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a b s t r a c t

Heat stress induced by long periods of high ambient temperature decreases animal productivity, leading
to heavy economic losses. This devastating situation for livestock production is even becoming worse
under the present climate change scenario. Strategies focused to breed animals with better thermo-
tolerance and climatic resilience are keenly sought these days to mitigate impacts of heat stress espe-
cially in high input livestock production systems. The 70-kDa heat shock proteins (HSP70) are a protein
family known for its potential role in thermo-tolerance and widely considered as cellular thermometers.
HSP70 function as molecular chaperons and have major roles in cellular thermotolerance, apoptosis,
immune-modulation and heat stress. Expression of HSP70 is controlled by various factors such as,
intracellular pH, cyclic adenosine monophosphate (cyclic AMP), protein kinase C and intracellular free
calcium, etc. Over expression of HSP70 has been observed under oxidative stress leading to scavenging of
mitochondrial reactive oxygen species and protection of pulmonary endothelial barrier against bacterial
toxins. Polymorphisms in flanking and promoter regions in HSP70 gene have shown association with
heat tolerance, weaning weight, milk production, fertility and disease susceptibility in livestock. This
review provides insight into pivotal roles of HSP70 which make it an ideal candidate genetic marker for
selection of animals with better climate resilience, immune response and superior performance.

© 2019, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Homeotherms in tropical and arid regions have to bear the
stress of high temperature. However, homeotherms are gifted with
an ability to regulate a steady temperature inside their bodies,
regardless of ambient temperature. Their cellular homeostasis is
iation of Animal Science and
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likely to be disturbed by heat stress. To combat the drastic out-
comes of heat stress, cells are blessed with heat shock proteins
(HSP). These proteins are found abundantly in both prokaryotic and
eukaryotic cells. Heat shock proteins were reported for the first
time in 1962 by an Italian geneticist Ferruccio Ritossa while
working on Drosophila at the Genetics Institute in Pavia (Ritossa,
1996). He exposed salivary gland cells of Drosophila to 37 �C for
30 min and then allowed them to return to normal temperature of
25 �C, and found they could recover. During recovery of cells, a
“puffing” of genes was observed in the chromosomes, alongwith an
elevation in the expression of proteins of 70 and 26 kDa (Tissieres
et al., 1974). Proteins discovered during this experiment were
named as “heat shock proteins”. These proteins are involved in
protecting cells from heat shock by safeguarding the cellular pro-
teins from denaturation (Feder and Hofmann, 1999). The chaperon
function of HSP includes prevention of inappropriate protein
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This
censes/by-nc-nd/4.0/).
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aggregation and directing newly synthesized polypeptide for final
packaging, degradation, or repair (Kiang and Tsokos, 1998).

Among HSP, the proteins of molecular mass 70 kDa are most
abundant and highly conserved proteins and termed as HSP70. All
HSP70 have potential to bind with adenosine triphosphate (ATP)
molecules (Milarski and Morimoto, 1989). The HSP70 family is
encoded by HSP70 gene and includes proteins of molecular masses
ranging from 68 to 73 kDa. The bovine HSP70 protein has a mo-
lecular weight of 70,190.56 Da, and out of total 641 amino acids, in
which 92 are highly basic amino acids, while 82 are highly acidic
amino acids. Additionally, 151 amino acids are hydrophilic and 220
amino acids lack affinity for water. Functional parts of HSP70 pro-
teins consist of an amino-terminal ATPase domain (44 kDa) and a
carboxylic-terminal region having molecular weight of 25 kDa
(Gade et al., 2010). Third functional part of HSP70 is its substrate
binding domain, which consists of a 10-kDa helical subdomain and
a 25-kDa b sheet subdomain. Studies on cattle, goat and buffalo
revealed that HSP70-1 gene has an open reading frame of 1,926
base pairs (Gade et al., 2010). HSP70 are said to be monomeric
proteins found in cytosol of prokaryotes, while in eukaryotes they
reside in cytosol, endoplasmic reticulum, nuclei, chloroplast and
mitochondria. These are also found in extracellular region in a free
soluble form or tangled with antigenic peptides. Their half-life is
relatively long like 48 h in human epidermoid cells (Kiang and
Tsokos, 1998).

2. Genetic variants of HSP70

HSP70 family in bovines further comprises of 4 genes viz.,
HSP70-1, HSP70-2, HSP70-3 andHSP70-4. Among these,HSP70-1 is a
well-studied intron-less gene and is present on chromosome 23 in
bovines (Gade et al., 2010). In cattle, HSP70-2 is present in bovine
leukocyte antigen region of chromosome 23 band 22, whereas,
HSP70-3 is localized at band 34 of chromosome 10 and HSP70-4 is
residing at band 13 of chromosome 3. HSP70-1 is found to be firmly
attached with HSP70-2 on chromosome 23 (Daniel et al., 1993).
Bovine HSP70-1 and HSP70-2 are homologous with HSPA1 and
HSPA1L on chromosome 6p21.3 in human while HSP70-3 and
HSP70-4 are homologous to unnamed human HSP70 gene on
chromosome 14q22-q24 and HSPA-6,-7 genes on chromosome 1,
respectively (Grosz et al., 1992).

Almost all variants owe their own unique importance due to
their peculiar functions including protection of polypeptides from
stress of elevated temperature, packaging and folding of nascent
polypeptides, configuration and detachment of protein complexes.
They are ATP dependent andwork asmolecular protector. These are
also involved in DNA repair, apoptosis, signal transduction and
protein homeostasis. HSP70 also function to serve as tumor-specific
target for detection by natural killer cells (NK cells).

3. Functions of HSP70

Having housekeeping functions in the cell, HSP70 are of great
importance in living beings as they are mainly involved in cellular
protection against heat shock. They also play key roles in modula-
tion of immune system by ensuring proper folding of proteins and
regulation of apoptosis. Some of major functions of this protein
family are highlighted as follows.

3.1. HSP70 as molecular chaperons

Chaperon means to look after, therefore, HSP70 are considered
as molecular chaperons for their function of protecting the cellular
compartment from thermal stress. They also protect newly syn-
thesized polypeptides from damage by properly folding and
packaging them. The assistance of HSP70 proteins in folding of non-
native proteins is further divided into 3 activities including sup-
porting their folding to native state, avoidance of aggregation,
solubilization and refolding of aggregated proteins. These activities
are used in quality control of misfolded proteins and post-
translational folding of nascent polypeptides. HSP70 prevent the
aggregation of non-native proteins by association with water
repelling patches of substrate molecule, which protects them from
intermolecular interactions. This activity is assisted by co-
chaperons of J-domain proteins (Mayer and Bukau, 2005). More-
over, HSP70 help in degradation of ineffective or unrecoverable
proteins (Yokota and Fujii, 2010).

The HSP70 family consist of both inducible and constitutive
forms, which help in stress tolerance by increasing the chaperon
activity in the cytoplasm (Lindquist and Craig, 1998). HSP70 help
proteins to move across membranes by using ATP binding and
hydrolysis. HSP70 improve the overall integrity of cellular proteins.
HSP70 are found to be involved in neuroprotection after examining
various models of in vivo and in vitro neurodegeneration (Mishra
and Palai, 2014).

Bovine HSP70 is found to have an interaction with tubulin
protein as well. The sequence of HSP70 obtained from comple-
mentary DNA sequence has a region from residues 246 to 264. This
region is similar to the tubulin binding motifs of microtubule
associated protein (MAP1B). Therefore, a peptide obtained from
MAP1B and containing one of the tubulin binding motifs
(KKEVVKKEDK) can struggle with HSP70 for binding to polymer-
ized tubulin. Importantly, region of HSP70 having residues from
246 to 264 has a resemblance with tubulin binding motifs of MAP1
proteins. This resemblance is due to the fact that both regions are
rich in basic amino acids i.e., arginine and lysine. As such, the
binding of HSP70 to tubulin is similar to that of MAP1B peptide.
This helps HSP70 in proper folding of tubulin accompanied with
chaperonin t-complex polypeptide 1 (TCP-1) (Sanchez et al., 1990).
3.2. Thermal tolerance

Thermal tolerance is the ability of animals to balance thermo-
genesis and heat dissipation under ambient temperatures above
thermoneutral zone (TNZ) of body (e.g. from 32 to 77 �F for healthy
cattle). Thermoneutral zone is the range of temperature for animals
in which no expenditure of energy is required to maintain normal
body temperature. In this regard, heat shock proteins have a major
role in heat tolerance and protecting the cellular compartments
from adverse effects of heat stress.
3.2.1. Role of HSP70 in cellular thermotolerance
Mammals and birds have a gifted potential to maintain their

body temperature. For maintaining homeostasis at cellular level,
they have specialized HSP. Among these proteins, HSP with mo-
lecular mass of 70 kDa are of great importance. These proteins
guard against drastic effects of heat stress in animal sthriving in
tropical and arid regions. In case of absence of this protective shield
to mediate heat stress, animals become victim of detrimental ef-
fects posed by elevated ambient temperature (Mishra and Palai,
2014).

HSP70 are of much importance in cellular thermotolerance and
protecting polypeptides from denaturation during heat stress.
When a cell is under stress, it cannot perform its normal activities
like transport of materials, DNA replication, transcription and
polypeptide synthesis. Moreover, stress causes misfolding of pro-
teins at cellular level. In such stressful condition, HSP are activated
and save the cell by minimizing accumulation of the denatured or
abnormal proteins in the cell. In this way, they enhance the cell
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survival and its ability to overcome oxidative and thermal stress
(Bhat et al., 2016).

3.2.2. Mechanism of thermal tolerance
Cellular proteins are adversely affected by heat stress except

HSP, which are activated by heat shock. It has been reported that
HSP70 showed higher expression levels during heat stress in goats
(Dangi et al., 2014), buffalo (Kishore et al., 2014), sheep (Romero
et al., 2013) and cattle (Mishra and Palai, 2014). Thermal stress
induces expression of HSP70 in cells. In order to protect cells from
heat stress, HSP70 bind to affected proteins so that they cannot
aggregate within cells. The aggregation of proteins denatured by
heat stress can induce several complications within cells with
serious consequences. Various experiments have suggested that
ability of thermotolerance is directly associated with the rate of
HSP70 expression/accumulation in cells. Similarly, thermotol-
erance decays at a rate parallel to HSP70 degradation. In the
beginning, HSP70 were not inducible, that is why most of fruit flies,
frogs and mammals were hypersensitive to thermal killing. Later
on, HSP70 became inducible which made organisms more ther-
motolerant (Browder et al., 1998). However, induction of HSP70 can
be inhibited by some inhibitors like cycloheximide which can
interfere with normal cellular stress response (Lindquist, 1986).

Several post-translational and transcriptional mechanisms are
involved in induction and stimulation of cellular stress response.
Heat shock factors are present in inactive forms within cells and
become active under heat shock by post-translational modification.
Their activation increases transcription of HSP (Sorger et al., 1987).
Heat shock messages should be translated efficiently in order to
guard cell against adverse effects of stress. Therefore, the
messenger RNA existing previously should be reserved by trans-
lation, so that, competition for translation of new mRNA can be
avoided (Lindquist,1980). During heat shock, thosemRNA ofHSP70,
which are unstable at normal temperatures, become stable
(Petersen and Lindquist, 1998). A simple pathway for activation of
HSP70 expression under stress is illustrated in Fig. 1.

3.2.3. Polymorphisms in HSP70 associated with thermal stress
Several polymorphisms have been detected in the DNA se-

quences of different HSP genes to explore their association with
ability of heat tolerance in animals. For example Bhat et al. (2016)
investigated variants in HSP70 associated with thermotolerance
in Tharparkar cattle. They identified a polymorphic fragment of 295
bp by analyzing 3 PCR single-strand conformational polymorphism
(PCR-SSCP) patterns. Analysis of nucleotide sequencing alignment
of 3 PCR-SSCP patterns revealed a substitution of G toTand G to C at
149th position revealing 2 alleles (allele A with nucleotide T and
allele B with nucleotide C) of HSP70 gene. This G to T substitution
leads to a change of amino acids (from aspartate to tyrosine) in gene
transcript. They concluded that allele A of HSP70 is positively
correlated with thermal tolerance, and genotype AA is superior
with the highest heat tolerance coefficient. They suggested that
such single nucleotide polymorphisms (SNP) could be used as an
indicator for selection of thermotolerant cattle. Polymorphisms in
the promoter and 30-untranslated region (UTR) of the HSP70-2 gene
have shown association with mRNA stability and stress response in
pigs (Schwerin et al., 2001, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3118824/, 2002).

In another study, mutations in selected 5’ flanking region of
HSP70 gene were analyzed to check the association of this region
with susceptibility of animals to heat stress (Cai et al., 2005). They
identified a mutation site in cis-acting element by using PCR-SSCP
assay and determined 4 genotypes as, AC, AA, AB and BB. They
reported that expression of HSP70 mRNA and Bc1-2 mRNA/Bax-a
mRNA in AC genotype was much higher as compared to rest of
genotypes. At the 33rd nucleotide of AC genotype, a nucleotide
substitution (A/G) was significantly associated withability of
dairy cows to resist against heat stress. This study opened up new
horizons for exploring other related HSP genes for analyzing
molecular genetic marker based susceptibility to heat stress (Cai
et al., 2005). Furthermore, presence of SNP (C/- and G/T) in the
50-UTR region of inducible HSP70-1 showed significant associa-
tion with HS response and tolerance to heat of bovine peripheral
blood mononuclear cells (PBMC) (Basirico et al., 2011). However,
they reported monomorphic 30-UTR of inducible bovine HSP70-1
gene in Italian Holstein population. Contrarily, Adamowicz et al.
(2005) reported polymorphic alleles for the same SNP in Hol-
stein Polish population earlier.

3.2.4. Expression dynamics of HSP70 under heat stress
Climatic changes are one of the major challenges faced in live-

stock production. Tropical zones are under heat stress during
summer because temperature rises to almost 44 �C or even higher.
Such high temperature is dreadful for livestock, unless they have
some heat shock management system in their cells. Heat shock
proteins provide this cellular management to overcome the effects
of heat stress. Heat stress may be for hours and days. Sometimes,
heat stress may become chronic if it prolongs for months (Collier
et al., 2006). Former is called short-time heat stress while later is
called long-time heat stress. Heat stresses either short-time or
long-time triggers the expression ofHSP (Dangi et al., 2012). Among
all HSP, HSP70 most sensitive and important manager of thermal
adaptation in livestock (Dangi et al., 2014).

Experiments conducted to check HSP70 expression in livestock
under chronic heat stress revealed that mRNA expression of HSP70
showed 2 peaks on the 2nd and 17th day of the heat stress at 42 �C
in cattle. These findings confirmed results of earlier studies on
PBMC of goats (Dangi et al., 2015) and lymphocytes of cattle
(Kishore et al., 2014). It could be concluded that biphasic expression
pattern of HSP70 helps to protect animals against heat stress.
Moreover, it might be used as a biomarker of chronic heat stress in
livestock (Bharati et al., 2017).

3.2.5. Factors affecting expression of HSP70
The expression of HSP70 is affected by various factors like

intracellular pH, cyclic AMP, intracellular free calcium, intracellular
inositol 1,4,5-trisphosphate and protein kinase C.

3.2.5.1. Intracellular pH. The latent basal intracellular pH in most
cells has a range of 7.3 to 7.5. Many functions of cells are associated
with change of intracellular pH. In some systems, alteration in pH
range may initiate replication of DNA or cellular proliferation
(Grinstein and Smith, 1990). In some cells like Vero and 3T3 cells, a
minor rise of pH up to 0.2 can induce growth and tumorigenicity
(Perona and Serrano, 1988). Effect of intracellular pH on HSP70 in
HeLa cells revealed that heat shock factors (HSF) are activated in
cell extracts at a pH of 5.8 to 6.4. Maximum activation of HSF was
found at a pH of 6.0 (Mosser and Martin, 1992). However, these
studies just focused about activation of HSF instead of HSP70
expression. Later studies conducted on HSP expression revealed
that change in resting pH has nothing to do with ability of heat
shock to induce HSP70 (Kiang et al., 1994), however, heat shock
makes cell acidic (Liu et al., 1996). In cells which possess over-
expressed HSP70 due to previous heat shock or HSP70 gene trans-
fection, heat shock still acidifies cells. These findings revealed that
there is no clear association between pH and expression of HSP70
(Kiang et al., 1994). However, cells reduce their pH after heat shock
because it is necessary to normalize pH to inhibit various delete-
rious processes. This normalization of pH promotes cell survival

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118824/
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Fig. 1. Different stimuli that activate expression of HSP70 (adapted from Kregel, 2002). HSP ¼ heat shock protein, HSF ¼ heat shock factor, HSE ¼ heat shock element, ROS ¼ reactive
oxygen species, RNS ¼ recative nitrogen species, I/R ¼ infra red radiations; P ¼ phosphorylation.

F.-u. Hassan et al. / Animal Nutrition 5 (2019) 340e350 343
and is thought to be a defensive mechanism of cell survival (Kiang
and Tsokos, 1998).

3.2.5.2. Intracellular inositol 1, 4, 5-trisphosphate. Treatment of
intracellular inositol 1,4,5-trisphosphate (InsP3) with cholera toxin,
forskolin or pertussis toxin increases production of InsP3 (Kiang
and McClain, 1993). Enhanced production of InsP3 induces an in-
crease in level of HSP70mRNA and protein. On the other hand, heat
induced increase in HSP70 expression is diminished by an inhibitor
of InsP3 (Kiang et al., 1994). These findings clearly demonstrated
that InsP3 synthesis plays a key role in increased HSP70 expression.
However, mechanism by which inhibition of InsP3 causes decrease
in HSP70 production is not known. RNA splicing is altered by
binding of InsP3 to its receptors that leads to induction of expres-
sion of various genes (Nakagawa et al., 1991). Such binding of InsP3
to its receptor may be responsible for induction of HSP70 (Sudhof
et al., 1991).

3.2.5.3. Cyclic adenosine monophosphate. Cyclic adenosine mono-
phosphate (cAMP) is considered as a secondmessenger during cell-
signaling process of different cytokines and hormones. It has been
reported that cAMP level increases during heat shock in rabbit
epididymis (Kampa and Frascella, 1977). Moreover, cAMP and
HSP70 level was increased in liver within 3 to 8 h in female mice
after injection of 50 mg/kg dibutyryl (Takano et al., 1998).

3.2.5.4. Intracellular free calcium. Free calcium can activate the
binding of HSF to heat shock elements (HSE) located in HSP70 gene
to mediate transcription (Price and Calderwood, 1991). Increase in
level of free calcium can be induced by ionomycin which is a Ca2þ

ionophore. Consequently, increased Ca2þ promotes HSP70 syn-
thesis in rat luteal cells (Khanna et al., 1995).

3.2.5.5. Protein kinase C. Activation of protein kinase C (PKC)
indicus HSP70 expression as reported by many studies (Khanna
et al., 1995; Ding et al., 1996). It has been found that treatment of
rat luteal cells with phorbol 12-myristate 13-acetate (PMA) induces
new HSP70 synthesis. This is because PMA is a potent stimulator of
protein kinase C (Khanna et al., 1995).
3.3. Immuno-modulatory effects of HSP70

Many beneficial functions of intracellular HSP70 are known,
however, extracellular HSP70 are also important. HSP70 in
extracellular fluids are involved in immuno-modulation through
signaling of immune cells against invading pathogens by stim-
ulation of increase in neutrophils and macrophages. HSP
involved in immuno-modulation exhibit resemblance with pro-
inflammatory cytokines and adjuvants. Therefore, they are also
termed as “danger signals” and signify some invasions and
activate immune responses. It is important to know that HSP
have no signal sequences as a leader which can direct their
secretions. So, they are considered as intracellular proteins.
However, HSP70 in extracellular serum has been found and is
mainly due to severity of myocardial infarction, heart failure,
atherosclerosis, peripheral and renal vascular disorders
(Dybdahl et al., 2005). These may come out of cell after necrosis.
Few viable cells can actively secrete HSP70 in extracellular fluid
through secretary vesicles or lysosomal endosomes (Mambula
and Calderwood, 2006).

Pathogens either bacterial or viral are identified by host
pattern recognition molecules like TLR (toll-like receptors), NOD-
like receptors (nucleotide-binding oligomerization domain-like
receptors) and RIG-I-like receptors (retinoic acid-inducible
gene-I-like receptors) through their pathogen-associated molec-
ular patterns (PAMP). HSP in extracellular region serve as PAMP
for host immune system. That's why these extracellular HSP can
function as “self-adjuvant”. In this way, both innate and acquired
immunity can be activated. Innate immunity via this pathway
includes induced production of inflammatory cytokines, co-
stimulatory molecules and cell adhesion molecules while ac-
quired immune system involves enhancement of antigen pre-
sentation. Autoantibodies against HSP70 are found in patients
with immunological disorders like rheumatic autoimmune dis-
ease, atherosclerosis or cardiovascular diseases (Minota et al.,
1998). Molecular mimicry between host and bacterial HSP is
important for formation of autoantibody. Its importance is due to
high sequence homology (50% to 60%) at amino acid level (Yokota
and Fujii, 2010).
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3.3.1. Role in auto-immune diseases
A cancerous cell or a cell affected by some pathogen usually

secretes proteins, which are not a part of normal body proteins.
Such proteins are considered as antigen by the body and trigger the
immune system. Heat shock proteins alert the immune system
against such antigens. This is mainly done by HSP70 and HSP90.
They carry these antigens to the antigen-presenting cells (APC) of
immune system via surface receptors. These proteins also inhibit
inflammatory pathways and make the organism more resistant to
diseases. HSP have immuno-regulatory potential because they can
promote the formation of anti-inflammatory cytokines. HSP have
been found to modulate immune responses in arthritis, graft
rejection and colitis. Some members of HSP70 family are linked
with autophagy (Borges et al., 2012).

3.3.2. Inhibition of inflammatory pathways
Studies have revealed that HSP70 family interferes with various

intracellular inflammatory signaling pathways. A possible pathway
of HSP70 activity is through its interaction with dendritic cells,
monocytes and myeloid-derived suppressor cells. HSP70 binds to
receptors of endocytes and become endocytosed. In this way, they
get an access to passages of antigen presentation thus, modulating
the cell phenotype towards a tolerogenic one. Finally, it leads to
production of anti-inflammatory cytokine interleukin (IL)-10 and
consequence is immunosuppression (Borges et al., 2012). IL-10 is
the foremost anti-inflammatory and immunosuppressive cytokine
(Moore et al., 2001). Modulation of immuno-suppression induced
by HSP70 is illustrated in Fig. 2.

3.3.3. Mycobacterial HSP70 as a vaccine for bovine
paratuberculosis

Paratuberculosis is an infection caused by Mycobacterium
avium ssp. paratuberculosis in ruminants. In this disease, victim
suffers from chronic granulomatous swelling in small intestine.
This disease can occur in cattle worldwide and can cause signifi-
cant economic losses. Moreover, it is difficult to eradicate due to
lack of diagnostic tools. Control measures like vaccination could
be used to limit spraed of this fatal disease in animals. Commer-
cially available vaccine for bovine paratuberculosis usually con-
tains various strains of bacteria including some adjuvants to
Fig. 2. Pathway for immunosuppression induced by HSP70 (Adapted from Borges
et al., 2012). CD86 ¼ dendritic cells 86, MDSC ¼ myeloid-derived suppressor cells,
MHCII ¼ major histocompatability complex-II, TNF-a ¼ tumour necrosis factor alpha,
INF-g ¼ interferon gamma, IL-10 ¼ interleukin 10.
increase its efficacy (Manning and Collins, 2001). Koets et al.
(2006) claimed that they have discovered HSP based vaccine for
treatment of bovine paratuberculosis, for the first time (Koets
et al., 2006). They reported that vaccine made of recombinant
MAP HSP70 leads to significantly reduced shedding of bacteria
into bovine fecal matter. Consequently, transmission of infection
through feces is reduced. HSP taken from bothM. tuberculosis and
Mycobacterium bovis have been used previously in DNA based
vaccines for tuberculosis successfully (Skinner et al., 2005).
Mycobacterial HSP70 serve as a major T cell antigen in bovine
tuberculosis (Koets et al., 2006). reduced bacterial shedding in
feces, HSP70 based vaccine has a promising future application in
immunization of animals. Moreover, it is inferred that mycobac-
terial HSP70 has a specific binding behavior towards innate re-
ceptors of macrophages and dendritic cells, which ultimately
leads to production of pro-inflammatory signals. These signals
result in interferon gamma (IFN-ɣ) production via T and NK cells.
This hypothesis was supported by the observation that animals
vaccinated with this vaccine exhibited higher levels of monocytes,
gradually decreasing with age (Skinner et al., 2005).

Recent studies recommended that upregulation of HSP70 could
be used as a potential supportive therapy in respiratory infections
to protect lung endothelial barrier from bacterial toxins. The
promising feature of this modality involves upregulation of HSP70
with chemicals (pharmacological agents) leading to protection
against wider range of bacterial toxins and hyperoxia. Integrity of
endothelial barriers is much important for health as damages to
endothelial barrier can lead to mitochondrial dysfunction, pro-
duction of reactive oxygen species and cell death (Li et al., 2018).
This highlights the promising potential application of HSP70 in
animal health sector as an effective preventive and curative
strategy.

4. Association of HSP70 with performance traits in animals

Studies have revealed association of polymorphism in HSP
with performance traits in animals. Genetic polymorphism in
HSP70 has been found to be associated with calving traits of
crossbred Brahman cows as revealed by SNP in the promoter
region at 895, 1,125 and 1,128 nucleotide positions (Rosenkrans
et al., 2010). Similarly, association between SNP in highly poly-
morphic 50-UTR of HSP70 and post-partum anestrus (PPA) in
Murrah buffaloes was determined using custom sequencing and
restriction digestion analysis (Kumar et al., 2017). Among these
7 SNP including 4 transversions and 3 transitions, detected in
50-UTR region of HSP70, the Tþ38G transversion revealed sig-
nificant association with PPA condition in Murrah buffaloes. A
restriction site is created for restriction enzyme BgII (50-
GCCNNNNNGGC-30) due to transversion of T to G. Furthermore,
restriction enzyme analysis revealed that animals with nucleo-
tide sequence 50-GCCGTTTAGGC-30 between position þ30
and þ 40 showed PPA. Such genetic linkage would be helpful in
replacing problematic animals from herd at an early stage
because such animals suffer from PPA after first calving and are
more prone to heat stress in summer season. Maintaining health
of such animals is quite costly, if considered at a larger scale.
The SNP identified in 50-UTR region of HSP70 are mainly asso-
ciated with milk production, thermal stress and disease
vulnerability (Deb et al., 2013; Sodhi et al., 2013). Highly poly-
morphic variants in HSP70 gene have been identified in Angus,
Brahman and their crossbreds cows with little effect on milk
protein and milk fat (Brown et al., 2010). Association of HSP
variants with performance of animals mainly stems from relief
achieved in terms of adverse effects of heat stress and restora-
tion of normal physiology.
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5. Role of HSP70 in livestock under heat stress

Environmental heat stress is one of most challenging conditions
in an animal's life that adversely affects not only its productive and
reproductive performance but also poses threats to its survival.
Despite the availability of latest technologies to control environ-
ment of livestock farms like cooling pads and mist spraying, still
management of heat stress is a costly intervention for global live-
stock industry (St-Pierre et al., 2003). This is particularly becoming
more serious concern under climate change scenario in tropics and
subtropics. Animals need defensive mechanism to adapt/mitigate
this stress to survive and maintain homeostasis to achieve physi-
ological harmony. Dairy cattle are particularly more prone to heat
stress as it disrupts its endocrine status (Rhoads et al., 2009;
O'Brien et al., 2010; Bernabucci et al., 2014). Environment
induced heat stress not only decreases milk production (35% to
40%) in dairy cows (West, 2003) but also poses health and meta-
bolic challenges (Wheelock et al., 2010; Bernabucci et al., 2014). It is
reported that ambient temperature above 35 �C initiates stress
response in dairy cattle (Berman, 2005) through activation of HSF
leading to increased expression of HSP (Collier et al., 2008). This is
due to the fact that HSP function as a first line of defense tomitigate
adverse effects of heat stress (Trinklein et al., 2004; Page et al.,
2006). Due to this crucial ability of HSP, they are associated with
thermotolerance and climatic resilience abilities of animals that
make them better adapted to harsh environmental heat stress
(Feder and Hofman, 1999).

The role of HSP70 to mitigate different type of stress conditions
in animals is well established as it enables animals to tolerate va-
riety of stresses like environmental stress (heat stress), heavy metal
toxicity, osmotic stress (Iwama et al., 1998), as well as physical
strain and physiologic stresses like oxidative stress and ischemia
(Nowak et al., 1990; Iwaki et al., 1993). Many studies have revealed
increased extracellular levels of HSP70 in animals under heat stress
conditions (Kavanagh et al., 2011; Gaughan et al., 2013; Min et al.,
2015). Furthermore, HSP70-1 and HSP70-2 have shown higher
relative abundance and temperature sensitivity than other HSP70
proteins. The role of HSP70 in cellular thermotolerance and survival
of animals under stress is also well established. (Beckham et al.,
2004; King et al., 2002).

5.1. HSP70 as a biomarker for heat stress in animals

Onset of stress factors especially heat stress induces expression
of HSP70 in many cell types enabling animals to withstand adverse
effects of heat stress. HSP70 has been categorized into constitutive
and inducible form (HSP70i) which alleviates stress by their mo-
lecular chaperon activity in the cytoplasm (Nollen et al., 1999). The
inducible form of HSP70 has been recognized as biomarker for
cellular thermotolerance by monitoring its serum levels in animals
which are significantly associated with stress tolerance ability (Li
and Mak, 1989; Flanagan et al., 1995; Min et al., 2015). The
expression of HSP70i has been observed in bovine lymphocytes
(Lacetera et al., 2006; Liu et al., 2010; Mishra et al., 2011) and goat
kidneys (Zulkifli et al., 2010). Variable expression of HSP70 has been
observed in caprine PBMC as elevated levels were observed in peak
summer season as compared to winter in both tropical and
temperate regions (Dangi et al., 2012). HSP70 not only improves
overall protein integrity but also inhibits cellular apoptosis which
basically protects cells from stress (Beere et al., 2000).

Role of HSP70 in neuroprotection has also been observed in
many in vitro and in vivo neurodegenerative animal models
(Gifondorwa et al., 2007). It has been observed that in addition to
heat stress, other physical stress factors can also induce HSP
expression, for example elevated levels of HSP70 has been observed
in renal cells of Boer goats after transportation under hot and hu-
mid conditions (Zulkifli et al., 2010). Under stress conditions, even a
200-fold increase in serum level of HSP70 has been observed in
calves of Murrah buffalo (Mishra et al., 2011). Similarly, buffalo
heifers have shown induction of HSP70 in response to thermal
exposure simultaneously exhibiting decrease in lymphocyte pro-
liferative response and IL-2. This revealed that HSP70 is a potential
biomarker for heat stress and compromised immune status in
buffalo heifers (Patir and Upadhyay, 2010).

Variations in levels of HSP70 in different animals may be
potentially due to variable ability of thermotolerance among spe-
cies (Agnew and Colditz, 2008). Higher expression of HSP70 in goat
PBMC under heat stress exhibited potential role of HSP70 in alle-
viating heat stress while maintaining cellular homeostasis (Dangi
et al., 2012). Synthesis of HSP70 in rainbow trout has been
observed under temperature stress (Currie and Tufts, 1997). Plasma
concentration of HSP70 is strongly associated with ambient tem-
perature but not with body temperature of animals owing to in-
termediate messengers that respond to changes in ambient
temperature leading to increased transcription of HSP (Horowitz,
2001; Gaughan et al., 2013). However, expression of HSP70 could
be used as a useful indicator for change in body temperature when
it is more than 38.6 �C. Moreover, HSP70 is suggested as a reliable
biomarker of chronic stress but in case of multiple stresses, it is not
a reliable indicator of single stressor (Gaughan et al., 2013). Simi-
larly serum concentrations of HSP70 and HSF could also be used as
a potential indicator of heat stress in animals with good sensitivity
and accuracy (Min et al., 2015).

5.2. Cytoprotection by HSP70 in animals under heat stress

Cytoprotection mediated by HSP70 has been observed in many
organs of animals such as intestine, kidney and embryo (Bhat et al.,
2016). During heat stress HSP70 mediates inhibition of cytotoxic
protein complexes by interacting with unfolded/misfolded (dena-
tured) proteins leading to restore cellular protein homeostasis
(Mayer and Bukau, 2005). The chaperonic activity of HSP70 is
responsible for restoring normal function of stress denatured pro-
tein. It has also exhibited crucial role in cytotoxic protection as
elevated expression of HSP70 has been observed in animals under
higher body temperatures, circulatory shock and cerebral ischemia
during heat shock (Gaughan et al., 2010). The HSP possess chap-
eronic activity that mediates folding, unfolding and refolding of
stress-denatured proteins. Binding of HSP70 with hydrophobic
sequences of denatured proteins, prevents loss of function of these
proteins by avoiding interaction of these protein with other
neighbor proteins (Deb et al., 2015; Bhat et al., 2016). HSP70 sta-
bilizes unfolded proteins and facilitates protein transportation
across membranes within the cell (Borges and Ramos, 2005).

5.3. HSP70 facilitates thermal adaptation in animals

HSP70 like other HSP, is a highly conserved protein being acti-
vated by different stresses including thermal stress (Lindquist and
Craig, 1998). Under heat stress, a major proportion of dietary en-
ergy is directed to sustain thermal equilibrium by maintaining
normal body temperature through heat acclimatization in order to
ameliorate adverse effects of stress. This heat acclimatization di-
verts most of the energy to heat dissipation by vasodilation of blood
vessels. The major role of HSP70 under heat stress is to inhibit
cellular apoptosis to prevent fatal effects of stress.

Generally HSP70 is inducible by different stress stimuli and
present in all animals, but still individual animal show variable
capacity to cope heat stress. This is partly due to naturally occurring
nucleotide variations in the flanking regions 50- and 30-UTR of
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HSP70. These genetic variations are responsible for differential
inducibility, degree of expression and/or stability of HSP70 mRNA,
ultimately associated with variable tolerance of stress in individual
animals (Archana et al., 2017). Moreover, a rapid increase in syn-
thesis of lymphocyte HSP has been observed as a thermo adaptive
response in different farm animals (Guerriero and Raynes, 1990).
Initiation of cellular response is a primary pathway for thriving
under challenging conditions of heat stress in farm animals. The
end product of this crucial cellular response is synthesis and release
of HSP, like HSP70, which helps animals to survive under heat
stress.

6. Regulation of steroid hormone secretion

The steroid hormones play a key role in controlling metabolism,
inflammation, salt and water balance etc. Major HSP involved in
regulation of steroid hormone is HSP90 but, the binding of HSP90
with various steroid receptors is aided by HSP70. Moreover, HSP70
has been found to bind with steroid hormone receptors like pro-
gesterone receptor (PR) in chicken and human (Onate et al., 1991).
In Chinese hamster ovary cells, HSP70 has been found to bind with
over-expressed glucocorticoid receptor (GR). However, binding of
HSP70 with GR has not been found in mouse L cells (Sanchez et al.,
1990). HSP70 has the ability to bind with relatively hydrophobic
regions of unfolded proteins in reversible pattern, during ATP
dependent process (Flynn et al., 1991).

Two types of associations have been observed between chick PR
and HSP70 viz., stable interaction and transient interaction. In
stable interaction, purified and inactive chick PR contains HSP70
which is able to bind with elements in the receptor steroid binding
domain (Kost et al., 1989). Such binding of HSP70 requires ATP and
divalent cations for effective dissociation, in vitro. However, in vivo
observation showed that dissociation of HSP70 from PR is rather
gradual, as compared to rest of receptor-associated proteins (RAP).

During transient interaction, additional levels of HSP70 have
been found in native PR assemblies using rabbit reticulocyte lysate
as a medium of reconstitution. These additional HSP70 associate
transiently with newly formed HSP90-PR complexes (Smith et al.,
1992). The presence of relatively elevated level of HSP70 binding
in nascent PR complexes was found to have a link with 60-kDa
protein (p60). These observations support the hypothesis that
both HSP70 and p60 fasciliate transient binding of HSP90 with
receptors. Recovery of large pool of HSP90 in reticulocyte lysate and
some other tissues with HSP70 and p60, also supports this evi-
dence. Moreover, HSP90 binding was inhibited by the addition of
anti-HSP70 monoclonal antibody to reticulocyte lysate. Therefore,
it is concluded that both HSP70 and p60 help in formation of HSP90
complexes in vitro.

7. Role of HSP70 in cellular apoptosis

A variety of environmental, physical or chemical stresses can
induce a molecularly regulated cell death called apoptosis. It in-
volves a series of events which result in self-destruction of a cell.
Apoptosis may have been evolved as a result of stress response or
activity of HSP, to ensure effective cellular recovery. Both of these
involve different mechanisms but, they functionally interact to
decide whether a cell should die or live. Latest findings revealed
that HSP promote survival via suppressing apoptosis. The exposure
of cells to a mild hyperthermia made them less susceptible against
more severe heat shock (Gerner and Schneider, 1975). Such cells
were considered thermotolerant due to induced expression of HSP,
mainly the HSP70 (Li and Werb, 1982). The thermotolerant cells
appeared to oppose apoptosis which is mainly due to induced
expression of HSP70 (Mosser and Martin, 1992). Various studies
involving mammalian cells indicated that protective effect of
HSP70 is partly due to inhibition of apoptosis. HSP70 also protect
cells from apoptotic stimuli such as UV radiations, DNA injury,
certain chemotherapeutic agents and extraction of serum (Samali
and Orrenius, 1998). However, actual mechanism of such anti-
apoptotic effects remained unclear.

Apoptosis is generally characterized by certain morphological
indicators such as membrane protrusion, chromatin concentration
and nuclear fragmentation. These morphological changes are gov-
erned by biochemical activities including endonuclease mediated
DNA fragmentation and externalization of phosphatidylserine
residues. These events are usually observed in cells under apoptosis
collectively termed as “apoptotic execution” which is being orga-
nized by caspases. Caspases include a family of cysteine proteases
and have specificity for aspartate residues (Wolf and Green, 1999).
For inhibition of apoptosis, HSP70 requires to inhibit caspase ac-
tivity. Latest studies have suggested that, HSP70 possess strong
apoptotic inhibitory activity and mainly acts downstream of cyto-
chrome c release while upstream of caspase-3 activation (Beere
et al., 2000; Li et al., 2000). HSP70 inhibited caspase processing
and substrate fractionation, when external cytochrome c and
deoxyadenosine triphosphate (dATP) were added to extracts of
cells, in order to induce caspase activity (Liu et al., 1996). These
findings revealed potential of HSP70 for lowering caspase activa-
tion downstream of the mitochondrial liberation of cytochrome c.

The inhibition of caspase activity by HSP70 requires an active C-
terminal peptide binding domain (Beere et al., 2000). In vitro
studies revealed inhibition of cytochrome c-mediated procaspase 9
processing by HSP70 (Mosser et al., 2000). Moreover, HSP70 can
suppress activity of caspase through direct interaction with Apaf-1,
intercepting the enrollment of procaspase-9 to the apoptosome
complex (Beere et al., 2000; Saleh et al., 2000). However, Beere
et al. (2000) observed cytochrome c/dATP-dependent self-associ-
ation of Apaf-1 in presence of HSP70. They further observed that
procaspase-9 and procaspase-3 were not able to associate with
partially assembled aggregation of cytochrome c/dATP of Apaf-1.
These findings revealed that HSP70 can mediate inhibition of
heat induced apoptosis through suppression of cytochrome c
release and inhibition of caspase activity (Beere et al., 2000).
Moreover, HSP70 interrupt apoptotic pathway at different points
through inhibition of JNK (c-Jun N-terminal protein kinase) acti-
vation, blocking cytochrome c release and interrupting apoptosome
formation by binding to cytochrome c, suppression of Apaf-1
oligomerization and inhibition of procaspase enrollment (Beere
and Green, 2001). Recent studies revealed greater contribution of
HSP70 as compared to other HSP proteins in cell survival under
apoptotic conditions (Vasaikar et al., 2015).

8. Factors affecting induction of HSP70

Heat shock is not the sole reason for induction of HSP70. Other
stimuli which can cause an increase in level of HSP include;
exposure to amino acid analogs (Kelley and Schlesinger, 1978),
glucose analogs (Pouyssegur et al., 1977), heavy metals (Levinson
et al., 1980), protein kinase C stimulators (Ding et al., 1996), cal-
cium increasing mediators, ischemia, sodium arsenite (Levinson
et al., 1980), microbial illness, nitric oxide, hormones and antibi-
otics (Fig. 3).

9. Potential of HSP70 as a tool for selection of thermo-
tolerant animals

Extensive literature have reported strong evidence of higher
expression of HSP70 during heat stress in different animals to
protect against adverse effects of stress (Deb et al., 2013; Romero
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et al., 2013; Dangi et al., 2014; Kishore et al., 2014). This peculiar
role of HSP70 family makes it a potential candidate genetic marker
for selective breeding of thermo-tolerant animals. Under climate
change scenario, it seems imperative to enhance thermo-tolerance
of our animals to mitigate adverse effects of ever increasing global
ambient temperature. One possible way to reduceimpact of heat
stress on animal's productivity is to select animals with better cli-
matic resilience. The genetic alterations for cellular thermotol-
erance are orchestrated by HSP. Expression of HSP and their
transcripts give an indication of cellular response and intensity of
stress in animls (Neuer et al., 2000). At transcription level,
persuaded expression of HSP70 genes is coordinated as upstream
elements at promoter region directly control the expression pro-
files of HSP70 (Tsukiyama et al., 1994).

It has been reported that gene expression of bovine HSP70-1
gene is affected by SNP at promoter region which has been
associated with thermotolerance and higher milk production in
Frieswal cattle (Flynn et al., 1991). In swine, the 30-UTR region of
HSP70 is associated with stability of mRNA along with stress
response (Schwerin et al., 2001). Various studies have reported
association of HSP with respiratory rate and body temperature
under stress (Liu et al., 2011). The association of genetic variants
in HSP70 promoter region with reduced productive life of bovine
has also been reported (Schwerin et al., 2003). Moreover,
different studies reported effect of polymorphism in promoter
region of HSP70 on various reproductive variables such as, calf
weaning weights, pregnancy rate and fertility in dairy animals,
particularly cattle (Starkey et al., 2007; Rosenkrans et al., 2010).
Conclusively, importance of SNP in promoter region of HSP70 as a
reference to select dairy cattle with respect to thermos-tolerance
can not be denied (Deb et al., 2014). A more recent study re-
ported association of SNP in 50-UTR of HSP70 gene in cattle with
number of service per conception in Pasundan cattle (Said and
Putra, 2018). Studies conducted on reproductive traits revealed
that expression of HSP has been associated with folliculogenesis,
embryonic development and gestation (Britt, 1992; Sagirkaya
et al., 2006; Wilkerson and Sarge, 2009). Various mutations
detected in HSP genes has shown association with different
reproductive traits in bovines (Schwerin et al., 2003; Rosenkrans
et al., 2010; Basirico et al., 2011; Deb et al., 2013; Sodhi et al.,
2013; Xiong et al., 2013).
Studies have been carried out to explore mutational variants at
50-UTR of HSP70-1 gene and their association with heat shock
response of blood cells. Such variants are potential candidates for
selection of better thermotolerance in cattle (Schwerin et al., 2003;
Basirico et al., 2011). No doubt it is quite challenging to deduce
variations in ability of animals to withstand heat stress due to
diverse phenotypic and genotypic differences among breeds. But
availability of latest biotechnological developments in molecular
genetics, marker assisted selection and transgenesis have made
possible to dissect genomic variations in animals and utilizing them
for selective breeding to produce better adapted next generations.
Genetic improvement of future generations in terms of thermo-
tolerance is more sustainable and intelligent strategy than
improving managemental aspect of animal production. Thus it is
recommended that different variants of HSP70 in flanking and UTR
regions may be used as genetic marker for selection of more
adaptive animals which will be definitely help to improve overall
performance and welfare of animals.

10. Adverse effects of HSP70 in animals

Besides numerous beneficial aspects, there are some negative
aspects attributed to HSP70. It is found that uninterrupted
expression of HSP70 can affect cell growth and capability. Contin-
uous expression of HSP70 reduces growth rate in many cell lines
(Jaattela et al., 1992). Similar effect was observed in cell line of
Drosophila melanogaster, in which HSP70 expression is controlled
by metallothionein promoter (Feder et al., 1992). To investigate the
specific domain of HSP70 responsible for such reduction in growth,
Mosser et al. (1993) compared rate of growth for each of the clone
in both induced and non-induced state and concluded that cell
growth was inhibited due to overexpression of HSP70 leading to
increased cell death. Moreover, HSP have been found to act as
oncogene, especially HSP70-1 and HSP70-2. Overexpression of
HSP70-1 was found to be involved in causing tumorigenicity in
mouse fibrosarcoma cells. Moreover, this overexpression makes
these cells prone to be killed by cytotoxic T-cells and macrophages
in vitro (Jaattela, 1995). Overexpression of HSP70-1within T-cells of
transgenic mice causes an increase in T-cell lymphoma. Over-
expression of HSP70-2 has also been observed in breast cancer cells
in human (Rohde et al., 2005). Similarly, overexpression of HSP70 is
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considered as amarker for early hepatocellular and prostate cancer.
These studies show that HSP70 can function as oncogene, if
overexpressed.

11. Conclusions

It is evident from extensive literature that HSP70 are a pivotal
protein family due to its dominant role in maintaining a steady
cellular environment under high thermal stress in animals. Over
expression of HSP70 enables animals to mitigate adverse effects of
heat stress to survive under prolonged periods of high ambient
temperatures. All of functional variants of HSP70 family are
involved in safeguarding functional proteins from thermal stress,
packaging and folding of newly formed polypeptides, configuration
and detachment of protein complexes. Their molecular chaperon
nature enables them to act as molecular protector in DNA repair,
apoptosis, signal transduction and protein homeostasis. HSP70 in
extracellular fluids are involved in immuno-modulation through
signaling of immune cells against invading pathogens by stimu-
lating synthesis of neutrophils, macrophages and anti-
inflammatory cytokines like IL-10. Nucleotide variations in 50-UTR
and promoter region of HSP70 have shown their association with
various productive and reproductive traits in animals like calf
weaning weights, pregnancy rate and fertility especially in dairy
cattle. These highly polymorphic regions in HSP70 genes associated
with thermotolerance and performance traits make them potential
candidate for marker assisted selection of animals. Under climate
change scenario, selective breeding to improve future generations
in terms of thermotolerance is envisioned as a more sustainable
and intelligent strategy than improving managemental aspect of
animal production. Moreover, serum and plasma levels of HSP70
have been recognized as a biomarker for heat stress and thermo-
tolerance in animals. Therefore, HSP70 family could be used as a
potential marker for selection of climate resilient animals with
superior thermo-tolerance and better immune response to
enhance livestock productivity globally.
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