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Simple Summary: Cancer-associated fibroblasts in the stromal tumor microenvironment play a key
role in cancer progression, invasion, metastasis, and therapy resistance. Cancer-associated fibroblasts
communicate with tumor cells through diverse factors, such as growth factors, hedgehog proteins,
cytokines, and chemokines, regulating signaling activity in paracrine as well as paracrine-reciprocal
ways. Furthermore, cancer-associated fibroblasts, not only tumor cells, secrete exosomes that drive
pre-metastatic niche formation and metastasis.

Abstract: Pancreatic cancer is currently the fourth leading cause of cancer deaths in the United
States, and the overall 5 year survival rate is still only around 10%. Pancreatic cancer exhibits a
remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, in
part due to the dense stromal tumor microenvironment, where cancer-associated fibroblasts are the
major stromal cell type. Cancer-associated fibroblasts further play a key role in cancer progression,
invasion, and metastasis. Cancer-associated fibroblasts communicate with tumor cells, not only
through paracrine as well as paracrine-reciprocal signaling regulators but also by way of exosomes.
In the current manuscript, we discuss intercellular mediators between cancer-associated fibroblasts
and pancreatic cancer cells in a paracrine as well as paracrine-reciprocal manner. Further recent
findings on exosomes in pancreatic cancer and metastasis are summarized.

Keywords: pancreatic cancer; cancer-associated fibroblasts; tumor microenvironment; paracrine
signals; reciprocal signals; exosomes; pre-metastatic niche

1. Introduction

Pancreatic cancer is currently the fourth leading cause of cancer deaths in the United
States, and its incidence continues to increase in both females and males [1]. Pancreatic
cancer will most probably be the second most common cause of cancer death by 2030 [2].
The prognosis remains very poor, and the overall 5 year survival rate is still only around
10%, despite recent therapeutic advances such as more effective palliative, adjuvant, and
neo-adjuvant chemotherapies and more radical and safer surgery [1,3]. A hallmark of
pancreatic cancer is its remarkable resistance to established therapeutic options such as
chemotherapy and radiotherapy, in part due to the dense stromal tumor microenviron-
ment, where cancer-associated fibroblasts (CAF) are the major stromal cell type [4,5]. The
molecular crosstalk between cancer cells and CAFs is crucial for tumor progression and
metastatic process. Tumor cells communicate with CAFs not only through paracrine as
well as paracrine-reciprocal signaling mechanisms, but also through exosomes [5,6]. In
the current manuscript, we discuss intercellular mediators between CAFs and pancreatic
cancer cells in a paracrine as well as a paracrine-reciprocal manner. Further, recent findings
on exosomes in pancreatic cancer and metastasis are summarized.
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2. Growth Factors Act as Paracrine Signals between Cancer-Associated Fibroblasts and
Pancreatic Cancer Cells

Resident fibroblasts and especially pancreatic stellate cells (PSCs) are major sources
of CAFs in pancreatic cancer, but also characterized by their diverse origins [5,7–9]. CAFs
and activated PSCs produce several growth factors such as connective tissue growth factor
(CTGF); epidermal growth factor (EGF); platelet-derived growth factor (PDGF); and in-
flammatory cytokines, chemokines, and extracellular matrix (ECM) proteins that promote
cancer cell proliferation, therapy resistance, and immune escape [7,10]. CTGF is known
to participate in neoplastic cell-stroma interactions in cancer. CTGF is highly expressed
in CAFs and tumor cells in pancreatic cancer mouse model called KPC (Pdx1-Cre; lox-
stop-lox-KrasG12D/+; Trp53R172H/+) (Table 1) [11]. Inhibition of CTGF with the monoclonal
antibody FG-3019 enhances gemcitabine chemotherapy response without increasing gem-
citabine concentrations in KPC mice (Figure 1) [11]. CTGF inhibition with FG-3019 does
not lead to reduction of stromal contents; rather, it alters tumor cell survival as well as
tumor-stromal interactions [11]. Treatment with another CTGF-neutralizing antibody FG-
3154 suppresses PSC activation caused by repeated cerulein injection as an established
pancreatitis model [12]. In cholangiocarcinoma, overexpression of the transcription factor
zinc finger E-box-binding homeobox 1 (ZEB1) in tumor cells leads to increased CTGF
expression. Culture medium from ZEB1-overexpressing tumor cells induces proliferation
of myofibroblasts (Figure 1) [13]. In human cholangiocarcinoma, ZEB1 is expressed in
CAFs, correlating with cellular communication network factor 2 (CCN2) gene (encoded for
CTGF) expression (Figure 1) [13]. ZEB1 regulates the expression of paracrine signals such
as hepatocyte growth factor (HGF) and interleukin 6 (IL-6) in tumor cells and CAFs, high-
lighting that the ZEB1–CTGF axis plays a key role in regulating the network between tumor
cells and CAFs [13]. Dysregulation of phosphatidylinositol-4,5-bisphosphatase 3-kinase
(PI3K) and Hippo signaling pathways synergistically induce Hippo effector YES-associated
protein (YAP), which in turn upregulates CTGF for PSC activation (Figure 1) [12]. ZEB1
directly interacts with YAP, where ZEB1 turns into a transcriptional activator and regulates
CCN2 gene expression (Figure 1) [14]. Zinc/iron-regulated transporter-like protein ZIP4
(encoded by solute carrier family 39 member 4 SLC39A4 gene) activates STAT3, which
subsequently induces ZEB1. ZEB1 in turn activates the expression of integrin ITGA3
and ITGB1. Integrin α3β1 signaling inhibits the expression of gemcitabine transporter
equilibrative nucleoside transporter 1 (ENT1, encoded by solute carrier family 29 member
1 SLC29A1) (Figure 1) [15]. ZIP4 also upregulates YAP1, and ZEB1-YAP1-containing com-
plex activates ITGA3 transcription. ZEB1-YAP1 co-activation promotes pancreatic cancer
metastasis as well as epithelial-to-mesenchymal transition (EMT) plasticity. EMT plasticity
is a dynamic and reversible transition between EMT and mesenchymal-to-epithelial transi-
tion (MET) [16]. It has also been suggested that CTGF secreted from pancreatic cancer cells
binds to integrin α5β1 and promotes proliferation, adhesion, and migration of PSCs [17]. In
summary, CTGF acts as a key paracrine mediator in signal transduction networks derived
from both CAFs and tumor cells.

EGF receptor signaling is important for pancreatic intraepithelial neoplasia (PanIN)
and pancreatic cancer development induced by oncogenic KRAS [25,26]. Administration of
5-fluorouracil (5-FU)-incorporated EGFR receptor-targeted aptamers attenuates pancreatic
cancer development in a pancreatic cancer mouse model (Ptf1a-Cre; lox-stop-lox-KrasG12D/+;
Trp53lox/+) [27]. A potent epigenetic regulator lysine (K) demethylase 3A (KDM3A) reg-
ulates expression of EGFR through Krueppel-like factor 5 (KLF5) and mother against
decapentaplegic homolog 4 (SMAD4). CRISPR-mediated ablation of KLF5, SMAD4, or
EGFR in pancreatic tumor cells leads to increased T-cell infiltration and improved com-
bination immunotherapy response with gemcitabine, abraxane, CD40 agonistic antibody,
CTLA4-blocking antibody, and PD-1-blocking antibody (named as GAFCP) [28]. Loss of
SMAD4 is observed frequently in pancreatic cancer patients and has been considered as
a tumor suppressor gene [4]. The discrepant observation—tumor suppressor or tumor
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promotor—may be due to the different roles of SMAD4 during tumor initiation vs. tumor
progression [28].

Table 1. Overview of autocrine, paracrine, and paracrine-reciprocal factors secreted from cancer-
associated fibroblasts and tumor cells.

Factor Source Mode of Action Functional Relevance Reference

CTGF

CAFs, tumor cells
from KPC mice Paracrine Act on CAFs and tumor cells [11]

Pancreatic cancer
cells Paracrine

Promotes proliferation,
adhesion,

migration of PSCs
[17]

HGF, IL-6 CAFs, tumor cells Paracrine Act on CAFs and tumor cells [13]

SHH Pancreatic tumor
cells Paracrine Induces expression of IGF1

and GAS6 in PSCs [18]

IGF1 PSCs Paracrine-
reciprocal Activates IGF1R signaling [18]

GAS6 PSCs Paracrine-
reciprocal Activates AXL signaling [18]

IL-1α Pancreatic tumor
cells Paracrine

Activates NF-κB signaling
and expression
of LIF in iCAFs

[19]

LIF iCAFs Autocrine

Activates JAK/STAT
signaling and establishes a
positive feedback loop by

upregulating
IL-1R1

[19]

LIF iCAFs Paracrine
(-reciprocal)

Activate STAT3 signaling in
cancer cells [19]

KRAS-driven
factors

(unknown)
Pancreatic cells Paracrine

Act on CAFs inducing
secretion of CXCR2
ligands and CXCR2

expression

[20]

CXCR2 ligands CAFs Autocrine CXCR2 signaling in CAFs [20]

CXCR2 ligands Pancreatic tumor
cells Paracrine Recruit MDSCs [21]

CXCR2 ligands

Pancreatic cancer
cells from

Ptf1a-Cre; lox-stop-
lox-KrasG12D/+;

Tgfbr2lox/lox mice

Paracrine Induce Ctgf expression in
CAFs [22]

CXCL12 CAFs Paracrine Immunosuppression [23]

CCL6, CCL11,
CCL12 Fak-depleted CAFs Paracrine Activate CCR1/CCR2 on

cancer cells [24]

AXL: anexelenko, CAF: cancer-associated fibroblast, CTGF: connective tissue growth factor, CXCR: C-X-C motif
chemokine receptor, GAS: growth arrest-specific, HGF: hepatocyte growth factor, iCAF: inflammatory CAF,
IGF: insulin growth factor, IL: interleukin, IL-1R1: IL-1 receptor type 1, KPC: Pdx1-Cre; lox-stop-lox-KrasG12D/+;
Trp53R172H/+, LIF: leukemia inhibitory factor, MDSC: myeloid-derived suppressor cell, NF-κB: nuclear factor
kappa-light-chain-enhancer of activated B cells, PSC: pancreatic stellate cell, SHH: Sonic hedgehog.

With cancer cells isolated from KPC mice, it has been demonstrated that Trp53 muta-
tions drive pancreatic cancer metastasis through PDGF receptor β (PDGFR-β) signaling [29].
Activation of PDGFR-β signaling by p53 mutations leads to expression of a small GTPase
ADP ribosylation factor 6 (ARF6) and its downstream effector ArfGAP with SH3 domain,
ankyrin repeat, and PH domain (ASAP1, also known as AMAP1), which drives PD-L1-
mediated immune evasion [30]. Pancreatic cancer patients with tumors harboring high
PDGFR-β and nuclear p53 protein expression exhibit a high incidence of metastasis and
shorter postoperative survival [31]. PDGFR-β has also been suggested to be a marker of
CAFs and activated PSCs. High stromal expression of PDGFR-β is associated with shorter
overall survival of pancreatic cancer patients [32]. In another study, it has been demon-
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strated that CAFs overexpress PDGFR-α, which increases contractility leading to migration
of cancer cells via αv integrins. Inhibition of PDGFR-α abrogates α5β1 integrin activity and
changes in matrix organization, namely, from aligned fibers to more random organization
(Figure 1) [33]. Taken together, growth factors can play key roles in cancer cell growth and
metastasis in autocrine but also in paracrine manner between cancer cells and CAFs.
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3. Sonic Hedgehog and Insulin Signaling as Paracrine and Paracrine-Reciprocal
Signals between Cancer-Associated Fibroblasts and Pancreatic Cancer Cells

In the inducible KRAS pancreatic cancer mouse model (Ptf1-Cre; Rosa26-rtTa; TetO-
KrasG12D), it has been described that pancreatic tumor cells regulate PSCs non-cell au-
tonomously by secreting factors including Sonic hedgehog (SHH) [18]. HH ligands, such
as SHH and Indian hedgehog (IHH), bind to the extracellular domain of patched 1 (PTCH)
(Figure 2). This ligand–receptor complex loses repressive effect of Smoothened (SMO). Ac-
tive SMO inhibits suppressor of fused homolog (SUFU), leading to release and activation of
glioma-associated oncogene homolog (GLI) transcription factors, where GLI1 itself is a part
of transcriptional targets (Figure 2) [34]. SHH from tumor cells in turn induces expression
of growth factors insulin growth factor 1 (IGF1) and growth arrest-specific 6 (GAS6) in
PSCs. IGF1 and GAS6 act as paracrine-reciprocal signals for activating the receptor tyrosine
kinases IGF1R and AXL (“anexelenko”, which means “uncontrolled” in Greek [35]), respec-
tively, in tumor cells (Table 1) [18]. IGF1R and AXL activate Akt signaling and increase
mitochondrial performance, proliferation, and resistance to apoptosis in tumor cells [18].
Pharmacological inhibition of the Hedgehog pathway in CAFs with a SMO antagonist
LDE225 attenuates expression of a Hedgehog target Gli1 in the fibroblast compartment as
well as pancreatic cancer growth in KPC mice [36]. LDE225, also known as erismodegib,
sonidegib, or Odomzo, is an FDA-approved SMO antagonist for treating cancer patients
(Figure 2) [37]. Taken together, deletion of SHH or SMO commonly inhibits tumor growth.
However, conditional deletion of Shh results in more aggressive, undifferentiated tumors
in a pancreatic cancer mouse model (Pdx1-Cre; lox-stop-lox-KrasG12D/+; Trp53lox/+; Shhlox/lox;
lox-stop-lox-YFP-Rosa26) [38]. Furthermore, treatment with LDE225 leads to a reduction of
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PDPN-positive, α-smooth muscle actin (α-SMA)-positive myofibroblastic CAFs (myCAFs)
but an expansion of inflammatory CAFs (iCAFs) in KPC mice. Although the treatment with
LDE225 attenuates pancreatic cancer growth in KPC mice, LDE225 increases chemokine
Cxcl12 expression, reduces CD8-positive T cells, and increases regulatory T cell (Treg) im-
munosuppression [36]. It has been shown that genetic ablation of Smo in fibroblast-specific
protein 1 (FSP1)-positive cells increases acinar-to-ductal metaplasia (ADM) in an onco-
genic KRAS mouse model (Mist-KrasG12D/+; Fsp-Cre; Smolox/−) [39]. The role of Hedgehog
signaling in pancreatic cancer is complex. Further studies are needed to unveil critical
differences between SHH and IHH for activation of the Hedgehog signaling pathways in
cell type-dependent manners.
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4. Cancer-Associated Fibroblast Subtypes and Paracrine Factors

The myCAFs and iCAFs are well-described subtypes of CAFs, which co-exist both in
pancreatic cancer patients and in KPC mice [40]. When PSCs are co-cultured with organoids
derived from KPC mice, the cells differentiate into myCAFs and iCAFs [40]. It has been
identified that myCAF subtype exhibits elevated fibroblast-activation protein α (FAP) and
α-SMA. The majority of fibroblasts in human pancreatic tumors and in tumors from KPC
mice express FAP but low levels of α-SMA [40]. Besides Acta2 (coding α-SMA), several
genes such as Col1a1, Col5a1, Col6a1, Ctgf, and Vim are upregulated in myCAFs [40]. The
iCAF subtype expresses cytokines IL-6, IL-11, and leukemia inhibitory factor (LIF) with
low α-SMA expression. Several chemokines such as Cxcl1 and Cxcl2 are upregulated in
iCAFs, but not in the myCAF subpopulation [40]. Indirect co-culture of quiescent PSCs
with organoids derived from pancreatic cancer patients leads to differentiation of PSCs
into iCAFs [40]. IL-1α from tumor cells activates nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) signaling and expression of LIF in iCAFs [19]. LIF activates
Janus kinase (JAK)/STAT signaling in iCAFs and establishes an autocrine positive feedback
loop by upregulating expression of IL-1 receptor type 1 (IL-1R1) (Table 1) [19]. Further, LIF
from CAFs can act as a key paracrine(-reciprocal) factor for activating signal transducer
and activator of transcription 3 (STAT3) signaling in cancer cells [41]. LIF receptor and its
co-receptor IL-6 signal transducer (IL6ST, gp130) interact with STAT3 in human pancre-
atic cancer cells stimulated with CAF-conditioned medium [41]. Conditional deletion of
Lifr reduces pancreatic tumor progression, but not ADM formation or tumor initiation in
an oncogenic KRAS mouse model (Pdx1-Cre; lox-stop-lox-KrasG12D/+; Trp53lox/lox; Lifrlox/lox;
lox-stop-lox-Rosa26Luc/Luc). Conditional deletion of Lifr increases overall survival, which is
further prolonged by gemcitabine administration, suggesting that LIFR signaling plays a
role in gemcitabine chemoresistance [41]. Consistently, administration of LIF-neutralizing
antibody also increases overall survival and gemcitabine chemoresistance [41]. A soluble
recombinant variant of extracellular domain of human LIFR binds and sequesters human
LIF for inhibiting LIFR signaling. Treatment with the variant attenuates tumor growth in a
human pancreatic tumor cell xenograft [42]. LIF expression is associated with shorter over-
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all survival and recurrence-free survival in pancreatic cancer patients. Increased serum LIF
is a biomarker to predict lymph node metastasis and distant metastasis in pancreatic cancer
patients [43]. Another study, however, showed that expression of LIFR was associated with
longer overall survival of pancreatic cancer patients [44]. Oncogenic KRAS downregulates
LIFR. Downregulation of LIFR is important for KRAS-mediated neoplastic transforma-
tion [44]. Wang et al. showed that oncogenic KRAS induced LIF expression in pancreatic
cancer cells, where the mitogen-activated protein kinase kinase (MEK)/extracellular signal-
regulated kinase (ERK) signaling is essential [45]. Treatment with LIF, but not IL-6, subse-
quently activates YAP/Tafazzin (TAZ, phospholipid-lysophospholipid transacylase)/TEA
domain transcription factor (TEAD)-dependent transcription [45]. Further clarification is
needed to understand the precise role of LIF/LIFR signaling in pancreatic cancer.

5. Chemokines as Paracrine and Paracrine-Reciprocal Factors Secreted by
Cancer-Associated Fibroblasts and Tumor Cells

Oncogenic KRAS upregulates C-X-C motif chemokine receptor CXCR2 [20]. CXCL1,
CXCL2, CXCL3, CXCL5, CXCL7, and CXCL8 are ligands for CXCR2 [46]. CXCL1 is highly
expressed in human pancreatic cancer patient specimens [47]. Expression of CXCL1 is
dependent on receptor-interacting protein 1 (RIP1) and RIP3, key regulators for necroptosis
(programmed necrosis), which are also highly expressed in human pancreatic cancer [47].
In a KRAS-induced pancreas cell orthotopic implantation model, Rip3 deletion (KrasG12D/+;
Rip−/−) leads to an increased number of T cells and decreased number of tumor-associated
macrophages (TAM), indicating that necroptosis-induced CXCL1 signaling promotes im-
munosuppression [47]. Treating CAFs with conditioned media of cells derived from KC
mice (Pdx1-Cre; lox-stop-lox-KrasG12D/+) increases Cxcl2 and Cxcl7 expression [20]. Treatment
with KC-conditioned media on CAFs induces secretion of CXCL1, CXCL5, and CXCL7
greater than treatment with conditioned media from KRAS wild-type pancreatic cancer cells
(Table 1) (Figure 3) [20]. These data suggest that KRAS-driven factors from pancreatic cells
act on CAFs, inducing secretion of CXCR2 ligands. The CXCR2 ligands may reciprocally
activate CXCR2 signaling in tumor cells (Figure 3). Deletion of type I collagen in myCAFs
by using dual-recombinase pancreatic cancer mouse model (Pdx1-Flp; frt-stop-frt-KrasG12D/+;
Trp53frt/frt; Acta2-Cre; Col1a1lox/lox) accelerates pancreatic cancer progression, decreases over-
all survival of mice, increases Cxcl5 expression, and increases number of myeloid-derived
suppressor cells (MDSCs) [21]. CXCR2 ligands are also produced by pancreatic tumor
cells, recruiting MDSCs [21], but also activating CXCR2 signaling in CAFs. CAFs express
CXCR2 ligands as well as CXCR2 [20]. CXCR2 signaling in CAFs causes activation of NF-κB
signaling and secretes inflammatory cytokines and CXCR2 ligands [20]. Primary pancreatic
cancer cells from Ptf1a-Cre; lox-stop-lox-KrasG12D/+; Tgfbr2lox/lox mice secrete CXCR2 ligands
including CXCL1, CXCL2, and CXCL5 [22]. CXCR2 ligands induce Ctgf expression in CAFs
via CXCR2 signaling [22]. Treatment with CXCR2 inhibitor Repertaxin or SB225002 inhibits
Ctgf expression in CAFs (Figure 3) [22]. Blocking the paracrine activation of CXCR2 leads
to attenuation of pancreatic tumor development, reduction of tumor angiogenesis, and
prolongation of survival in Ptf1a-Cre; lox-stop-lox-KrasG12D/+; Tgfbr2lox/lox mice [22]. Another
study shows that CAFs in metastasis (also called metastasis-associated fibroblasts) secrete
CXCL8 and CCL2 promoting angiogenesis in metastasized pancreatic cancer [48]. On the
contrary, it has been shown in another study that when pancreatic tumor cells derived
from KC mice are orthotopically implanted in the pancreas, host global Cxcr2 loss inhibits
micro-vessel density in pancreatic tumors, but does not inhibit pancreatic cancer growth,
and enhances liver metastasis [49]. Pancreas-specific deletion of Cxcr2 in KC mice prevents
oncogene-induced senescence, increases tumor proliferation, and decreases survival (Pdx1-
Cre; lox-stop-lox-KrasG12D/+; Cxcr2lox/lox) [50]. The reason why the outcomes between the
study with the CXCR2 inhibitor and with the global Cxcr2 loss mouse model are different
has not been fully answered.
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Activated PSCs sequester CD8+ T cells to reduce their infiltration of the juxtatumoral
compartment (less than 100 µm from the tumor) of pancreatic cancer [51]. Pancreatic cancer
patients with high density of CD8+ T cells in the juxtatumoral compartment exhibit pro-
longed postsurgical survival [51]. Administration of all-trans retinoic acid (ATRA), which
drives PSCs quiescent, increases numbers of CD8+ T cells in juxtatumoral compartments
in KPC mice [51]. T cells are excluded where FAP-positive CAFs expressing CXCL12,
also known as stromal cell-derived factor 1 (SDF1), are localized. CXCL12 plays a role in
tumoral immunosuppression (Figure 3) [23]. Lack of NF-κB subunit Nfkb1 in PSCs reduces
CXC12 secretion, increases infiltration of CD8+ T cells, inhibits tumor growth, and improves
host survival, evaluated by orthotopic co-injection experiments with primary tumor cells
from KPC mice and PSCs [52]. CXCL12 is the ligand for the chemokine receptor CXCR4
(also known as Fusin or CD184) and CXCR7 (also known as atypical chemokine receptor
3, ACKR3) (Figure 3) [53]. Treatment with AMD3100 (plerixafor), a CXCR4 antagonist,
attenuates tumor growth after co-injection of tumor cells from KPC mice and PSCs [52].
Another CXCR4 antagonist, BL-8040 (Motixafortide), in combination with programmed
death 1 (PD-1, also known as CD279) antagonist pembrolizumab increases CD8+ T cell
tumor infiltration and decreases tumor cell density (COMBAT trial, NCT02826486) [54].
It has been however shown that conditional knockout of Cxcr4 in KPC mice (Pdx1-Cre;
lox-stop-lox-KrasG12D/+; Trp53R172H/+; Cxcr4lox/lox) attenuates fibrogenesis and decreases α-
SMA and PDGFR-α-positive cells but increases tumor size [55]. Further study is needed
to answer why outcome between the study with CXCR4 inhibitor and with Cxcr4 loss are
inconsistent. CXCL12 binds CXCR7 with higher affinity than CXCR4 [53]. High CXCR7
expression is associated with shorter overall survival of pancreatic cancer patients. Patients
with high expression of both CXCL12 and CXCR7 have even shorter overall survival than
patients with high tumoral CXCL12 expression or CXCR7 expression alone [56]. In CXCL12-
treated pancreatic cancer cells, CXCR4 antagonist AMD3100 does not inhibit migration
and invasion, indicating CXCR7 promotes pancreatic cancer cell migration and invasion
(Figure 3) [56]. CXCR7 promotes hepatic metastasis, but not orthotopic pancreatic cancer
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cell growth [56]. Whether Cxcr4 deficiency can increase activity of CXCR7 signaling in
pancreatic cancer has not been analyzed.

Depletion of focal-adhesion kinase (FAK) in the FSP1-positive cells in mice (Fsp-Cre;
Faklox/lox) increases breast and pancreatic cancer growth [24]. Low FAK expression in the
stromal compartment is associated with shorter overall survival in human breast and pan-
creatic cancer patients [24]. Fak-depletion in CAFs promote secretion of several chemokines
CCL6, CCL11, and CCL12. These chemokines activate chemokine receptors CCR1/CCR2
on cancer cells (Figure 3). The enhanced activation of protein kinase A (PKA) in tumor
cells is required for reprogramming cellular metabolism. Exposure to Fak-depleted CAF
cellular medium enhances glycolysis in tumor cells by upregulating glycolysis enzymes
including pyruvate kinase, as well as glucose-6-phosphate dehydrogenase (G6PD) and
6-phosphogluconate dehydrogenase (6PGD) in the oxidative branch of pentose-phosphate
pathway (PPP) [24]. Paracrine activation of CCR1 signaling has also been shown to be
associated with regulatory T cells (Tregs). The CXCL12-CXCR4 signaling pathway can
recruit Tregs [57]. Treg frequency correlates with metastasis, advanced tumor stage, high
tumor grade, and shorter overall survival of pancreatic cancer patients [58]. To that end,
depletion of Tregs may be a therapeutic strategy for pancreatic cancer. However, depletion
of Tregs in KC mice (Ptf1a-Cre; lox-stop-lox-KrasG12D/+; Foxp3tm3(DTR/GFP)Ayr) induces repro-
gramming the fibroblast population, leading to a reduced number of α-SMA+ myCAFs;
an increase in Ccl3, Ccl6, and Ccl8 expression; increased myeloid cell infiltration; and
accelerated pancreatic carcinogenesis [59]. CCR1 is the common chemokine receptor for
the chemokines CCL3, CCL6, and CCL8, which are chemoattractants for myeloid cells [60].
CCR1 blockade with an inhibitor BX471 attenuates pancreatic carcinogenesis in Ptf1a-Cre;
lox-stop-lox-KrasG12D/+; Foxp3tm3(DTR/GFP)Ayr mice [59].

6. Exosomes and Pro-Metastatic Niche in Pancreatic Cancer

Exosomes are a subset of cell-released, membranous-structured extracellular vesi-
cles that also include microvesicles, microparticles, ectosomes, and apoptotic bodies [61].
Exosomes are of endosomal origin and secreted from various cell types including CAFs
and cancer cells, and contribute to physiological processes, such as immune response
and protein and RNA transport [62]. High KRAS mutation ratio (≥5%) in circulating
exosomal DNA is associated with shorter progression-free survival and overall survival of
pancreatic cancer patients [63]. Due to their endosomal origin, exosomes exhibit multiple
proteins involved in the formation of multi-vesicular bodies (MVBs) such as annexins,
Rab family GTPases, and endosomal sorting complexes required for transport (ESCRT)
complex proteins [64]. Additional exosome protein markers include tetraspanins (CD9,
CD63, CD81) and heat shock proteins (HSP60, HSP70, HSP90) [64]. A Dickkopf 1 (DKK1)
receptor cytoskeleton-associated protein 4 (CKAP4) has been proposed as a biomarker,
which is secreted with exsosomes from pancreatic cancer cells [65]. High expression of
CKAP4 is detected in pancreatic cancer patient sera and in sera of pancreatic cancer cell-
xenografted mice [65]. Blockade of the DKK1-CKAP4 binding by anti-CKAP4 monoclonal
antibody inhibits xenograft tumor formation and metastasis of pancreatic cancer cells and
extends survival of mice [65]. Glypican-1 (GPC1), a membrane-anchored protein that is
overexpressed in pancreatic cancer, is present in cancer exosomes [66]. Pancreatic cancer
patients exhibit higher GPC1+ circulating exosomes than in healthy donors, and elevated
level of GPC1+ circulating exosomes is also observed in Ptf1a-Cre; lox-stop-lox-KrasG12D/+;
Tgfbr2lox/lox mice [66]. GPC1 alone has an 82% sensitivity and 52% specificity for pancre-
atic cancer screening [67]. Multiparametric plasma extracellular vesicle profiling with
five markers (named PDACEV signature) with EGFR, EPCAM, MUC1, GPC1, and WNT2
shows an 86% sensitivity and 81% specificity [67]. Another study suggests combined
detection of exosomal GPC1, exosomal CD82, and serum CA19-9 for pancreatic cancer
screening [68]. Treatment with GPC1 antibody conjugated with microtubule inhibitor
monomethyl auristatin E inhibits pancreatic cancer in a pancreatic tumor xenograft mouse
model [69]. GPC1 is also expressed on FAP-positive CAFs in pancreatic cancer [69]. GPC1



Cancers 2022, 14, 744 9 of 13

antibody conjugated with monomethyl auristatin E is delivered to the GPC1-expressing
CAFs, leading to apoptosis of surrounding pancreatic cancer cells [69]. It has been shown
that exosomes from CAFs increase pancreatic cancer cell survival and proliferation [70].
GW4869 is a neutral sphigomyelinase inhibitor, which blocks release of mature exosomes
from MVBs [71]. Inhibition of exosome secretion from CAFs by GW4869 reduces pancreatic
cancer cell survival [70].

Tumor-driven exosomes can prepare the pre-metastatic niche in distant organs. Inte-
grin subtypes expressed on tumor-driven exosomes can predict the site of metastasis [72].
It has been demonstrated that macrophage migration inhibitory factor (MIF) is highly ex-
pressed in pancreatic cancer-derived exosomes. Knockdown of MIF in exosomes prevents
pre-metastatic niche formation in the liver and metastasis [73]. Integrin α6β4 and α6β1
associated with lung metastasis and integrin αvβ5 correlates with liver metastasis [72].
Protein kinase D1 (PRKD1) reprograms pancreatic acinar cells to a ductal phenotype and
drives progression to intraepithelial neoplasia (PanIN) [74]. The expression of PRKD1 is,
however, downregulated in human pancreatic cancer [75]. Conditional deletion of Prkd1
accelerates pancreatic tumorigenesis, drives lung metastasis, and enhances secretion of
extracellular vesicles (Ptf1a-Cre; lox-stop-lox-KrasG12D/+; Prkd1lox/lox) [75]. Prkd1-deficiency
in pancreatic cancer cells increases α6β4 loading into extracellular vesicles that requires
CD82 [75]. Exosomes from mutant p53 (R270H or R175H)-expressing cells increase di-
acylglycerol kinase α (DGKα)-dependent trafficking of integrin and cell migration [76].
Exosomes from mutant p53-expressing cells act on CAFs, leading to remodeling of ECM
to support tumor cell migration and invasion [76]. Exosomes can be also considered as a
carrier of therapeutic reagents. Treatment with exosomes carrying short interfering RNA
or short hairpin RNA specific to KrasG12D suppresses pancreatic cancer progression and
improves survival of KPC and Ptf1a-Cre; lox-stop-lox-KrasG12D/+; Tgfbr2lox/lox mice [77].

7. Conclusions

Recent studies have demonstrated that a large number of factors, including growth
factors, hedgehog molecules, inflammatory cytokines, and chemokines derived from both
cancer-associated fibroblasts and tumor cells, act as key autocrine, paracrine, and recip-
rocal mediators in signal transduction networks. Cancer-associated fibroblasts play an
important role, not only in the tumor microenvironment but also in secretion, regulation
of exosomes, and in the preparation of the pre-metastatic niche in distant organs. Exo-
somes can be used as a carrier of therapeutic reagents for pancreatic cancer. A broad and
better understanding of the interactions between cancer-associated fibroblasts and tumor
cells is important for developing novel therapeutic strategies that improve the outcome of
pancreatic cancer patients.
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