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Abstract

Background and Purpose:Corpus callosum (CC) atrophy is predictive of future disability

in multiple sclerosis (MS). However, current segmentation methods are either labor- or

computationally intensive. We therefore developed an automated deep learning-based

CC segmentation tool and hypothesized that its output would correlate with disability.

Methods: A cohort of 631 MS patients (449 females, baseline age 41 ± 11 years) with

both 3-dimensional T1-weighted and T2-weighted fluid-attenuated inversion recovery

(FLAIR) MRI was used for the development. Data from 204 patients were manually seg-

mented to train convolutional neural networks in extracting the midsagittal intracranial

and CC areas. Remaining data were used to compare segmentations with FreeSurfer and

benchmark the outputswith regard to clinical correlations. A 1.5 and 3Tesla reproducibil-

ity cohort of 9MS patients evaluated the segmentation robustness.

Results: The deep learning-based tool was accurate in selecting the appropriate slice for

segmentation (98%accuracywithin3mmof themanual ground truth) and segmenting the

CC (Dice coefficient .88-.91) and intracranial areas (.97-.98). The accuracywas lowerwith

higher atrophy. Reproducibility was excellent (intraclass correlation coefficient> .90) for

T1-weighted scans and moderate-good for FLAIR (.74-.75). Segmentations were associ-

atedwith baseline and future (average follow-up time 6-7 years) ExpandedDisability Sta-

tus Scale (ρ= –.13 to –.24) and Symbol Digit Modalities Test (r= .18-.29) scores.

Conclusions: We present a fully automatic deep learning-based CC segmentation tool

optimized to modern imaging in MS with clinical correlations on par with computation-

ally expensive alternatives.
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INTRODUCTION

Multiple sclerosis (MS) is an immune-mediated disease characterized

by neuroinflammation and neurodegeneration.1 Although focal lesions

in the deep white matter are a hallmark of MS, neurodegenerative

processes involve cortical and subcortical structures as well as the

normal-appearing white matter.2 Neurodegeneration represents the

most important anatomical correlate of permanent disability in MS,

as shown by the predictive value of atrophy measures across differ-

ent anatomical structures.3 The corpus callosum (CC) consists of heav-

ily myelinated axons that connect the two cerebral hemispheres and

their cortical/subcortical networks.4 It is evident that the CC is highly

susceptible to the disease processes occurring in MS with high atro-

phy rates, which makes it a relevant biomarker and a predictor of

neurodegeneration.5 Not only is the CC an independent biomarker of

neurodegeneration, but it also correlateswell with other neuroimaging

features inMS.6

Despite its clinical relevance, CC atrophy is rarely assessed in clin-

ical practice because validated visual rating scales are lacking and

although several 2-dimensional manual approaches exist for measur-

ing the CC in MS, annotation of images is labor-intensive and con-

founded by inter- and intrarater variability.7 In terms of automatic 3-

dimensional segmentations, the freely available and popular research

software FreeSurfer segments the CC volume among several other

structures,8 and offers a longitudinal segmentation pipeline,9 but it is

computationally expensive reducing its feasibility in large cohort stud-

ies.

In recent years, deep learning has emerged as a machine learn-

ing approach that is especially suited for image segmentation tasks

with high computational efficiency once trained.10 Convolutional neu-

ral networks (CNNs) and, in particular fully convolutional networks,

have become one of themost appliedmethods.11 In small sample sizes,

a U-net architecture is popular and it is often combined with effec-

tive image augmentation for improved classification.12 Previous stud-

ies have applied CNNs to segment the CC in 2 dimensions in healthy

volunteers as well as in MS but on older sagittal two-dimensional

T2-weighted (T2w) and T1-weighted (T1w) images.13,14 Meanwhile,

the current MAGNIMS-CMSC-NAIMS consensus guidelines recom-

mend that 3-dimensional T2w fluid-attenuated inversion recovery

(FLAIR) and T1w images are acquired for diagnosis and monitoring in

MS.15,16

Therefore, we developed a fully automatic, computationally effi-

cient deep learning-based segmentation tool tailored for modern 3-

dimensional FLAIR and T1w scans in MS. The aim was to provide a

biomarker of neurodegeneration in MS feasible to be run on large

datasets. We hypothesized that the output would correlate with phys-

ical and neurological disability in MS to a similar degree as the more

computationally expensive FreeSurfer segmentations of the CC vol-

ume.

METHODS

Study design and clinical data

The data for this study were acquired within the Stockholm Prospec-

tive assessment of Multiple Sclerosis (STOP-MS) study, a prospective

population-based cohort study started in January 2001 aiming to iden-

tify prognostic factors for long-term outcomes in newly diagnosed

MS patients.17 In total, 631 individual MS patients were available, of

which data from 204 patients were randomly selected for training

the CNNs. Clinical data were extracted from the Swedish MS registry,

which collects prospectively clinical information with high validity.18

Disease courses, as defined by the treating neurologist, were either

relapsing-remitting MS, secondary progressive MS, or primary pro-

gressive MS.19–21 The Expanded Disability Status Scale (EDSS), repre-

senting an accumulated score of different neurological subdomain dis-

abilities, was extracted if there were baseline values <6 months of the

scan date and/or at follow-up (>6 months from the scan date). Simi-

larly, Symbol Digit Modalities Test (SDMT), representing a measure of

cognitive processing speed, was extracted for the baseline and follow-

up. The SDMT scores were transformed into sex- and age-adjusted z-

scores.22 Table 1 presents the demographics of the 204 patients in

the training data set and the 427 patients who underwent segmenta-

tions by both the deep learning algorithms and FreeSurfer. This study

was approved by the Regional Ethical Review Board in Stockholm (reg.

no. EPN 2009/2017-31/2) (with amendments 2018/2711-32, 2020-

01954, 2020-03471, and 2021-02060).

Magnetic resonance imaging

Brain MRIs were acquired using three different Siemens scanners at

the Karolinska University Hospital in Huddinge, Stockholm, Sweden.

The image acquisition parameters are presented in Table 2.

Training and validating the CNNs

Preparing the training data

ITK snap v3.6.0 (www.itksnap.org)23 was used for manually selecting

themidsagittal slice and segmenting the intracranial (IC) and CC areas.

This was performed by an experienced rater and physician (MP) for

each of the training images. Figure 1 provides examples of six manual

segmentations.

Automatic midslice selection

Automatic midsagittal slice selection was achieved by training a CNN

classifier. It received an MRI sagittal slice as input and was trained
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TABLE 1 Cohort demographics of the training and testing dataset

Training data (n= 204) Testing data (n= 427)

Scanner Aera (n= 68) Avanto (n= 68) Trio (n= 68) Aera/Avanto/Trio, %

30/47/23

Age in years, mean± SD 39± 11 39± 12 36± 12 43± 11

Disease duration in years, mean± SD 6.7± 8.0 6.0± 5.7 4.8± 6.6 4.4± 5.4

Sex, % F/M 77/23 74/26 57/43 72/28

Subtype, % RRMS/SPMS/PPMS/NA 69/22/2.9/4.4 75/16/4.4/4.4 79/5.9/2.9/12 70/23/1.8/5.3

Median EDSSwithin 6months, IQR 2.0 (1.0-3.0) 1.5 (0.0-2.8) 2.0 (1.5-3.0) 2.5 (1.5-3.5)

(n= 35) (n= 37) (n= 37) (n= 252)

Median EDSS future score, IQRa 2.5 (1.5-4.0) 2.5 (1.5-4.0) 3.0 (1.0-3.5) 2.5 (1.5-4.0)

(n= 57) (n= 57) (n= 59) (n= 331)

Median SDMTwithin 6months, IQR –0.59 (−1.6 to 0.12) –0.70 (−1.41 to−0.05) –0.93 (−2.0 to−0.17) –0.69 (0.065 to−1.4)

(n= 31) (n= 21) (n= 35) (n= 172)

Median SDMT future score, IQRb –1.1 (−2.3 to−0.49) –1.4 (−2.21 to−0.54) –1.6 (−2.3 to−0.65) –0.97 (−0.18 to−1.9)

(n= 55) (n= 53) (n= 59) (n= 304)

Note: n signifies the number of patients.

Abbreviations: EDSS, ExpandedDisability Status Scale; F, Female; IQR, interquartile range;M,Male;NA, not available; PPMS, primary-progressingMS;RRMS,

relapsing-remittingMS; SD, standard deviation; SDMT, Symbol Digit Modalities Test; SPMS, secondary-progressiveMS.
aAverage number of years between scan and EDSSwas 6.7± 2.6 years.
bAverage number of years between scan and SDMTwas 5.8± 2.8 years.

TABLE 2 MRI scanner settings

T1-weightedMPRAGE T2-weighted SPACE FLAIR

Scannermodel Aera Avanto Trio Aera Avanto Trio

Field strength 1.5 1.5 3.0 1.5 1.5 3.0

Voxel size 1.0× 1.0×

1.5

1.0× 1.0× 1.5 1.0× 1.0×

1.5

1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0×

1.0

Echo time 3.02 3.55 3.39 333 333 388

Repetition time 1900 1900 1900 5000 6000 6000

Inversion time 1100 1100 900 1800 2200 2100

Flip angle, ◦ 15 15 9 120 120 120

Note: All times are given asmilliseconds. Themainmagnetic field strength is given as Tesla.

FLAIR, fluid-attenuated inversion recovery; MPRAGE, magnetization-prepared rapid gradient echo; SPACE, sampling perfection with application optimized

contrasts using different flip angle evolution.

to predict whether it was a middle or nonmiddle slice. The CNN was

modeled using four 2D convolutional layers (eachwith Rectified Linear

Unit, ReLU, activation,24 3 × 3 kernels, and 16, 32, 64, and 64 filters,

respectively), withmax-pooling layers between the layers. Thiswas fol-

lowed by twodense layers, with 128 and1 unit(s), respectively. See Fig-

ure 2 for an overview of themidslice selection pipeline.

Three separate CNNs were trained to classify the midslices

(midCNN) and named based on the MRI sequence(s) provided as

input: midCNNT1, midCNNFLAIR, and midCNNT1/FLAIR. All three net-

works were first trained using 10-fold cross-validation on the available

dataset. For this purpose, all available 3-dimensional scans were first

randomly split into10 folds. Then, for eachMRI scan, only sagittal slices

wereprovided as input.Given the strongnumerical imbalancebetween

middle (only one per scan) and nonmiddle slices, only half of the non-

middle slicesof every subjectwere randomly selected tobeusedduring

training. All three networks underwent the same image preprocessing:

resized to 256 × 256 pixels and normalized by subtracting the mean

pixel intensity and dividing them by the standard deviation. All models

were trained for 50 epochs using a binary cross-entropy loss function

and an Adam optimizer,25 with a constant learning rate of 0.0001. To

address the problemof data imbalance, classweightswere used during

training. In particular, each of the two classes (middle and nonmiddle)

was associated with a weight that was inversely proportional to its fre-

quency in the trainingdataset, that is, higherweightswere given to true
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F IGURE 1 Manual corpus callosum and
intracranial segmentations of sixMS patients.
Both T1-weighted and T2-weighted FLAIR
scans were segmented using ITK snap (v3.6.0,
www.itksnap.org)

F IGURE 2 Midslice selection pipeline. The input consists of individual slices from theMRI scan, with dimensions 256× 256× 1. The input
subsequently goes through four convolutional layers, using a 3 × 3 kernel, ReLU activation, and 2× 2max pooling. At the end, there are two dense
layers (128 and 1, respectively), resulting in a high-probability output of themidsagittal slice. The number under each block signifies the number of
filters applied in that convolutional layer

http://www.itksnap.org
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middle slices. In thevalidationphase, all sagittal slicesof a testMRI scan

were provided as input to the model. The performance of the model

was evaluated by computing the absolute error between the index of

the predicted midslice slice and the index of the manually annotated

midslice. All network implementations, training, and testing were per-

formed using Tensorflow 2.4.1.

Subsequently, the same architectures were re-trained, but now

using a scanner-wise (and thus threefold) cross-validation strategy.

At each fold, the slices from the scans acquired from one scanner

(Aera, Avanto, or Trio) were used as the validation set, whereas the

slices from the remaining two scanners were employed as the train-

ing set. This was done to investigate the performance of the pro-

posed architecture on data from new unseen scanners. The same data

preprocessing and training hyperparameters as those described above

were used. However, in this case, data augmentation was also added

during training, in order to limit the amount of overfitting toward the

two scanners provided as input. This data augmentation consisted of

applying random rotation (−10◦ to 10◦), translation (−10 to 10 pixels

along both the x and y axes), and scaling (−5% to 5%of the original size)

to all the training slices at each epoch.

U-Net-based CC and IC segmentation

Following the same strategy presented in previous literature,14 two U-

Net architectures were implemented to automatically segment the CC

and the IC, respectively, froma single inputmidsagittal slice. Analogous

to the description in the previous section, the algorithms were named

according to input data: CC-NetT1 and IC-NetT1; CC-NetFLAIR and IC-

NetFLAIR; CC-NetT1/FLAIR and IC-NetT1/FLAIR. The CC-NetT1/FLAIR and

IC-NetT1/FLAIR received both T1w and FLAIR scans during training,

allowing it to segment both types of sequences. The number of filters

in each convolutional block (ie, in the encoder, bottleneck, anddecoder)

was set to 16, 32, 64, 128, 256, 128, 64, 32, and 16, in order from the

input to the output. Batch normalization was also applied after each

convolutional layer, except for IC-NetT1/FLAIR, for which the perfor-

mancewas found tobe improvedby removingbatchnormalization. The

same image preprocessing performed for the automaticmidslice selec-

tion was employed for the U-Nets. Two-dimensional data augmenta-

tion with random rotation (−10◦ to 10◦), translation (−10 to 10 pix-

els along both the x and y axes), and scaling (−5% to 5% of the original

size) was introduced to reduce overfitting. When combining T1w and

FLAIRdata (ie, forCC-NetT1/FLAIR and IC-NetT1/FLAIR), different sample

weights were assigned to the different MRI sequences. This was done

to improve the segmentation performance on FLAIR images, which

turned out to be amore challenging task. All U-Netswere trained using

a Dice loss function and a stochastic gradient descent optimizer with

a decaying learning rate. Similar to the previous section, the networks

were trained andevaluatedbyperforming10-fold cross-validation. For

the CC-NetT1 and CC-NetFLAIR, the cross-validations were also strat-

ified based on atrophy levels. This stratification entailed assigning an

atrophy level of high, medium, or low based on whether the normal-

ized CC area within the cohort was in the top, middle, or bottom third.

On the other hand, for training IC-NetT1/FLAIR and CC-NetT1/FLAIR, an

equal distribution of T1w and FLAIR samples was maintained across

folds. Figure 3 provides a schematic overview of the entire algorithm

pipeline. All network implementations, training, and testing were per-

formed using Tensorflow 2.4.1.

Finally, similar to what was performed for the automatic midslice

selection, a scanner-wise cross-validation strategy was also investi-

gated for the IC and CC segmentations.

Reproducibility: Scan-rescan precision

To discern the reproducibility of the segmentation tool in estimating

the normalizedCCarea, a separate dataset of 9MSpatients (6 females,

age 38± 13 years, disease duration 7.3± 5.2 years) scanned with both

T1w and FLAIR in all three MRI scanners on the same day was used.

Thereafter, the intraclass correlation coefficient (ICC) was calculated

as a metric of precision, using the ICC(A,1) model.26 We also aimed

to investigate if the automatic midslice selection (midCNN) introduced

bias into theCC-Net and IC-Net segmentations. Thus, the ICCwas also

calculated on the results obtained from the algorithm segmentations

performed on manually selected midslices on the same 9 patients. We

will refer to this approach as the semiautomatic pipeline.

Applying the full pipeline on real-life data

The full pipeline was re-trained on all available training data and was

thereafter applied on a dataset of 427 additional unique patients who

all had both T1w and FLAIR scans available. These patients’ T1w scan

also underwent FreeSurfer 3-dimensional segmentation of the CC and

an estimation of the total IC volume, for computation of a normal-

ized CC volume (nCCV). The performance of each segmentation tech-

nique was evaluated by correlating it to neurologic disability (SDMT

and EDSS). The processing timewas less than 1minute per slice extrac-

tion and segmentation compared to just over 10 hours per CPU core

for FreeSurfer on a Mac-Book Pro with 3.3 GHz Dual-Core Intel Core

i7 and 8 GB 2133 MHz LPDDR3 RAM (Apple Inc., Cupertino, CA,

USA).

Statistical analysis

Normality was assessed through histograms and Shapiro-Wilk’s test.

Pearson’s and Spearman’s rho correlation coefficients were applied

for parametric and nonparametric data, respectively. A Dice coeffi-

cient was applied to evaluate the accuracy of the segmentations. An

ICC was used to compare intrarater variability, as well as to evaluate

the midslice selection algorithm. A paired t-test was applied to eval-

uate the performance between algorithms, and an analysis of vari-

ance (ANOVA test) was applied to evaluate the algorithms’ perfor-

mance across scanners. A P-value of <.05 was considered statistically

significant.
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F IGURE 3 Full midslice and segmentation pipeline. Initially themidslice selection algorithm picks the slice with the highest probability of being
middle. This is then fed into the segmentation pipelines that segment both the intracranial and corpus callosum area separately. This U-net is based
on themodel by Ronneberger et al.,12 where each convolutional layer in the downsampling path applies twice asmany filters as the previous layer.
The numbers underneath each box represent the number of filters present. Concatenation is applied in order to retain spatial information in the
upsampling path. A kernel size of 3× 3, along with amax pooling of 2× 2, was applied. CC, corpus callosum: IC, intracranial

RESULTS

Midslice selection algorithm

The performance of the three implemented midslice selection net-

works was first obtained through 10-fold cross-validation. All three

architectures showed a mean absolute error (MAE; referring to the

absolute difference between ground-truth and predicted midslice

index) ranging between 0.60 and 1.07 mm. Only a very small portion

of the data showed an absolute error above 3 mm (<1%, <1%, and

<2% for midCNNT1, midCNNFLAIR, and midCNNT1/FLAIR, respectively),

indicating a limited presence of outliers. The maximum absolute error

ranged between 2 and 6 mm. The mean normalized absolute error

ranged between 0.20% and 0.59%.

Subsequently, intrarater variability was analyzed by comparing the

midslice selections performed by the same expert rater on two occa-

sions separated by 2 months. These two different sets of annotations

showed an ICC of .999 and .993 (P-value < .01 for both) for T1w and

FLAIR data, respectively. For comparison, the ICCs between the pre-

dictions from midCNNT1, midCNNFLAIR, and midCNNT1/FLAIR to their

ground-truth annotations were .991, .968, and .998 (P-value < .01 for

all), respectively. Finally, between the two sets of manual annotations,

we observed a mean absolute difference of 0.12 mm (maximum dif-

ference of 3 mm) between the selected midslice indices on T1w data,

whereas on FLAIR data, the mean absolute difference was 0.15 mm

(maximum difference of 3mm).

Furthermore, Table 3 shows the performance of the three networks

when following a scanner-wise cross-validation strategy. In this case,

the proposed algorithms show a similar MAE range of 0.64-1.16 mm,

and again a small minority of prediction errors (<1%, <2%, and <2%

for midCNNT1, midCNNFLAIR, and midCNNT1/FLAIR, respectively) were

higher than3mm.Noneof the scanners showeda significant difference

when tested by ANOVA.

Segmentation algorithm

Similar to the midslice selection algorithm, the performance of the

three scanners’ IC andCC segmentation networkswas evaluated using

10-fold cross-validation. For the IC segmentation, all three networks
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TABLE 3 Performance of themidslice selection algorithms using scanner-wise cross-validation

Overall Aera Avanto Trio

(n= 102) (n= 34) (n= 34) (n= 34)

midCNNT1 MAE 1.16mm 1.11mm 1.11mm 1.28

MeanNAE 0.32% 0.31% 0.29% 0.35%

Max AE 6mm 3mm 3mm 6mm

N. AE≤ 3mm 101 34 34 33

midCNNFLAIR MAE 0.68mm 0.62mm 0.59mm 0.85mm

MeanNAE 0.40% 0.36% 0.34% 0.50%

Max AE 4mm 2mm 3mm 4mm

N. AE≤ 3mm 101 34 34 33

midCNNT1/FLAIR On T1w scans MAE 1.14mm 1.07mm 0.98mm 1.41mm

MeanNAE 0.31% 0.29% 0.26% 0.39%

Max AE 6mm 3mm 3mm 6mm

N. AE≤ 3mm 99 34 34 31

On FLAIR scans MAE 0.64mm 0.76mm 0.44mm 0.71mm

MeanNAE 0.37% 0.44% 0.25% 0.42%

Max AE 2mm 2mm 1mm 2mm

N. AE≤ 3mm 102 34 34 34

Note: For this scanner-wise cross-validation, at each fold the data fromone scanner (Aera, Avanto or Trio)were used as validation set, whereas those from the

remaining scannerswere used as training set. n signifies the number of patients. FormidCNNT1/+FLAIR, theAEs are analyzed separately for eachMRI sequence

(T1-weighted [T1w] and FLAIR) as this is an important metric for a multicontrast algorithm. No significant difference was found across scanners as tested by

analysis of variance (ANOVA).

Abbreviations: CNN, convolutional neural network; MAE, mean absolute error (between ground-truth and predicted midslice); Mean NAE, average normal-

ized absolute error (obtained by dividing each AE by the total image size along the sagittal view); Max AE, maximum absolute error; N. AE≤ 3mm, number of

cases that reported an error that was less or equal to 3mm.

showed similar performance overall (ie, mean Dice coefficient in the

range between .970 and .978). When applying IC-NetT1/FLAIR to seg-

ment both T1w and FLAIR data, the obtained average Dice was sig-

nificantly, but not substantially, better than the two other algorithms

(.98 vs. .97, P< .01, by independent t-test).

The CC-NetT1 exhibited a significantly higher performance on aver-

age than FLAIR segmentations, with a mean Dice coefficient of .91

vs. .88 for both CC-NetFLAIR and CC-NetT1/FLAIR (P-value: <.01, by

independent samples t-test).Moreover, when applyingCC-NetT1/FLAIR,

the differences between T1w and FLAIR persisted, with T1w images

showing a significantly higher segmentation accuracy on average (Dice

coefficient of .895 ± .070) compared to FLAIR scans (.865 ± .074) (P-

value: <.05, by independent samples t-test). The higher the level of

CC atrophy, the lower the performance, across all three of the imple-

mented architectures (Figure 4). Representative examples from theCC

and IC algorithm are presented in Figure 5.

Finally, the results from the scanner-wise analysis are presented

in Table 4. The performance obtained on the IC segmentation is

consistent with that observed using 10-fold cross-validation across all

three networks and scan contrasts. Similarly, the CC segmentations

performed on T1w data, using both CC-NetT1 and CC-NetT1/FLAIR,

were largely unchanged compared to the 10-fold cross-validation. In

all these cases, no significant differences in performance were found

across scanners, as tested by ANOVA. In contrast, the accuracy of the

CC segmentations on FLAIR scans using the CC-NetT1/FLAIR resulted in

significant differences between scanners, as tested byANOVA. For this

dataset, the highest accuracy was observed when testing the network

onTrio data (meanDice of .852) and the lowest accuracy onAera (mean

Dice of .742).

Reproducibility

Table 5 presents the ICCs that were computed between normalized

CC areameasures (automatic and semiautomatic) from 9 patients who

were scanned using all three scanners on the same day. Despite the

high accuracy of the automatic midslice selection algorithm, the use

of the semiautomatic pipeline led to numerically higher ICC in the

FLAIR-specific pipeline (.828 vs. .739). In the segmentation of T1wdata

using IC-NetT1/FLAIR + CC-NetT1/FLAIR, the ICCs were similar to the

semiautomatic approach (.910 with 95% confidence interval of [.734,

.977] vs. .908with 95% confidence interval of [.617, .979]).

Clinical correlates

A total of 427 unique patients, having both T1w and FLAIR scans avail-

able and not belonging to the training data, were available for segmen-

tation by our algorithm as well as FreeSurfer. Both the FreeSurfer and
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F IGURE 4 A clustered boxplot showing
how the segmentation accuracy significantly
decreases with higher atrophy. All patients in
the training cohort were split into one of three
atrophy levels, based onwhether their
normalized CC area was in the top, middle, or
bottom third of the cohort. *P-value< .05;
**P-value< .01; CC, corpus callosum

TABLE 4 Performance of the IC and CC segmentation networks using scanner-wise cross-validation

Overall Aera Avanto Trio

(n= 102) (n= 34) (n= 34) (n= 34)

T1 only IC-NetT1 .974± .019 .973± .011 .976± .012 .971± .029

CC-NetT1 .902± .065 .908± .049 .902± .050 .896± .088

FLAIR only IC-NetFLAIR .965± .028 .970± .014 .957± .043 .968± .013

CC-NetFLAIR .828± .110 .812± .144 .846± .098 .827± .094

T1 using T1/ FLAIR networks IC-NetT1/+FLAIR .974± .013 .975± .006 .973± .011 .973± .019

CC-NetT1/+FLAIR .894± .062 .911± .028 .888± .067 .884± .078

FLAIR using T1/FLAIR networks IC-NetT1/FLAIR .967± .019 .961± .029 .970± .010 .971± .010

CC-NetT1/FLAIR .808± .149 .742± .196** .830± .128** .852± .079**

Note: For this scanner-wise cross-validation, at each fold the data from one scanner (Aera, Avanto or Trio) were used as validation set, whereas those from

the remaining scanners were used as training set.

Abbreviations: CC, corpus callosum; FLAIR, fluid-attenuated inversion recovery; IC, intracranial; n, number of patients; T1, T1-weighted scan.

**P < .01, only the CC segmentation of FLAIR scans using the CC-NetT1/+FLAIR algorithm showed a significant difference between scanners, as tested by

analysis of variance (ANOVA). All other segmentations did not vary significantly across scanners.

TABLE 5 Intraclass correlation coefficients of automatic and semi-automatic pipelines

Automatic midslice selection Manual midslice selection

IC-NetT1 +CC-NetT1 ICC= .942 ICC= .883

95%CI: .602-.988 95%CI: .679-.97

IC-NetFLAIR +CC-NetFLAIR ICC= .739 ICC= .828

95%CI: .421-.925 95%CI: .501-.956

IC-NetT1/FLAIR +CC-NetT1/FLAIR T1 data ICC= .908 ICC= .910

95%CI: .617-.979 95%CI: .734-.977

FLAIR data ICC= .753 ICC= .633

95%CI: .421-.931 95%CI: .235-.889

Note: Results presented do not significantly differ between algorithms, as tested by independent samples t-tests.
Abbreviations: CC, corpus callosum; CI, confidence interval; FLAIR, fluid-attenuated inversion recovery; IC, intracranial; ICC, intraclass correlation coeffi-

cient; T1, T1-weighted scan.
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F IGURE 5 Segmentation output for each
sequence and atrophy level. nCCA, normalized
corpus callosum area

the FLAIR segmentation algorithms displayed significant correlations

with both current and future physical and cognitive disabilities. The

combinedT1wandFLAIR segmentation pipeline for T1wscanswas not

significantly correlated with EDSS and SDMT at baseline, whereas the

T1w-specific algorithm correlated with baseline EDSS. However, both

the combined and T1w-specific pipelines were significantly associated

with future physical and cognitive scores (Table 6).

DISCUSSION

We report a fully automated deep learning-based segmentation tool

tailored for 3-dimensional T1w and T2w-FLAIR scans, including an

automatic midslice selection, that outputs a normalized CC area, an

established metric of neurodegeneration in MS. The automatic slice

selectionproducedanoutputwithover98%extractionaccuracywithin

3 mm of the true midslice. This level of accuracy was also observed

when using a scanner-wise cross-validation approach, for which the

networks’ performance was evaluated on data from unseen scan-

ners. The segmentation pipeline further segments the IC area with a

mean Dice coefficient of .97-.98. The CC, a smaller and more diffi-

cult biomarker to segment, presented significantly lower mean Dice

coefficients with FLAIR (.87-.90) as compared to T1w scans (.91).

As hypothesized, the CC segmentation accuracy dropped in patients

with greater atrophy. A higher level of accuracy and reliability for CC

segmentations performed on unseen scanners was observed on T1w

data, as opposed to FLAIR, as tested by scanner-wise cross-validation.

The same approach showed high and consistent performance across

scanners and contrasts for the IC segmentation. Furthermore, in our

subcohort of scan-rescanT1wdata, the fully automatic algorithm’s pre-

cision performed well with a high ICC (above .90), indicating excellent

reliability. On the other hand, FLAIR provided lower reproducibility

with an ICC ranging between .74 and .75. FreeSurfer and the FLAIR
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TABLE 6 Segmentation output correlation with FreeSurfer and clinical disability

Pipeline

FreeSurfer nCCV

(n= 427)

EDSS± 6months

(n= 252)

EDSS futurea

(n= 331)

SDMT± 6months

(n= 172)

SDMT

futureb

(n= 304)

FreeSurfer nCCV N/A ρ=−.19** ρ=−.18** r= .18* r= .24**

FLAIR-specific r= .69** ρ=−.13* ρ=−.19** r= .18** r= .28**

T1w-specific r= .80** ρ=−.15* ρ=−.18** r= .12 r= .18**

Combined T1w and FLAIR FLAIR r= .68** ρ=−.21** ρ=−.24** r= .25** r= .29**

T1w r= .81** ρ=−.12 ρ=−.18** r= .12 r= .21**

Abbreviations: nCCV, normalized corpus callosum volume; EDSS, ExpandedDisability Status Scale; n, number of patients; r, Pearson’s correlation coefficient;
SDMT, Symbol DigitModalities Test; T1w, T1-weighted scan; ρ, Spearman’s rank correlation coefficient.

*P< .05; **P< .01.
aEDSS follow-up timewas 6.7± 2.6 years.
bSDMT follow-up timewas 5.8± 2.8 years.

algorithm produced similar clinical correlations, tending to be better

than the T1w algorithm that did not significantly correlate with base-

line SDMT scores.

Compared to a previous study by our group,14 the main technical

novelties of the present work are the introduction of an automatic

midslice selection, the possibility of running multiple MRI sequences,

and an adaptation for modern 3-dimensional volumetric sequences.

The implemented CNNs can receive, as input, raw 3-dimensional T1w

and/or FLAIR sequences, and subsequently select the midsagittal slice

of interest for CC segmentation, with high accuracy. In a clinical or

research setting, the use of this algorithm would, therefore, greatly

limit the manual interrater disagreement that otherwise may exist

when selecting a slice. In all threemidslice algorithms, a very high accu-

racywas achieved,with anoverallmeanabsolute prediction error rang-

ing between 0.64 and 1.16mm. The FLAIRmidslice selection tended to

be better than the T1w, most likely secondary to having a higher res-

olution (1 mm isotropic vs. 1 × 1 × 1.5 mm). An excellent performance

was observed when testing the algorithm on data from scanners that

were not used for training. In some cases, this method even outper-

formed the original 10-fold cross-validation approach, suggesting that

the addition of appropriate data augmentationmay help generalize the

network performance to unseen data. This is a promising finding that

suggests that our slice selectionmethod could potentially be applied in

other cohorts. Moreover, given the potential suggested by the present

results, in the future we aim to further diversify the type of input that

can be fed into this type of CNNby training it using different variations

of T1w, T2w, and proton density-weighted sequences.

FreeSurfer is one of the most frequently applied brain segmen-

tation software and it provides a cross-sectional stream as well as

a longitudinal stream to improve segmentation results.9 Although

FreeSurfer CC segmentation is precise, with an average coeffi-

cient of variation ranging from 1% to 4%, the Dice accuracy range

has been observed between .79 and .84 for the cross-sectional

and longitudinal streams, respectively.27 Our Dice coefficient var-

ied depending on the patient’s atrophy level (.85-.94) but was over-

all at least on par, or better, with similar studies applying CNNs to

segment the CC, such as Platten et al. with a Dice of .89,14 and

Maruyama et al. with a Dice of .79 (Jaccard index of .652).13 Over-

all, the segmentations performed on T1w data were shown to be

significantlymore accurate than those performed on FLAIR data (inde-

pendently from the type of segmentation network used). This differ-

ence is likely secondary to unsuppressed cerebrospinal fluid directly

inferior to the CC, making its delineation inherently more difficult.

This finding was also reflected in the results of the scanner-wise

cross-validation: FLAIR data showed numerically lower CC segmen-

tation performance, not only compared to T1w scans, but also com-

pared to the results obtained on the same FLAIR data using a 10-

fold cross-validation strategy (overall mean Dice of .828 vs. .881 for

CC-NetFLAIR, and .808 vs. .865 for CC-NetT1/FLAIR). This suggests that

although our proposed network can generalize very well on new

unseen T1w data, it still remains challenging to obtain an equally high

level of accuracy on FLAIR scans from unseen cohorts. This result was

expected, considering the following two aspects jointly: (1) CC seg-

mentation on FLAIR scans was already found to be the most chal-

lenging task of the present work; (2) the networks were trained not

only on cohorts that differ from those used for validation but also

using a lower amount of data (2/3 of the dataset instead of 9/10). In

the future, this issue may be addressed by applying further changes

to the architecture; for example, adding CC shape prior information

as an additional input to the network, an approach that was found

to improve the segmentation accuracy in previous MRI segmentation

studies.28,29

Moreover, discrepancies were found when analyzing the perfor-

mance across different atrophy levels, as patients with more atrophy

featured lower segmentation accuracy. This result is intuitive because

a high heterogeneity in the CC atrophy can make it particularly chal-

lenging for the networks to segment properly. It should, however, also

be noted that there was not a dramatic loss in performance in patients

with high atrophy. In future studies, we plan to expand our dataset to

includemore patients, while maintaining a homogenous distribution of

the atrophy levels in order to improve segmentation performance in

cases with high atrophy.

In our reproducibility analysis, we compared the normalized CC

area that was obtained from segmentations performed on manually
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selected slices against automatically selected slices. Our results indi-

cate that automatic midslice selection algorithmmay constitute a valid

and quick alternative to reduce the work performed by radiologists,

who often must manually extract and annotate datasets of hundreds

(or thousands) ofMRI scans in large studies. An excellent level of repro-

ducibility (ICC > .90) was observed on T1w data by both pipelines.

Moderate to good agreement was observed on the measures obtained

from FLAIR data (ICC between .739 and .753).

The CC is a promising marker for several neurodegenerative dis-

eases such as Alzheimer’s disease,30 Parkinson’s disease,31 amy-

otrophic lateral sclerosis,32 and particularly MS.33 Its significance in

MS is intimately tied to the CC being a large white matter structure

in a disease that predominantly affects myelin. Several studies have

shown that the extent of damage to the CC significantly correlates

to both physical and cognitive disabilities,7,27,34 and that the CC is a

predictor of cognitive disability 8.5 years later.5 Our observations cor-

roborate this notion, showing significant correlations with both EDSS

and SDMT at both baseline and follow-up on average 6-7 years later.

Of note, our data consist of real-world clinical data, which inherently

introduces variability inMRI and clinical parameter acquisition, such as

different MRI technicians and raters. This may partly explain the low,

albeit significant, correlation coefficients. Of interest is that the corre-

lations tended to be numerically higher for the FLAIR pipelines. This

could be a result of clinically more disabled patients also having more

atrophied CC, which the FLAIR algorithm under-segments further

(relative to the T1w algorithm), leading to an artificially inflated asso-

ciation between their clinical score and the normalized CC area.

A main and important limitation of the algorithms is the fluctuation

that may be introduced through alignment and subject placement. Our

MRI scans are aligned along the anterior-posterior commissures, pro-

viding a relatively consistent CC angle. Although not tested, introduc-

ing an angle to this alignment would likely affect the output. Future

improvements to this pipelinewould include a registration step tomini-

mize the effect of acquisition or reconstruction angles. Similarly, an axi-

ally or coronally acquired sequence would have to be reconstructed to

sagittal before introduction into the algorithm. Although we system-

atically introduce three different scanner types, they are all from the

same manufacturer. It is, thus, unknown how the algorithm will fare

with scans from differentmanufacturers. However, our results promis-

ingly indicate that there may be minimal effect between scanners and

MRI strengths. Likewise, it is clear from our study that the degree of

atrophy affects the segmentation accuracy, which in turn may affect

the association between the normalized CC area and the correspond-

ing clinical scores. To our knowledge, this is the first study to examine

this relationship between atrophy and segmentation accuracy in MS,

but a similar bias may be present in other segmentation algorithms. It

is reasonable to think that our algorithms are in fact relatively robust to

the atrophy levels compared to other algorithms, as they were specif-

ically trained to handle a heterogeneous MS population. Another limi-

tation is that our algorithms are only trained to handle T1w and FLAIR

scans in MS. There is also an inherent discrepancy in comparing a vol-

ume (FreeSurfer) to an area (our algorithms); however, both of these

methods are clinically relevant.

In conclusion,wepresent a quick, fully automatic, and accurate deep

learning-based segmentation tool that may be used in monitoring neu-

rodegeneration in MS. Due to its computational efficiency, it may be

feasible to implement in large MS studies. It also performs similarly on

both 1.5 and 3.0 T. Future directions may include applying the algo-

rithm prospectively to evaluate the neuroprotective effect ofMS ther-

apies.
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