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THE BIGGER PICTURE Resolving morphological complexity of macromolecules is the stepping stone to
the design and fabrication of high-performance, multi-functional materials and to understanding the soft
matter behaviors in biology and engineering. To extract the physics of lattice distortion and surface contact
beyond the conformation is critical, yet challenging. Here, we show that, by labeling the simulation data us-
ing the 2D map of potential energies, the 3D geometry, and the topology of contact, morphological classi-
fication can be achieved with high accuracy. The well-trained model can be used to decipher the micro-
structural complexity using simulation or experimental data, which may include the geometrical
representation only. This data-driven approach extracts the key geometrical and topological features of
2D macromolecules that are directly responsible for the material performance in relevant applications
and can be extended to study other complex surfaces such as red blood cells and the brain.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
2D macromolecules, such as graphene and graphene oxide, possess a rich spectrum of conformational
phases. However, their morphological classification has only been discussed by visual inspection, where
the physics of deformation and surface contact cannot be resolved. We employ machine learning methods
to address this problem by exploring samples generated by molecular simulations. Features such as metric
changes, curvature, conformational anisotropy and surface contact are extracted. Unsupervised learning
classifies the morphologies into the quasi-flat, folded, crumpled phases and interphases using geometrical
and topological labels or the principal features of the 2D energy map. The results are fed into subsequent su-
pervised learning for phase characterization. The performance of data-driven models is improved notably by
integrating the physics of geometrical deformation and topological contact. The classification and feature
extraction characterize the microstructures of their condensed phases and the molecular processes of
adsorption and transport, comprehending the processing-microstructures-performance relation in appli-
cations.
INTRODUCTION

Polymerized linear and nonlinear molecules with repeating one-

dimensional (1D) subunits feature a variety of geometrical forms

such as 1D chains, 2Dmembranes, and 3D dendrimers, of which

the morphology is a key determinant of the material properties.1

2D macromolecules possess an even richer spectrum of confor-

mational complexity. The competition between the entropy gain

caused by thermal corrugation and the enthalpic penalty attrib-
This is an open access article und
uted to the shear and bending resistance governs their

conformational evolution.2 The relation between their morpho-

logical behaviors and size, bending stiffness, and surface inter-

action were discussed through the conformational scaling

laws.3–8 Numerical simulations using the self-penetrable phan-

tom model of tethered membranes confirm the stability of

quasi-flat conformation and revealed the crumpling transition

at high temperature.9–11 Considering the effects of self-avoiding,

bending resistance, and surface interaction, simulations of more
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Figure 1. Morphological phases of 2D mac-

romolecules

(A) Phases identified from theoretical and experi-

mental studies, which include the flat,6,13,14 quasi-

flat,9,18 rippled,19 wrinkled,20 folded,13,15,16,23

scroll,21,22 crumpled,10,12,14,17,18 and compact13,14

phases. Similar morphological complexity can be

found in the red blood cells (RBCs)24 and the

brain.25 These phases are classified into the quasi-

flat, folded, and crumpled phases in this work, as

indicated by the colors.

(B–D) Digital representations through the 3Dmap of

conformation (B), the 2D map of strain energy (C),

and adhesion energy (D). The 2Dmaps of strain and

surface adhesion are strongly correlated due to the

physics of mechanical equilibrium (Equation 1).
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realistic models predict flat, rippled, wrinkled, crumpled, folded,

scrolled, and compact phases,6,12–18 which are validated by the

experimental studies19–23 (Figure 1A).

Morphology of 2D macromolecules plays an important role in

defining the microstructures of their macroscopic assemblies in

forms of fibers and films, as well as their mechanical, transport,

and functional properties.26–28 For example, plasticization spin-

ning strategy converts the wrinkled conformation of graphene

to the flat one and enlarges the crystallite domains, thus

enhancing the mechanical properties of graphene fibers.29 Mi-

crofluidic design regulates the alignment and orientation of gra-

phene sheets and improves the transport properties of fibers.30

Graphene films assembled from the flat, folded, and crumpled

phases exhibit an improved hydrophobicity in sequence.23 Sol-

vent-mediated topography regulation triggers reversible

fusion-fission transitions of graphene fibers, where the solvent

modulates morphologies of the shell and interface in the fibers,

switching between the wrinkled and spread phases.31

Folded or crumpled phases of 2Dmacromolecules also define

the adsorption and transport processes of ions and molecules in

these condensed phases, which are the key to develop relevant

energy and environment applications. For example, electrodes

of folded graphene provide continuous transport pathways

with high electron or ion mobility,32 where the crumpled phases

demonstrate high specific surface area pore volume and excel-

lent capacitance.33 Crumpled graphene balls possess meso-

and micro-pores as well as stacking-resistant structures,

exhibiting efficient micro-pollutant absorption from water.34

Rationalizing the conformational map is thus of critical impor-

tance to understand and control the microstructures and func-

tions of 2D macromolecules and their assemblies.28,35

Although ample morphological phases of 2D macromolecules

were reported in previous studies, their classification has been

limited by visual inspection of the geometry. In this work, we
2 Patterns 3, 100497, June 10, 2022
use machine learning techniques to

discriminate the morphological phases of

2D macromolecules. Data-driven statisti-

cal-learning techniques developed for

pattern recognition and prediction36–38

have been applied in the materials

sciences.39,40 Unsupervised and super-

vised learning studies identify the distinct
polymer states.41–43 For 2D macromolecules, unsupervised

learning was used to classify graphene oxide (GO) according to

the chemistry (the C/O ratio) and morphology (the mean size of

flakes), whichwere determined byX-ray photoelectron spectros-

copy and scanning electronmicroscopy analysis, respectively.44

Supervised learning recognizes nanobubbles in graphene from

the electronic density of states spectra, and predicts the height

and width of nanobubbles.45 Statistical-learning methods

combining unsupervised and supervised learning have been

utilized in the conformational recognition of molecules and poly-

mers, and the determination of phase transition.42,46,47 Self-su-

pervised learning was used to embed geometrical features into

the graph neural network to assist in the molecular conforma-

tional identification and property prediction.46 The pre-training

process utilizes abundant unlabeled samples to learn and import

the geometrical features into the neural network, and the fine-

tune process uses a handful of labeled samples to perform the

recognition and property prediction tasks.46 The confusion

scheme trains models with data that are deliberately labeled

incorrectly, and the phase transition can be determined accord-

ing to the performance of the models trained with different

labels.47 Following this approach, the configurations of the poly-

mers were recognized, and the critical energies of phase transi-

tion were determined.42 We thus integrate unsupervised and

supervised techniques to provide a tool that can be used to

discriminate the conformational phases of 2D macromolecules

and offer insights into the transition between them.

Notably, in addition to the geometry of 2D macromolecules,

the lattice distortion and topology of surface contact are also

of vital importance to understand the microstructures-perfor-

mance relationship. However, this physics cannot be extracted

from the 3D conformation obtained from, for example, experi-

mental computed tomography. To address this issue, we

perform coarse-grained molecular dynamics (CGMD)
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simulations to generate macromolecular structures of graphene

and the physics of molecular interaction. Unsupervised learning

is conducted based on the features extracted from the energy of

strain and adhesion, or the 3D geometry and topology of the con-

tact. The model trained can be used in supervised learning for

morphological recognition and classification using simulation

or experimental data. This combined approach allows the phys-

ics behind the observable geometrical and topological charac-

teristics to be included in the discussion on the morphological

complexity, and the assessment of their significance. The results

lay the ground for the understanding of processing-microstruc-

tures relationships of 2Dmacromolecules, and the design princi-

ples of macroscopic assemblies with outstanding performance

and functions.

RESULTS

Digital representation of 2D macromolecules
We generate 2,484 samples of conformation from the CGMD

simulations, as well as the potential energy of each atom,

bond, dihedrals, and non-bonding interacting pairs (see experi-

mental procedures for details). The initial configuration of gra-

phene is a flat square sheet with lateral size L of 100 nm. We

use isotropic, spherical and anisotropic, and cylindrical confine-

ment, as well as their linear combination, to trigger conforma-

tional changes of the 2D macromolecules.17,23,48 By further

exploring the parameter space spanned by the temperature

and the bending stiffness, the simulation results cover a large

subspace of the morphological phases ranging from 1D to 3D.

2D macromolecules can be represented directly using the

point set from numerical simulations or experimental tomogra-

phy. This approach captures the full geometrical information

including the curvature and a distance map in the 3D Euclidean

space. However, although the ridges or vertices can be identified

by their geometrical features, the metric changes in the basal

plane and out-of-plane bending of 2D macromolecules cannot

be represented in the point set without a reference geometry.

Moreover, the physics of surface contact cannot be extracted

from a point-set representation, where the intramolecular

bonding network and surface contact cannot be distinguished

(Figure 1B).

The conformation is also analyzed through the 2D map of po-

tential energy to extract key conformational features,23 which

captures the physics of lattice distortion (metric changes,

bending) and surface adhesion implicitly from the energy of the

bonded and non-bonding interaction (see experimental proced-

ures). Mapping the atomic positions into the initial planar config-

uration of 2D macromolecules, the network structure of ridges

and vertices can be visualized from themap of strain energy (Fig-

ure 1C). Ridges are created by out-of-plane bending, while the

vertices accommodate in-plane deformation along with

bending. Physical contact forms between regions of the 2Dmac-

romolecules through the map of surface adhesion (Figure 1D).

However, the topological information is missing in the 2D repre-

sentation, which could be measured by the distance map in the

2D manifold, which is constructed from the initial configuration.

The combination of the 3D point set and the 2D energy map

could and should thus be combined to understand the physics

behind the geometry and topology of macromolecules.
The conformation of 2D macromolecules is determined by the

competition between the resistance to elastic deformation and

surface interaction that could be adhesion or steric repulsion.

The geometry of the 2D manifold and the topology of contact

thus are closely tied to the deformation and surface interaction.

Thermal fluctuation also plays a role, especially in the solution

environment, in triggering the morphological changes. The po-

tential energy of 2D macromolecules can be modeled through

the generalized Helfrich functional2

U =

Z
dS

�
1

2
kð2H � c0Þ2 + kK

�
+ 2gSc; (Equation 1)

where S is the surface area. H and K are the mean and Gaussian

curvature, respectively. k is the bending rigidity, k is theGaussian

rigidity, and the extrinsic geometry term kK measures the

coupling between out-of-plane bending and in-plane deforma-

tion. c0 is the spontaneous curvature induced by topological de-

fects embedded in the 2Dmacromolecules, which is zero here.49

g is the surface energy density determined by the van der Waals

or electrostatic interaction, and Sc is the area of contact. This

functional, in combination with the entropy term, defines the ge-

ometry and topology of 2D macromolecules in 3D space. The

physics behind the conformational phases can thus be extracted

from the potential energy of lattice distortion and surface con-

tact, as well as the geometrical and topological measures of

the conformation.

Feature extraction
The flowchart of conformational classification and feature

extraction in this work is illustrated in Figure 2. The solvent-

accessible surface area (SASA) and radius of gyration (Rg) are

the two key geometrical features measuring the surface expo-

sure and the compactness of conformation, respectively (see

experimental procedures.17,48 Surface contact is a topological

feature that modulates the transport processes through the

open spaces embedded in the condensed phases, such as the

folds and crumples. A localization factor (LF) is defined to charac-

terize the degree of localization for surface contact from

the 2D distance map, discriminating the local and long-range

modes of contact (see experimental procedures). The combina-

tion of SASA, Rg, and LF provides multi-resolution characteriza-

tion of the 3D geometry and topology of contact for 2D macro-

molecules, which are used for labeling in the unsupervised

learning.

Features in the 2D energy map of strain and adhesion are

extracted by the perceptual Hash (pHash) algorithm50 and prin-

cipal-component analysis (PCA).51 The pHash algorithm con-

verts the pixels information of images into a string of fingerprints

for comparison. PCA further reduces the dimension of these fin-

gerprints to yield the dominant features, the physics of which can

be discussed through comparison with the characteristics eval-

uated directly from the 3D point set.

Correlation between the first and second principal features (P1

and P2, respectively) extracted from the 2Dmap of strain energy

and SASA, Rg, LF measured from the 3D conformation are sum-

marized in Figure 3. The results show that P1 has the strongest

correlation with Rg (Figure 3B), and P2 is most relevant to LF (Fig-

ure 3F), which suggests that P1 captures the global shrinkage of
Patterns 3, 100497, June 10, 2022 3
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Figure 2. Machine learning procedures
(A) Flowchart of conformational recognition and features extraction for 2D macromolecules.

(B) Illustration of the computed tomography data of 2D macromolecules.
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themorphology, while P2measures the surface contact. SASA is

more relevant to P2 than P1 (Figures 3A and 3D). As LF has the

largest correlation factor with the principal features (Figure 3F),

we use SASA and Rg for unsupervised classification of the

conformation, and LF for the validation. We also analyze the en-

ergy map of surface adhesion, which is highly correlated with the
4 Patterns 3, 100497, June 10, 2022
strain energy map (Figure S1). For this reason, our following dis-

cussion is limited to the 2D map of strain energy.

Statistical learning
Unsupervised learning based on the extracted features (SASA,

Rg, LF) are performed to label the data. We first use the



R2 = 0.3236 R2 = 0.5231 R2 = 0.3514

R2 = 0.4128 R2 = 0.2697 R2 = 0.6684

A B C

D E F

Figure 3. Correlation between features extracted from the 2D map of strain energy and morphological parameters extracted from the 3D

point set

(A–C) The correlation between the first principal feature (P1) and nondimensionalized values of SASA, Rg, and LF.

(D–F) The correlation between the second principal feature (P2) and nondimensionalized values of SASA, Rg, and LF.
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K-means algorithm52 to classify the conformation in the param-

eter space of SASA and Rg only. Four classes are identified as

quasi-flat, crumpled, and folded phases, as well as the inter-

phases (Figure 4A). Quasi-flat phases have large SASA and Rg

values for high surface exposure and low shrinkage. Folded

phases have a relatively larger value of Rg than that of the crum-

ples since anisotropic folds only contract in one direction, while

isotropic crumples shrink in all directions. The interphases are

located between these three well-defined phases. The distribu-

tion of LF is calculated to validate the clustering-based classifica-

tion (Figure 4B). In the quasi-flat phases, LF shows a peak at the

characteristic length scale set by the intramolecular bonding

network since no contact is formed. The peak of LF of the folded

phase has the largest value, indicating that the contact has a

long-range nature, while the crumple has a peak at the interme-

diate distance, and the contact is local. The value of LF for the in-

terphases resides between the other three phases, displaying

the nature of transition states.

The effect of contact topology is further assessed by including

LF as one of the labels in addition to SASA and Rg. The results

show that the information of topological contact improves the

physical significance of clustering, which is of crucial importance

for the transport and adsorption processes in the condensed

phases or assemblies of 2D macromolecules. For example, we

find two samples of the same size with different morphologies

but similar SASA andRg values (Figure 4D). Their LF values, how-

ever, show discrepancy. Geometrical clustering classifies these
two samples as quasi-flat phase (Figure 4A), but the topological

consideration by adding LF in the labeling process corrects the

prediction by recognizing one of them with the larger value of

LF to be a fold (Figure 4C).

The energy landscape of morphological phases defines the

richness of the morphological phases in thermal equilibrium ac-

cording to the Boltzmann factor expð� kBTÞ (Figures 4E and S2).

The crumples and folds own high and low potential energies for

their strong lattice distortion and surface adhesion, respectively,

and those of the quasi-flat phases or interphases are between

them. The path of transition between these phases can be

interred from the confusion scheme, where the accuracy of pre-

diction at specific potential energymeasures the likelihood of the

corresponding morphology as a transitional one (see experi-

mental procedures).47 Comparing the accuracy with the distribu-

tion of morphological phases over the energy space suggests

that the interphases could bridge the crumples and folds, while

the quasi-flat phases and some of the interphases show features

of transition states (Figure 4E). This result agrees with the exper-

imental finding that direct transition between the crumples and

folds is prohibited by the symmetry and should proceed through

intermediate phases such as the quasi-flat one.23

Supervised learning is carried out using the labels obtained

from unsupervised learning to recognize the conformation of

2D macromolecules represented by the 2D map of strain energy

or the 3D point set. The labeling using SASA and Rg contains

geometrical (G) features only (Figure 4A), and that with LF
Patterns 3, 100497, June 10, 2022 5
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Figure 4. Classification of morphological phases from unsupervised learning

(A) Clustering of samples in the space spanned by the normalized values of SASA and Rg.

(B) Distribution of normalized LF, which is defined to capture the bimodal feature of the intramolecular bonding network and (local, long range) surface contact (see

the inset for details), respectively.

(C) Clustering using SASA, Rg, and LF labels.

(D) Two samples with similar SASA and Rg values but different LF.

(E) The distribution of morphological phases in the space of potential energy. The accuracy of prediction in the confusion scheme is used to identify the possible

transition states from the peaks, while the valleys are the well-identified phases. The standard deviation is reported in the error bars.

ll
OPEN ACCESS Article
includes both geometrical (G) and topological (T) information

(Figure 4C). For the representations of macromolecular confor-

mation, the 3D point set comprises the geometrical features,

while the 2D energy map includes the physical characteristics

of lattice distortion and deformation (P). The combination of la-

beling and digital representations thus produces four models,

which are: geometrical labeling and 3D point-set representation

(the G model), geometrical and topological labeling and 3D

point-set representation (the G + T model), geometrical labeling

and 2D energy-map representation (the G + P model), geomet-
6 Patterns 3, 100497, June 10, 2022
rical and topological labeling and 2D energy-map representation

(the G + T + P model). Using these models, we randomly sample

the data at a ratio of 0.7:0.15:0.15 for the training, validation, and

test sets. Data in the training and validation sets are used for

training, and the validation set is also used to adjust the hyper-

parameters. Samples in the test set are used to evaluate the per-

formance of the well-trained model.

The 2D map of strain energy is explored by using the VGG16

neural network.53,54 After training, samples in the test set are

used as the input for prediction. The output includes the classified



A B Figure 5. Predictions fromstatistical learning

(A) Phases predicted by the well-trained supervised

model using SASA and Rg as the labels and the

corresponding prediction probability. The energy

heat images are the maps of strain energy.

(B) Evaluation of the statistical-learning models. The

standard deviation is reported in the error bars.
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phases and their probabilities (Figure 5A). The confidence of pre-

diction for a specific class is scored by the probability. The 3D

morphological map is studied using the PointNet algorithm.55

The classification and the corresponding probability of prediction

are summarized (Figure 5A). We use the metrics of accuracy, pre-

cision, recall, and F1 score to evaluate the models (see experi-

mental procedures). The metric scores of different models are

summarized in Table S1. We find that the geometrical features

possessa fundamental contribution toall themodels. The topolog-

ical and physical information notably improves the performance of

model (Figure 5B). TheG+T+Pmodelwith the geometrical, topo-

logical, andphysical characteristics demonstrates the best perfor-

mance (Figure 5B). We also label the data using the principal

features extracted from the 2D energy map (Figures S3A and

S3B). The performance of these models is not as competitive as

the G + T + P model (Figure S3C). By further considering that ex-

tractingSASA,Rg, and LF ismore convenient than that for the prin-

cipal features, the usage of direct geometrical and topological

labels in unsupervised clustering is preferred in practice.

DISCUSSION

2D versus 3D supervised learning
The 2Dmap of the potential energy identifies the ridges, vertices,

and surface adhesion, but the metric changes and curvature of

geometry and the topology of surface contact are only implicitly

considered through the energy terms. For the true positives, the

higher probability of prediction from2Dsupervised learning using

theG+Pmodel indicates that physical discrimination through the

energy map is more feasible, while geometrical recognition is

more convenient in 3D by using the G model (Figure 5A).

Data failing in the prediction from labels in the unsupervised

learning is dominated by the interphases with the nature of tran-

sition states (Figure S4A). The false negatives of quasi-flat and

crumpled phases are less significant in 2D learning, since the lat-

tice distortion can be recognized. The quasi-flat phase has a

sparse network of ridges and vertices, while the crumpled phase

has a dense one. The false negatives of folds and the interphases

are less significant in 3D learning as the geometrical feature is

more significant. The fold has a distinct 1D anisotropic feature,

while the interphases have mild characteristics in geometry

compared with the quasi-flat, folded, and crumpled phases.

Unsupervised and supervised learning
False predictions may be attributed to poor labeling from unsu-

pervised learning, the results ofwhichareusedas the input for su-
pervised learning. For example, there is a

sample labeled as the interphases, but pre-

dicted as a fold by both 2D (G + P) and 3D

(G) supervised learning (Figure S4B). The
normalized value of LF for this conformation is 0.48108, which

aligns with the feature of folds (Figure S4B). The supervised

learning thuscanoutperformunsupervised learningbycorrecting

poor labeling, although unsupervised learning can also be

improved by defining more suitable features for extraction (Fig-

ure S5). The maximum score achieved by the G + P + T model

is 0.9515, which is limited by the physics of labels chosen

(SASA,Rg, andLF). Thegraphneural networks that implant the to-

pological information into the structure of neural networksmaybe

used for improvement.56

Surface interaction
Surface contact in 2D macromolecules can be regulated by sol-

vent or surface modification. For example, flat GO remains sta-

ble in the solution with low concentrations of dimethylformamide

(DMF), while folded phases are identified in the solution with

divalent Ca2+ ions due to the short-range attraction between

GO, and crumpling occurs in the hydrazine (N2H4) solution as a

result of the long-range attraction after reduction.23 Changes in

the surface charge density trigger the transition from nanomem-

branes to nanoscrolls, which reduce the electrostatic potential

barrier of nucleation and electrostatic repulsion during the pro-

cess of scrolling.22 The reversibility of phase transitions between

the flat phase and folds or crumples depends on the nature of

surface interaction. Surface adhesion yields an enthalpic penalty

for the process of unfolding or uncrumpling, while repulsion can

drive these reverse processes as the boundary constraints are

released. We explore the effects of surface interaction by tuning

the nature of interaction from being attractive to repulsive in the

simulations. The values of SASA, Rg, and LF are nondimension-

alized by 2L2 and L, which are the surface area and lateral size of

the flat square sheet, respectively. The results using the Gmodel

show that, SASA and Rg of 2D macromolecules with repulsive

surface interaction are similar as those measured with attraction

(Figure 6A). However, the LF value increases from attraction to

repulsion, indicating the shift from local to long range (Figure 6B).

The size effects
The data used for morphological classification in this work is

limited by the size of simulated models. The size effects can

be assessed through a dimensionless measure of L/Lp, where

Lp is the 2D persistence length,Lp = xexpð2pk =kBTÞ, x is the

short distance cutoff (the lattice constant), and kB is the Boltz-

mann constant.2 For L ( Lp, the 2D macromolecules behave

as rigid or elastic sheets. Our simulations are focused on models

with L>Lp and L [ d, where d is the spacing of the surface
Patterns 3, 100497, June 10, 2022 7



A B Figure 6. Effects of surface interaction

(A) The distribution of samples with attractive and

repulsive surface interaction in the parameters

spaceof SASAandRg, which showsminor changes.

(B) LF calculated for samples with attractive and

repulsive surface interaction, which shows signifi-

cant dependence.
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contact, which is 0.335 nm for graphene and 0:6 � 0:7 nm for

GO. By tuning the values of k and T (see experimental proced-

ures), we modify the value of Lp, and generate a rich spectrum

of conformational phases (Figure S6A). We find that the values

of SASA and Rg are bounded by the values of the 1D cylindrical,

2D flat, and 3D spherical phases. Moreover, the bounds ob-

tained for samples with L = 50, 100, and 500 nm are close (Fig-

ure S6B), suggesting that this size effect is not a major issue in

the context of discussion here. However, the geometrical fea-

tures, such as the length of folds and the area of contact, are

physically limited by the value of L chosen here for the consider-

ation of computational costs.

The completeness of data
The performance of phase recognition here is limited by the

space of conformation generated by our molecular simulations

where spatial confinement is enforced to trigger the phase

changes. The correlation between the resulted phases and the

conditions of confinement shows that crumples and folds are

mainly generated by the spherical and cylindrical confinement,

respectively, while quasi-flat phases and interphases can be ob-

tained under spherical or cylindrical confinement or their combi-

nation (Figure S8A). The effect of temperature in the range of

300 � 900K is not significant since the kinetic energy is much

lower than the energy corrugation during the phase changes

(Figure S8B). At high temperature, changes in the covalent

bond network, such as the sp2-sp3 transition, may be activated,

which could implant lattice imperfections and crosslinks at the

contact. The behaviors of the morphological phases generated

by spatial confinement can be considered as enthalpic, while

the entropic effects are negligible. In the solvent, however, the

entropic contrition to the free energy could be significant, espe-

cially for the quasi-flat phases and interphases. These results

suggest that our dataset can be expanded, for example, by per-

forming long-time equilibrium simulations, or non-equilibrium

ones using the free energy techniques,57 which are crucial for ac-

curate identification of the paths and energy barriers of phase

transitions, although the procedure could be technically chal-

lenging and computationally costly.

Conclusion
To summarize, we utilize machine learning techniques to classify

themorphological phases of 2Dmacromolecules through the 2D

map of lattice distortion, surface adhesion, and 3D conforma-

tion. SASA, Rg, and LF are defined as the key conformational

measure for the surface exposure, compactness, anisotropy,
8 Patterns 3, 100497, June 10, 2022
and surface contact, which are compared

with the principal features extracted from

the 2D map of the potential energy to

understand the physics behind the
morphological complexity. Unsupervised learning clusters the

samples based on their geometrical and topological features,

and provides the labels needed in subsequent supervised

learning. 2D supervised learning identifies a variety of morpho-

logical phases from the potential energy of lattice distortion

and surface adhesion. 3D supervised learning completes the

discrimination by extracting the geometrical and topological in-

formation with a distance map in the 2D manifold supplied.

The well-trained models established with the geometrical, to-

pological, and physical information can be used for recognition

and classification of the simulation or experimental data, which

may consist of geometrical information only, for practical consid-

eration. The model can be applied to the assemblies of multiple

2D macromolecules, and takes the advantage in the identifica-

tion of defects, which may create localized lattice distortion

and modify the interaction between different regions of the 2D

macromolecules, resulting in additional features of geometrical

deformation and topological contact (Figure S7). This work

thus lays the ground for the understanding of themicrostructures

and material properties of 2D macromolecules in their

condensed phases or macroscopic assemblies, and could be

extended to other complex surfaces in, for example, the red

blood cells24 and the brain.25 Our study also suggests that a

theoretical description to characterize the morphology of 2D

macromolecules should include topological features, such as

the local and long-range contacts, in addition to the geometrical

representation, which results from the competition between the

deformation and surface interaction.

EXPERIMENTAL PROCEDURES

Resource availability
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Request for information and resources used in this article should be addressed

to Dr. Zhiping Xu (xuzp@tsinghua.edu.cn).

Materials availability

There were no physical materials associated with this study.

Data and code availability

The data used in this study are generated from molecular simulations. The co-

des and data used in the paper are available at https://zenodo.org/badge/

latestdoi/452994542.

Molecular simulations

We use a hexagonal lattice to construct the coarse-grained (CG) models of 2D

macromolecules.58 The atoms are clustered into beads with equal masses.

The bonding interaction between bonded beads is modeled as a linear elastic

spring with stiffness ks = ð31=2 =2ÞYt, where Y is the Young’s modulus and t

is the thickness. The in-plane elastic energy is thus Us = ksðr � r0Þ2=2,

mailto:xuzp@tsinghua.edu.cn
https://zenodo.org/badge/latestdoi/452994542
https://zenodo.org/badge/latestdoi/452994542


ll
OPEN ACCESSArticle
where r is thebond lengthwith anequilibriumvalueof r0. Thebending resistance

is modeled as a harmonic dihedral with stiffness kb = ð2 = ffiffiffi
3

p Þk, where k is the

bending stiffness.59 The out-of-plane bending energy is Ub = kbð1 + cos4Þ,
where 4 is the angle of dihedral with an equilibrium value of 40 = p. The non-

bonded interaction between the beads is modeled by the Lennard-Jones

12 � 6 potential Uc = 4ε½ðs=rÞ12 �ðs=rÞ6� with the 1 � 2, 1 � 3, and 1� 4

neighbor exclusion enforced, where the parameters s and ε are fitted through

the spacing at the contact and the cohesive energy.60We use the force field pa-

rameters developed forGOas the reference, and tune kb and thecutoff distance

rc in evaluating Uc for the bending stiffness and surface interaction (rc = 2.5s)

from attraction to repulsion (rc = 2
1
6s), respectively. The parameters of the

CG force field used in this study are summarized in Table S2, which can be

further modified for generation to other for 2D macromolecules.

A large-scale atomic/molecular massively parallel simulator was used to

perform all CGMD simulations.61 The initial conformation of 2Dmacromolecules

is flat, and the lateral size L is 100 nm if not specified otherwise. Conformational

changes are driven by applying spherical, cylindrical, or combined linear elastic

constraints. The constraints with a harmonic spring move slowly to interact with

the beads representing the 2D macromolecules, triggering the conformational

transition. The spring stiffness is set to 20 kcal/mol, and the constant speed of

constraints is defined by the compression ratio R and duration t. We generate

2,484 morphological phases by adjusting the temperature in the range of

300� 900 K, the bending stiffness between 1 and 60 kcal/mol, and the condi-

tions of constraint (mode, speed, ratio of compression, and duration). The

compression ratios of spherical and cylindrical constraints are R = 0:4� 0:9

and0:15 � 0:9, respectively,where the lower values correspond to the compact

limits. The duration of compression is set to t = 0:5 � 2 ns. A Langevin thermo-

stat is used for temperature control and to include the implicit solvent effect. The

time step is 1 fs, which assures the stability of the numerical integration.

SASA, Rg, and LF
SASA measures the surface area of graphene that is accessible to a solvent,

which is calculated using the Shrake-Rupley algorithm,62 where a bead of

probe with a radius of 2.5 nm is chosen.63

The radius of gyration tensor S is defined as

S =
1

N

XN
i = 1

2
4 ðxi � xcÞ2 ðxi � xcÞðyi � ycÞ ðxi � xcÞðzi � zcÞ
ðyi � ycÞðxi � xcÞ ðyi � ycÞ2 ðyi � ycÞðzi � zcÞ
ðzi � zcÞðxi � xcÞ ðzi � zcÞðyi � ycÞ ðzi � zcÞ2

3
5;

(Equation 2)

where N is the number of CG beads, ri = (xi, yi , zi ) is the Cartesian coordinates

of the i-th bead, and rc = (xc, yc, zc) is that of the center of mass. The scalar

radius of gyration is R2
g = 1

N

PN
i = 1ðri � rcÞ2.

To quantitatively measure the surface contact, we count the number of con-

tact N for each bead i in the 3D conformation by using a distance cutoff of

2.5s = 3.7 nm for the pairs of interacting beads. This distance displays a

bimodal feature originating from the bonded and non-bonded interaction.

The distance between beads i and j in the reference 2D lattice is defined as

Dij, and then the averaged 2D distance of contact is

ai =

P
jDij

Ni

; (Equation 3)

where the summation is taken over allNi beads in contact with i. The value of ai
is related to the bond length for the planar phase, or the interlayer distance for

the contact. The number of beads with contact (ais0) is counted as Mi. A

localization factor LF is then defined as

LF =

P
iai

Mi

; (Equation 4)

where the summation is taken overMi. The distribution of LF thus includes the

contributions from the intramolecular bonding network and surface contact in

the local and long-range modes (Figure 4B).

Machine learning methods

For unsupervised learning, the K-means algorithm52 is used for unsupervised

clustering. The number of clusters is set to four considering the 1D cylindrical,
2D flat, and 3D spherical limits, as well as the interphase characteristics. We

conduct unsupervised clustering with four to six classes according to the

1D-3D features recognized in the simulation and experimental results. Clus-

tering with more than four classes results in sub-division of the crumpled

phase (Figure S9A) or the interphase (Figure S9B), which are named as severe

andmild sub-classes. However, these sub-divisions do not show essential dif-

ference in the geometry and topology. For example, both severe and mild

crumples display features of isotropy and local contact, and the two inter-

phases both demonstrate the nature of transition states with only minor differ-

ence in the degree of shrinkage. Therefore, our discussion in this study is

focused on the results using four clusters to avoid redundant sub-division or

over-refined classification.

2D supervised learning uses the results of unsupervised learning for labeling.

The model contains 13 convolutional layers, 1 flattening layer, and 2 fully con-

nected layers. The rectified linear unit (RELU) is used as the activation function

except for the last layer, which uses the softmax function. The VGG16 neural

network53 implemented in TensorFlow54 is used to construct the architecture

of the convolution layers. The root-mean-square prop (RMSprop) algorithm is

used as the optimizer. The learning rate is 2310� 5 without further specifica-

tion, and the cross-entropy is chosen as the loss function.

3D supervised learning uses the PointNet algorithm implemented in Pytorch

for morphological classification.55 The model consists of three convolution

layers, one maximum pooling layer, and three fully connected layers. The

activation function is RELU except for the last layer, which uses the softmax

function. The adaptive moment estimation (Adam) and StepLR are used as

the optimizer and learning rate scheduler. The negative log likelihood is used

as the loss function.

The confusion scheme is used to explore the possible path of transition be-

tween the morphological phases.47 In this scheme, a value of potential energy

(E) in the range of ½Emin;Emax� is specified to discriminate the morphological

data into two classes (½Emin;E� and ½E;Emax�). The accuracy of this binary clas-

sification through supervised learning is then calculated. The critical energy

(Ec) is determined at the local maxima of the accuracy, which may correspond

to the transition state between the morphological phases with potential en-

ergies lower or higher than Ec. On the other hand, the local minima correspond

to the well-recognized classes.

The true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN) of the morphological phases are counted to calculate the met-

rics of accuracy

� P
i
TPiP

i
TPi +FNi

�
, precision ðPiweighti 3 precisioniÞ, recall

ðPiweighti 3 recalliÞ, and F1 score ðPiweighti 3 F1scoreiÞ, where i is the

index of morphological phases, and weighti = TPi + FNiP
i
TPi + FNi

, precisioni =

TPi

TPi + FPi
, recalli = TPi

TPi +FNi
, F1scorei = 23precisioni3recalli

precisioni + recalli
.64 The weighted

average is introduced to account for the class imbalance. The accuracy

and recall are the same in this condition. Accuracy reflects the overall predic-

tive power of the model; that is, the proportion of correctly identified phases.

Precision measures the exactness of the model predictions through the ratio

of correct recognition in the prediction of a certain phase. Recall character-

izes the effectiveness of the model to identify positive labels; that is, the ratio

of the identified phases in the actual class of certain phases. F1 score is a

comprehensive metric considering contributions from both precision and

recall. A high F1 score of a model indicates high-precision prediction of

morphological phases and complete recognition of conformation. Three in-

dependent experiments are performed by varying the training epoch. The

mean and standard deviation of metrics of different models are calculated.
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