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Summary

Introduction The most widely used protocol for the induction of experimental allergic airway
inflammation in mice involves sensitization by intraperitoneal (i.p.) injections of the antigen
ovalbumin (OVA) used in conjunction with the adjuvant aluminium hydroxide (alum).
Although adjuvants are frequently used, there are questions regarding the necessity of alum
for murine asthma studies due to the non-physiological nature of this chemical.
Objective The objective of this study was to compare experimental asthma phenotypes
between adjuvant and adjuvant-free protocols of murine allergic airway inflammation in an
attempt to develop a standardized alternative to adjuvant use.
Method An adjuvant-free OVA model of experimental asthma was investigated in BALB/c
mice using i.p. or subcutaneous (s.c.) sensitization routes. For the s.c. sensitization, b-
galactosidase (b-gal) was also tested as an antigen. In addition, OVA adjuvant and adjuvant-
free sensitization protocols were compared in BALB/c and C57BL/6 mice. Open-field testing
was performed to assess the effect of alum on mouse behaviour.
Results Comparison of adjuvant vs. adjuvant-free and i.p. vs. s.c. protocols revealed that both
adjuvant use and route of antigen application significantly influenced OVA-specific antibody
production. Comparison of adjuvant and adjuvant-free protocols in this study clearly
demonstrated the non-requirement of alum for the induction of acute allergic airway
inflammation, as both protocols induce a similar disease phenotype. BALB/c mice were
significantly more susceptible than C57BL/6 mice to sensitization. Using the improved s.c.
adjuvant-free protocol, it was demonstrated that alternative antigens such as b-gal can also
be utilized. Behavioural studies indicated severe distress in mice treated with alum.
Conclusion The OVA s.c. adjuvant-free protocol used in this study generates a phenotype
comparable to the benchmark adjuvant protocol widely used in the literature. The adjuvant-
free alternative avoids the added complication of non-physiological adjuvants that may
interfere with asthma treatment or prevention strategies.
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Introduction

Laboratory mice are widely utilized to study a multitude
of diseases and are essential for the analysis of in vivo
mechanisms. With regard to allergic bronchial asthma,

mouse models provide an excellent means to examine
phenotypes such as lung inflammation, airway reactivity,
bronchoalveolar lavage (BAL) cell counts, antigen-
specific antibody titres and the expression of inflamma-
tory cytokines.

Several methods are used to induce experimental asthma
in the mouse and the most frequently used protocol in the
literature involves sensitization by intraperitoneal (i.p.)
injections of antigen used in conjunction with the adjuvant
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aluminium hydroxide (alum) [1]. Although alum is routi-
nely used as an adjuvant, there are several questions
regarding the necessity of its use. Alum induces mast cell-
independent allergic inflammation; therefore, investiga-
tions involving mast cells require an adjuvant-free protocol
[2]. In addition to this, as alum is a non-physiological
substance with a very recently elucidated mechanism [3–9],
it is still unknown as to how this adjuvant may interact
with preventative therapeutic agents. Studies examining
asthma prevention or treatment strategies would benefit
from the use of an adjuvant-free protocol.

In addition to the non-physiological nature of alum,
this adjuvant is not required for the generation of an
acute allergic inflammatory response using the antigen
ovalbumin (OVA) [10]. The literature describes several
adjuvant-free protocols for experimental asthma induction
including aerosol sensitization via the intranasal (i.n.)
[11], intratracheal [12] or exposure chamber routes [13],
adjuvant-free parenteral sensitization [14–16] and adop-
tive transfer of allergen-pulsed T cells [17]. All these
protocols generate phenotypes typical of acute allergic
inflammation with varying levels of severity; however,
exposure to OVA via the aerodigestive route in most cases
produces only very weak or no sensitization [13, 18], and
usually leads to the induction of mucosal tolerance
[19–22]. Parenteral (i.p. or s.c.) adjuvant-free injections
of antigen consistently result in strong sensitization,
although numerous sensitizations or lengthy challenge
times are required. In order to generate an adjuvant-free
protocol that can be compared against typical adjuvant
protocols, we chose to simplify a parenteral adjuvant-free
model by creating a protocol with fewer sensitizations and
shorter challenge times.

With the recent resurgence of interest in murine experi-
mental asthma models and the action of adjuvants,
it is timely to include adjuvant-free alternatives in the
discussion. The objective of this study is to optimize
adjuvant-free sensitization with regard to a fully devel-
oped phenotype of allergic airway inflammation and
clinical features of experimental asthma. To illustrate the
effectiveness of the adjuvant-free protocol, comparison of
the phenotypes generated by adjuvant and adjuvant-free
protocols will be performed in BALB/c and C57BL/6 mice.

Materials and methods

Animals

Female BALB/c and C57BL/6 mice aged 6–8 weeks were
obtained from Harlan Winkelmann (Borchen, Germany) and
housed four animals per cage in a 12/12 h light/dark cycle
with food and water available ad libitum. All experimental
procedures were approved by the local animal ethics
committee and met German and international guidelines.
At least eight animals were used per group.

Experimental design

Investigations concerning the effect of adjuvant and route
of sensitization were all performed using Protocol 1 (see
Fig. 1). The i.p. adjuvant protocol, Protocol 1A, consisted
of i.p. injections of 10 mg OVA (grade VI) emulsified in
1.5 mg alum (Pierce, Rockford, IL, USA) in 200 mL phos-
phate-buffered saline (PBS) on days 0, 7 and 14, followed
by 20 min 1% OVA (grade V) aerosol treatments on days
26, 27 and 28. The adjuvant-free protocols, Fig. 1 –
Protocol 1B and 1C, consisted of i.p. or s.c. injections
of 10 mg OVA (grade VI; Sigma, Steinheim, Germany) in
200 mL PBS or sham injections of PBS on days 0, 7 and 14.
The sensitization phase was followed by 20 min 1% OVA
(grade V; Sigma) or sham PBS aerosol treatments on days
26, 27 and 28. s.c. injection was performed at the scruff of
the neck and was verified by the observation of a fluid
bubble forming under the skin during injection. I.p.
injection was performed in the lower right quadrant of
the abdomen.

Alternatively, mice were sensitized s.c. with 10 mg b-
galactosidase (b-gal) (Sigma) in 200 mL PBS or sham
injections of PBS only and i.n. challenged on days 26, 27
and 28 with 50 mg b-gal in 50 mL PBS or sham PBS only
(Fig. 1 – Protocol 1D). I.n. challenge was chosen with b-
gal due to the limited availability of this recombinant
antigen in contrast to OVA.

Finally, comparisons of the experimental asthma phe-
notype generated by adjuvant and adjuvant-free proto-
cols in BALB/c and C57BL/6 mice were performed using
the s.c. adjuvant-free and i.p. adjuvant methods, Fig. 1 –
Protocol 1C and 2A, respectively. Protocol 2A consisted of
i.p. injections of 10 mg OVA (grade VI) emulsified in 1.5 mg
alum (Pierce) in 200 mL PBS on days 0, 14 and 21, followed
by 20 min 1% OVA (grade V) or sham PBS aerosol
treatments on days 26, 27 and 28.

Fig. 1. Sensitization and challenge protocols used for murine experi-
mental asthma induction.
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Airway reactivity. Lung function analysis was performed
using non-invasive head-out body plethysmography 24 h
after the last aerosol challenge. The mid-expiratory air-
flow (EF50) of bronchial responsiveness to b-methacho-
line was measured as described previously [23].

Antibody titres. Forty-eight hours after the last aerosol
challenge, mice were terminally anaesthetized with keta-
mine plus rompun and blood samples were taken from the
axillary vessels. The levels of OVA-specific IgE and IgG1
were measured by an enzyme-linked immunosorbent
assay (ELISA) (BD Bioscience, San Diego, CA, USA) in the
serum as described previously [13].

Bronchoalveolar lavage. BAL was performed 48 h after
the last challenge using 1 mL PBS containing 1� protease
inhibitor cocktail (Roche, Mannheim, Germany) as de-
scribed in Neuhaus-Steinmetz et al. [24]. An automated
Casy TT cell counter (Schaerfe Systems, Reutlingen, Ger-
many) was used to determine the total leukocyte cell
counts. Cells were centrifuged and the cell-free super-
natant was stored at �20 1C until cytokines were mea-
sured by ELISA. For differential cell counts, cytospin
preparations were fixed and then stained with Diff-Quick
(Merz & Dade AG, Dudingen, Switzerland). Macrophages,
lymphocytes, eosinophils and neutrophils were identified
by standard morphologic criteria and 300 cells counted
per cytospin.

Measurement of cytokines. Cell-free supernatants from
BAL fluids were analysed for IL-5, IL-10, IL-13, TNF-a
and IFN-g content by sandwich ELISA as described
previously in Herz et al. [25]. The detection limit of each
ELISA was 10 pg/mL.

Histology of the airways

Directly after BAL, lungs were fixed with 10% formalin via
the trachea, removed and stored in 10% formalin. Lung
tissues were embedded into paraffin and 3 mm sections
were stained with haematoxylin and eosin (HE) or periodic
acid Schiff (PAS).

Behavioural studies

To determine the effect of alum on mouse behaviour,
BALB/c mice were tested using an open-field test [26].
Animals were either left untreated or injected with a sham
(PBS) or an adjuvant (alum1PBS). After treatment, ani-
mals were allowed a 15-min, a 2- or 4-h rest period, and
then subjected to open-field testing for 15 min. The open
field consisted of a 41�41�40 cm black acrylic box
monitored by an automated activity system (TruScanTM,
Photobeam Sensor-E63-22, Coulbourn Instruments,
Whitehall, PA, USA). Measures of average velocity (cm/s)

and rearing behaviour (number of rears) were taken. Video
analysis of the data was conducted with the Bioserve
Viewer II Software video tracking system, with infrared
beams to measure the rearing activity (http://www.biob-
serve.com).

Statistical analysis

Graphing and statistical analysis of normally distributed
data was performed using Prism 5 (Graph Pad Software,
San Diego, CA, USA). Data are expressed as mean�SEM
and are analysed for significance using Student’s T-test
(in the case of a two group comparison), one-way ANOVA

with Tukey’s Multiple Comparison Test (for multiple group
comparison) or two-way ANOVA for comparison of multiple
groups with two influencing factors (protocol vs. strain).

Results

Allergic sensitization in mice – differences due to adjuvant
use and site of sensitization

Using Protocols 1A and 1B (Fig. 1), an initial experiment
was conducted with BALB/c mice and the antigen OVA to
determine the contribution of adjuvant to allergic sensiti-
zation. Mice sensitized i.p. with the adjuvant alum ex-
pressed significantly higher levels of OVA-specific IgG1 in
the serum than mice sensitized i.p. adjuvant-free. No
differences were observed in the OVA-specific IgE titres;
Table 1.

Looking further into the OVA adjuvant-free model, we
also tested whether varying the site of sensitization
induced changes in allergic sensitization; the differences
between i.p. and s.c. routes of delivery were examined
using Protocol 1B and 1C (Fig. 1). Comparison of adju-
vant-free i.p. and s.c. sensitization routes revealed that s.c.
sensitization resulted in significantly higher OVA-specific
IgE antibody production (see Table 1). Owing to the
importance of IgE antibodies in allergy, Protocol 1C (the
s.c. adjuvant-free protocol) was chosen for use in future
experiments.

Comparison of subcutaneous OVA adjuvant-free and
intraperitoneal OVA adjuvant protocols using BALB/c and
C57BL/6 mice

The second part of the study focused specifically on
comparison of the phenotype generated by OVA adjuvant
and adjuvant-free protocols. Since it was previously
determined that the s.c. adjuvant-free model is most
effective with Protocol 1 and the i.p. adjuvant model is
most effective with Protocol 2 (Fig. 1) (data not shown),
the most effective protocols were subsequently compared
with each other. Additionally, since BALB/c and C57BL/6
mice represent the two most frequently used mouse strains
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in allergy research, comparisons were performed between
these two mouse strains to examine possible differences in
phenotype.

Both the s.c. adjuvant-free (Protocol 1C) and the i.p.
adjuvant (Protocol 2A) protocols induced an equal
amount of inflammatory cell infiltration into the BAL
fluid in both mouse strains. The influx of eosinophils and
lymphocytes, which were predominantly responsible for
the increase in leukocyte cell numbers, also showed no
differences upon comparison of the two protocols, shown
in Fig. 2.

Observation of HE-stained lung sections from OVA-
sensitized and -challenged animals demonstrated that
both s.c. adjuvant-free (Protocol 1C) and i.p. adjuvant
(Protocol 2A) protocols had similar lung histology and
perivascular inflammation regardless of the strain (data
not shown). Comparison of PAS-stained lungs between
mouse strains revealed that regardless of the protocol
used, OVA-sensitized and -challenged BALB/c mice had
larger numbers of mucus-producing goblet cells than
C57BL/6 animals. C57BL/6 mice exhibited less mucus
production compared with BALB/c mice regardless of the
protocol used (Fig. 3).

As shown in Fig. 4, both s.c. adjuvant-free (Protocol 1C)
and i.p. adjuvant (Protocol 2A) protocols used in this
study had the ability to induce a significant increase in
airway reactivity to methacholine in BALB/c mice com-
pared with their sham-sensitized counterparts. In contrast,
no differences in airway reactivity were observed in
C57BL/6 mice regardless of the protocol used. Strain
comparison indicated that the BALB/c mice had signifi-
cantly higher airway reactivity than C57BL/6 mice
(Po0.001).

As expected, observation of OVA-specific antibody
titres from OVA-sensitized and -challenged mice demon-
strated that the s.c. adjuvant-free protocol (Protocol 1C)
resulted in significantly higher OVA-specific IgE and
significantly lower OVA-specific IgG1 levels than the i.p.
adjuvant protocol (Protocol 2A). Analysis of protocol vs.
strain indicated that the protocol had a strong effect on

both OVA-specific IgG1 (Po0.001) and OVA-specific IgE
production (Po0.001). This is in agreement with the
previous investigation of antibody levels in relation to
adjuvant use and site of injection, seen in Table 1.

Interestingly, assessment of strain differences revealed
that in OVA-sensitized mice, the BALB/c strain consis-
tently produced higher OVA-specific IgE antibody titres
than the C57BL/6 strain regardless of whether the adju-
vant Protocol 2A (42�7 vs. 6�2 ng/mL, respectively,
Po0.001) or adjuvant-free Protocol 1C (95�11 vs.
24�8 ng/mL, respectively, Po0.001) was used. Also in
sensitized mice using the s.c. adjuvant-free Protocol 1C,
BALB/c mice expressed higher OVA-specific IgG1 titres
than C57BL/6 mice (2546�434 vs. 337�91 ng/mL, respec-
tively, Po0.01). This trend was not observed when using
the i.p. adjuvant Protocol 2A; both BALB/c and C57BL/6
mice expressed equivalent levels of OVA-specific IgG1
(20 410�2663 vs. 26 010�4258 ng/mL, respectively).

Cytokine analysis (Fig. 5) showed that in both strains of
mice, the s.c. adjuvant-free protocol (Protocol 1C) induced
higher BAL fluid IL-5 concentrations than the i.p. adju-
vant protocol (Protocol 2A). Comparison of strain and
protocol indicated that protocol type affected BAL fluid
IL-13 levels (Po0.05) and showed a very significant
influence of mouse strain on BAL fluid IL-10 levels
(Po0.001). IFN-g and TNF-a were not measurable in the
BAL fluid of any of the samples tested.

The subcutaneous adjuvant-free protocol functions with
an alternative antigen

To demonstrate the versatility of the s.c. adjuvant-free
protocol for use with antigens alternative to OVA, BALB/c
mice were s.c. sensitized and i.n. challenged with b-gal
using Protocol 1D (Fig. 1). Figure 6 illustrates (A) increases
in BAL fluid leukocytes, eosinophils and lymphocytes, (B)
induction of airway hyperreactivity, (C) goblet cell hyper-
plasia in the lung histology and (D) higher levels of
BAL fluid IL-5, IL-13 and IL-10 in the b-gal-sensitized
and -challenged mice compared with control animals. No

Table 1. The effect of adjuvant use and route of sensitization on OVA-specific antibody titres in BALB/c mice

Group

IP adjuvant IP adjuvant-free SC adjuvant-free

Protocol 1A Protocol 1B Protocol 1C

OVA-specific IgE (ng/mL) 67�11 41�3.6 110�19���

OVA-specific IgG1 (ng/mL) 20730�1637�� 11 324�2200 3412�1244�

Only OVA-sensitized mice expressed OVA-specific antibodies. Comparison of IP adjuvant (Protocol 1A) vs. IP adjuvant-free (Protocol 1B) injection
reveals an adjuvant related influence on OVA-specific IgG1 titres. Comparison of IP adjuvant-free (Protocol 1B) vs. SC adjuvant-free (Protocol 1C)
sensitization reveals a site-specific influence on the generation of OVA-specific IgE and to a lesser extent, OVA-specific IgG1 titres.
�Po0.05,
��Po0.01,
���Po0.001 vs. the IP adjuvant-free group.
Shown are mean � SEM.
OVA, ovalbumin; IP, intraperitoneal; SC, subcutaneous.
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differences were seen in IFN-g and TNF-a was not
measurable in the BAL fluid. b-gal-specific IgE and IgG1
titres were also induced in b-gal-sensitized and chal-
lenged animals (data not shown).

Intraperitoneal application of the adjuvant aluminum
hydroxide causes severe stress in mice

In the standardized open-field testing conducted, it was
demonstrated that mice treated i.p. with the adjuvant
alum displayed significantly decreased average velocity
(movement) and rearing (awareness of surroundings)
15 min after treatment. This distress resolved within 2 or
4 h, respectively, Fig. 7. No differences were observed in
the rearing or average velocity between untreated (non-
injected) and sham-injected (i.p. or s.c.) groups. These data
clearly demonstrate that injection with alum causes sig-
nificant distress in mice up to 4 h after treatment.

Discussion

Research investigating the underlying mechanisms of
human disease, as well as the initial testing of therapeutic
agents, depends heavily on animal models. Illustrating
this, murine models are commonly used in asthma re-
search and many different methods are used to generate
acute allergic airway inflammation. On the whole, proto-
col selection and choice of mouse strain are paramount to
the study design and it is desirable to mimic the natural
physiology as closely as possible. In contrast to this, the
most frequently used method to sensitize mice to allergen
utilizes the non-physiological adjuvant alum to promote
the development of a TH2-driven immunological response
[27, 28].

Although alum is regularly used in mouse models of
experimental asthma, its mechanism of action has only
recently begun to be elucidated. Phagocytosis of alum
plus antigen has been shown to result in phagosomal
destabilization [29, 30], activation of the NALP3 inflam-
masome and production of pro-inflammatory cytokines
such as IL-1b, IL-18 and IL-33 [3–6]. In addition to this,
uric acid release is implicated in the mechanism of alum-
mediated immunity via dendritic cell maturation [8, 9, 31]
and co-stimulatory molecule expression [7]. How these

Fig. 2. Total and differential cell counts in the BAL of BALB/c and
C57BL/6 mice subjected to an OVA s.c. adjuvant-free (Protocol 1C) or
OVA i.p. adjuvant protocol (Protocol 2A). (a) Leukocytes, (b) Eosinophils,
(c) macrophages, (d) lymphocytes, and (e) neutrophils. Both protocols
generated a comparable cell influx into the BAL fluids. BAL leukocytes
and eosinophils were significantly increased between sham controls and
the respective OVA-treated groups. Lymphocyte number significantly
increased in BALB/c mice only. nd = not detectable, ns = not significant,
*Po0.05, **Po0.01, ***Po0.001. Shown are mean�SEM.
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mechanisms act to enhance humoral immunity is pre-
sently a topic of intense study.

Regardless of the mechanism by which alum acts as an
adjuvant, there is a large body of evidence in the literature
demonstrating that adjuvant is not necessary for the
induction of murine experimental asthma [13–15,
32–35]. Although these protocols all produce acute aller-
gic lung inflammation, there is a strong need for a head-
to-head comparison of adjuvant and adjuvant-free proto-
cols that specifically deduces similarities and differences
in the phenotype. In order to compare adjuvant and
adjuvant-free experimental asthma phenotypes, we first
optimized an adjuvant-free protocol by initially testing
several parameters including variation in the route of
sensitization, length and time of aerosol challenge and

Fig. 3. Representative PAS-stained lung histology sections of OVA-sensitized and -challenged BALB/c and C57BL/6 mice subjected to an s.c. adjuvant-
free (Protocol 1C) or i.p. adjuvant protocol (Protocol 2A). The airways of BALB/c mice contained significantly more PAS-stained mucus-producing
goblet cells than C57BL/6 mice regardless of the protocol used.

Fig. 4. Airway reactivity to methacholine of BALB/c and C57BL/6 mice
subjected to either s.c. adjuvant-free (Protocol 1C) or i.p. adjuvant
(Protocol 2A) protocols using the antigen OVA. Both protocols led to
comparable extents of airway reactivity in each respective mouse strain.
In BALB/c mice, significant differences were observed between sham and
OVA-sensitized groups, indicating the induction of airway hyperreactiv-
ity. This data also demonstrate the difficulty of achieving airway
reactivity in the C57BL/6 strain. Airway responsiveness to methacholine
was analysed by head-out body plethysmography 24 h after the last
challenge. ns = not significant, *Po0.05. Shown are mean�SEM.

Fig. 5. Cytokine concentrations measured in the BAL fluid of BALB/c and
C57BL/6 mice using s.c. adjuvant-free (Protocol 1C) and i.p. adjuvant
(Protocol 2A) models with the antigen OVA. Analysis illustrates that the
s.c. adjuvant-free protocol generated greater levels of IL-5 than the i.p.
adjuvant protocol. No differences were observed in IL-13 or IL-10.
Further comparison of strains in both protocols demonstrates that
BALB/c mice consistently produce higher levels of IL-5 and IL-10 than
C57BL/6 mice. ns = not significant, *Po0.05, **Po0.01, ***Po0.001.
Shown are mean�SEM.
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antigen concentration. From these experiments, a simple
OVA s.c. adjuvant-free protocol was produced. Use of this
protocol eliminates artefacts that may result from alum
use.

With the use of an adjuvant-free protocol, it is specu-
lated that additional danger signals, such as LPS content
in the OVA preparation, may be required to facilitate the
sensitization process [36]. Indeed, Eisenbarth et al. [37]
demonstrated that i.n. sensitization in the absence of LPS
resulted in tolerance rather than sensitization. In contrast
to this, recent experiments utilizing the s.c. adjuvant-free
model described here with either LPS-containing or LPS-
free OVA demonstrated that, regardless of LPS presence,
similar experimental asthma phenotypes were generated
(data not shown). This topic has raised interesting ques-
tions regarding the mechanism of sensitization using a
parenteral (s.c.) adjuvant-free protocol and is currently
the subject of further investigation.

Subsequent comparisons of the new OVA s.c. adjuvant-
free protocol with an OVA i.p. adjuvant protocol fre-
quently used in the literature demonstrated that with the
exception of increased IL-5 production and differences in

OVA-specific antibody titres, the s.c. adjuvant-free proto-
col produces an allergic airway inflammation phenotype
comparable with the standardized i.p. adjuvant protocol.
As it is well known that alum participates in the genera-
tion of humoral immunity [27], the differences in anti-
body titres can be easily explained. What is interesting
about these findings is that alum appears to contribute
solely to the generation of OVA-specific IgG1 antibodies
as OVA-specific IgE titres were higher in the adjuvant-free
protocol.

Comparison of the inflammatory phenotype generated
by the i.p. adjuvant and s.c. adjuvant-free protocols in
different strains of mice supports the notion that the
choice of the mouse strain is a crucial aspect for experi-
mental design. With regard to OVA-induced airway in-
flammation, we demonstrated that the magnitude of
immune response with respect to goblet cell hyperplasia,
airway reactivity, BAL fluid IL-5, IL-10 and serum OVA-
specific IgE production is significantly lower in C57BL/6
mice than in BALB/c. These findings were similar regard-
less of whether an i.p. adjuvant or an s.c. adjuvant-free
protocol was used. These findings support many others in
the literature that have found lower acute inflammatory
responses in C57BL/6 mice [25, 38–40].

During use of the i.p. adjuvant protocol, abnormal
mouse behaviour was observed beginning 15 min after
OVA alum injection. To investigate this further, we sought

Fig. 6. The airway inflammation phenotype generated by the s.c.
adjuvant-free protocol utilizing the alternative antigen b-gal and
i.n. challenge in BALB/c mice (Protocol 1D). b-Gal-sensitized and
-challenged animals showed (a) an increased cell influx into the BAL
fluid, (b) increased airway reactivity, (c) goblet cell hyperplasia in the
lung and (d) significantly higher levels of BAL fluid IL-5, IL-13 and IL-10
than sham treated controls. ns = not significant, *Po0.05, ***Po0.001.
Shown are mean�SEM.

Fig. 7. Behavioural tests measuring the average velocity and rearing in
untreated, sham-injected and adjuvant-injected mice. Mice were either
left untreated, injected with sham PBS (i.p. or s.c.) or adjuvant (i.p.1
alum). After treatment, animals were allowed a 15-, 120- or 240-min rest
period, and then subjected to open-field testing for 15 min. Black circles
indicate the untreated group (no injection), green squares indicate mice
sham injected either s.c. (solid line) or i.p. (dashed line), and red triangles
indicate mice injected with i.p. with the adjuvant alum. *Po0.05,
***Po0.001 vs. untreated. Shown are mean�SEM.
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to quantify the effect of alum on mice using standardized,
quantitative behavioural analysis. Open-field testing,
which is used to assess anxiety, alertness, locomotor
activity and exploration [26], revealed the novel finding
that alum causes severe distress in mice for up to 4 h after
i.p. injection. The direct cause of distress after alum
injection is presently unknown; however, evidence re-
garding alum mechanisms suggests that a likely cause
may be due to the induction of tissue necrosis [30] and/or
a rapid local inflammatory response [8].

In conclusion, this research has demonstrated that the
improved OVA s.c. adjuvant-free protocol used in this
study generates a phenotype similar to the standard OVA
i.p. adjuvant protocol used in the majority of studies
investigating mechanisms of respiratory allergy in mice.
For researchers with concerns about the non-physiologi-
cal nature of alum, we demonstrate that the s.c. adjuvant-
free model is an excellent alternative to adjuvant use.
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