal
avalanches in the network and Hurst exponent of spiking activity of individual spike
trains. Avalanches were detected by using the method presented in ref. 9-11 (with a
3-ms binning window), and the size of an avalanche is defined as the number of active
electrodes inside the event. To validate criticality, we followed the maximum like-
lihood method with Kolmogorov-Simirnov test presented in ref 30. To evaluate
propagation of avalanches, we defined the branching parameter as the average
number of electrodes activated by prior electrodes in the propagation of neuronal
avalanches. Both the scaling exponent (slope value: o) close to —1.5 and branching
parameter close to 1 suggest self-organized critical dynamics in the network activity.
To evaluate the presence of long-range correlation in the activity of individual units of
the network, we first concatenated all detected spikes of each electrode during
development into a spike train, and then applied the rescaled range method to
estimate Hurst exponents on the inter-spike interval sequences®. A Hurst exponent
value H close to 0.5 indicates a random walk, H > 0.5 indicates persistent behaviour,
and H < 0.5 indicates anti-persistent behaviour.
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