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Abstract

Background: Mating changes the mode of action of |7beta-estradiol (E2) to accelerate oviductal
egg transport from a nongenomic to a genomic mode, although in both pathways estrogen
receptors (ER) are required. This change was designated as intracellular path shifting (IPS).

Methods: Herein, we examined the subcellular distribution of ESRI and ESR2 (formerly known as
ER-alpha and ER-beta) in oviductal epithelial cells of rats on day | of cycle (Cl) or pregnancy (PI)
using immunoelectron microscopy for ESR| and ESR2. The effect of mating on intraoviductal ESR|
or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain
creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on Cl or Pl treated with selective
agonists for ESRI (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also

evaluated on CI or Pl rats.

Results: Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma
membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as
well as the response to E2. In Cl and PI rats, PPT increased Ckb while both agonists increased c-
fos. DPN increased Ckb and s100g only in Cl and Pl rats, respectively. PPT accelerated egg

transport in both groups and DPN accelerated egg transport only in CI rats.

Conclusion: Estrogen receptors present a subcellular distribution compatible with E2 genomic
and nongenomic signaling in the oviductal epithelial cells of Cl and Pl although IPS occurs
independently of changes in the distribution of ESRI and ESR2 in the oviductal epithelial cells.
Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on
E2-induced accelerated egg transport. These findings reveal a profound influence on the ER

signaling pathways exerted by mating in the oviduct.
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Background

It is well recognized that in the female mammal ovarian
steroids, embryonic signals or mating-associated signals
regulate egg transport through the oviduct (for review see
[1])- In cyclic rats, oocytes reach the uterus approximately
72 h after ovulation, whereas in pregnant rats embryos
take 96 h. Oocytes take 96 h to traverse the oviduct in rats
made pseudopregnant by mechanical stimulation of the
cervix in the evening of proestrus, therefore the above dif-
ference is dependent on mating-associated signals rather
on whether eggs are fertilized or not [2]. Eggs cross the
ampullary-isthmic junction 9 h earlier and egg surrogates
move at higher speed in the isthmic segment with most of
them arriving earlier to the intramural segment in preg-
nant rats than in cycling rats [3]. Thus, a broad change
occurs in oviductal functioning elicited by mating-associ-
ated signals.

A single injection of 17B-estradiol (E,) on day 1 of the
cycle or pregnancy shortens oviductal transport of eggs
from the normal 72-96 h to less 24 h [1]. Previously, we
demonstrated that inhibitors of RNA and protein synthe-
sis block E,-induced oviductal embryo transport accelera-
tion in pregnant rats, but fail to do so in cyclic rats [4,5].
Furthermore, in cyclic rats exogenous E, activates protein
phosphorylation in the oviduct via a nongenomic path-
way, since such activation occurs when mRNA synthesis is
completely suppressed by o-Amanitin [6]. Estradiol-
induced phosphorylation is essential for its effect on
oocyte transport in cycling rats since local administration
of a broad-spectrum inhibitor of protein kinases totally
blocks the effect of E, on egg transport [7,8]. Thus, E,
accelerates oviductal egg transport through nongenomic
pathways in cyclic rats, while it does it through genomic
pathways in pregnant rats. Recently, this change in path-
ways has been designated "intracellular path shifting"
(IPS) [9]. Further investigation has shown that activity of
the enzyme Catechol-O-Methyltransferase (COMT) is
higher in the oviduct of cyclic than pregnant rats while
ORA486 a selective inhibitor of COMT blocked the effect of
E, on oviductal egg transport only in cyclic rats suggesting
that decreased activity of oviductal COMT induced by
mating is one of the underlying mechanisms of IPS [9].
Although the physiological relevance of IPS has not been
clearly established it is probable that decrease in the
COMT activity induced by mating in the oviduct protects
the embryos from the deleterious effect that methox-
yestradiols exert during the first stages of development
[10].

Estrogens induce cellular changes in their target organs
through several different mechanisms that involve activa-
tion of estrogen receptors (ER). The two main forms of ER,
ESR1 and ESR2 (formerly known as ER-a and ER-f), have
distinct tissue expression patterns in both humans and
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rodents [11]. The antiestrogen ICI 182780 blocks E,-
induced egg transport acceleration in cyclic and pregnant
rats [7] indicating that ER participates in both the
genomic and the nongenomic pathways involved in the
kinetic action of E, on the oviduct. However, we have
found that levels of ESR1 and ESR2 mRNA and protein in
oviducts of pregnant rats were similar to those oviducts of
cycling rats, suggesting that IPS is not explained by
changes in the expression of ER in the oviduct [12].
Herein, we determined the effect of mating on subcellular
distribution and functionality of ESR1 and ESR2 in the rat
oviduct. First, we compared immunoreactivity of both ER
associated to cell membrane, cytoplasm and nucleus
between epithelial cells of the ampullary and isthmic seg-
ments of cyclic and pregnant rats following treatment
with E2. We also determined the effect of selective ago-
nists for ESR1 (PPT) or ESR2 (DPN) on mRNA levels of
three E2-inducible genes c-fos, brain creatine kinase (Ckb)
and calbindin 9 kDa (s100g) [13,14] in the oviduct of
pregnant and cyclic rats. Additionally, the role of ESR1
and ESR2 on oviductal egg transport was evaluated in
cyclic or pregnant rats treated with PPT or DPN.

Methods

Animals

Sprague-Dawley rats (bred in house) weighing 200-260 g
were used. Animals were kept under controlled tempera-
ture (21-24°C), and lights were on from 0700 to 2100 h.
Water and pelleted food were supplied ad libitum. The
phases of the estrous cycle were determined by daily vagi-
nal smears [15] and all females were used after showing
two consecutive 4-day cycles. Females in pro-estrus were
kept either isolated or caged with fertile males. The fol-
lowing day (estrus) was designated as C1 in the first
instance and day P1 in the second, provided spermatozoa
were found in the vaginal smear. The care and manipula-
tion of the animals was done in accordance with the ethi-
cal guidelines of our institution.

Treatments

Systemic administration of E,

On C1 or P1 E, 5 pug was injected subcutaneously (s.c.) as
a single dose dissolved in 0.1 mL propylene glycol. Con-
trol rats received propylene glycol alone.

Local administration of selective agonist of ESRI (PPT) or ESR2
(DPN)

PPT (1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole,
Sigma Chem. CO, St. Louis, MO) [16] or DPN (Diarylpro-
pionitrile, Tocris Cookson Inc. Ellisville, MO) [17] were
injected into each bursa at a concentration of 7.5, 22.5 or
67.5 ng/uL in DMSO 1%. Control rats received the corre-
sponding vehicle alone. Since the range of effective doses
of PPT and DPN given systemically is between 2.5 pg/ulL-
250 pg/ul [18,19] we considered appropriate diminished
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these doses to approximately 1000-fold for local
(intrabursal) injection. To our knowledge these doses of
PPT or DPN did not change the plasmatic E, and Proges-
terone level in the rat.

Animal surgery and assessment of egg transport
Intrabursal administration of agonists, which minimizes
the dose needed to affect the oviduct without systemic
effects, was performed on C1 or P1 as previously
described [5]. At this time, ovulation has already taken
place, so this treatment cannot affect the number of
oocytes ovulated. Egg transport was evaluated as previ-
ously published [2,4,5]. Twenty-four hours after treat-
ment, animals were sacrificed and their oviducts were
flushed individually with saline. Flushing was examined
under low-power magnification (25x), and the number of
eggs found was recorded.

Real-time PCR

Whole oviducts on C1 (N = 4) or P1 (N = 4) were dis-
sected and flushed to avoid contamination with oocytes
or embryos mRNA. Oviductal RNA was isolated using Tri-
zol Reagent (Invitrogen, Gaithersburg, MD) and 1 ng of
total RNA of each sample was treated with Dnase [ Ampli-
fication grade (Invitrogen). The single-strand cDNA was
synthesized by reverse transcription using the Superscript
IIT Reverse Transcriptase First Strand System for RT-PCR
(Invitrogen), according to the manufacturer's protocol.
The Light Cycler instrument (Roche Diagnostics, GmbH
Mannheim, Germany) was used to quantify the relative
gene expression of c-fos, Ckb or s100g in the oviduct of
cyclic and pregnant rats; Gapdh was chosen as the house-
keeping gene for load control because we have previously
demonstrated that E, or pregnancy did not affect its
expression [20]. The SYBR® Green I double-strand DNA
binding dye (Roche Diagnostics) was the reagent of
choice for these assays. Primers for c-fos were 5' CCG AGA
TTG CCA ATC TAC TG 3' (sense) and 5' AGA AGG AAC
CAG ACA GGT CC 3' (antisense), Ckb 5' AAG CTG GCA
GTA GAA GCC CT 3' (sense) 5' TTG TCG AAG AGG AAG
TGG TC 3' (antisense), s100g 5' GGC AGC ACT CAC TGA
CAG C 3' (sense) 5' CAG TAG GTG GTG TCG GAG C
3'(antisense) and for Gapdh were 5' ACC ACA GTC CAT
GCC ATC AC 3' (sense) and 5' TCC ACC ACC CTG TTG
CTG TA 3' (antisense). The thermal cycling conditions
included an initial activation step at 95°C for 25 min, fol-
lowed by 40 cycles of denaturizing and annealing-ampli-
fication (95°C for 15 sec, 60°C for 15 secand 72°C for 30
sec) and finally one cycle of melting (95° to 60°C). To
verify specificity of the product, amplified products were
subject to melting curve analysis as well as electrophore-
sis, and product sequencing was performed to confirm
identity as described by Muscillo et al [21]. The expression
of transcripts was determined using a method previously
reported [22,9].
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Immunoelectron microscopy

Oviducts from vehicle and E,-treated rats were separated
into ampulla and isthmus and the excess mucus was
removed in each segment by flushing with 50 pL saline.
Both segments were fixed in 4% freshly depolymerised
paraformaldehyde, 0.5% glutaraldehyde in phosphate
buffer pH 7.4 0.1 M containing saccharose 0.1 M, DMSO
1% and CaCl, 1% for 2-4 h at room temperature. The
fixed samples were washed three times with phosphate
buffer, dehydrated in a graded ethanol series and infil-
trated with LR Gold (Plano, Miinchen, FRG). Subse-
quently, the samples were transferred to gelatine capsules
filled with 0.8% (w/v) benzoyl peroxide in LR Gold and
kept for polymerization at a pressure of 500 mmHg. The
blocks were cured for 1-2 days at room temperature before
sectioning with a Sorvall-2000 ultramicrotome using a
diamond knife. The sections (50-80 nm) were mounted
on formvar-coated nickel grids and incubated on droplets
of 0.1 M glycine in PBS pH 7.6, and subsequently blocked
with 1% bovine foetal serum for 2 h at room temperature.
The grids were then incubated for 2 h with a rabbit anti-
ESR1 (MC-20, Santa Cruz Biotechnology, Santa Cruz, CA)
or anti-ESR2 (clone 68-4, Chemicon International, Biller-
ica, MA) at 1:50 dilution. After washing with PBS, the
preparations were incubated for 1 h with goat anti-rabbit
immunoglobulin conjugated to 10 nm gold particles
(Kirkegaard & Perry Laboratories Inc, Gaithersburg, MD)
diluted 1:30. Sections were washed and contrasted with
Reynolds stain [23]. All sections were examined using a
Phillips-TECNAI 12 BIOTWIN EM Microscope (FEI Com-
pany, Hillsboro, OR) at 80 kV. As negative controls the
primary antibody was replaced by rabbit preimmune
serum or oviductal samples without prior incubation with
anti-ESR1 antibody or anti-ESR2 antibody were also
included. For further validation we also performed immu-
noelectron microscopy of the isthmic segment from vehi-
cle and E,-treated rats using a mouse anti-ESR1 from
another company (H-151, Calbiochem, La Jolla, CA), as
primary antibody diluted 1:30. Furthermore, we used
gold-labeled particles of 40 nm (Kirkegaard & Perry Labo-
ratories Inc) to obtain photomicrographs at low magnifi-
cation for show unspecific background labeling in the
oviductal lumen. At least ten areas of 63 pm? from differ-
ent epithelial cells and different sections of an oviduct
were photographed and the photomicrographs were digi-
talized in an iBook computer (Apple Computer Inc,
Cupertino, CA), and gold particles present only in the
cells were counted using the image analysis software
Adobe Photoshop 7.0 (Adobe Systems Inc, San Jose, CA)
by an observer blinded to the treatment groups. The
results of the immunolabeling are presented as the quo-
tient of the number of gold particles present divided by
the area and cell number inspected [24].
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Statistical analysis

The results are presented as mean + SE. Overall analysis
was done by Kruskal-Wallis test, followed by Mann-Whit-
ney test for pair-wise comparisons when overall signifi-
cance was detected.

Results

Distribution of ESRI and ESR2 in epithelial cells of mated
and non-mated rat oviducts treated with E,

At 09:00 h of C1 or P1, 8 rats were injected with E, 5 pug or
vehicle and 3 h later they were sacrificed and their ovi-
ducts were separated into ampulla and isthmus and proc-
essed for immunoelectron microscopy. Representative
photomicrographs of the subcellular distribution of ESR1
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and ESR2-reacting gold particles in oviductal epithelial
cells of the rat are shown in Figures 1, 2 and 3. Receptor
immunoreactivity was found associated with the nucleus,
cytoplasm and plasma membrane, including cilia, of the
epithelial cells. Data for subcellular distribution of ESR1
in ampulla and isthmus are shown in Figure 4. Mating
increased the immunoreactivity of ESR1 in the plasma
membrane and cytoplasm of the ampullary segment
although it did not affect the ESR1 immunoreactivity in
the isthmus. In cyclic rats, E, treatment increased the den-
sity of ESR1 labeling in all three compartments from both
segments, except the nucleus of the isthmic segment,
whereas in pregnant rats a major increase in labeling was
observed only in the cytoplasm of the isthmic segment.

Figure |

Representative photomicrographs of oviductal epithelial cells processed by immunoelectron microscopy with
gold labeled-antibodies of 10 nm for ESRI (a-c) or ESR2 (d-f). Ampullary and isthmic sections of cyclic (a-c) and preg-
nant (d-f) rats are shown in the upper and lower panels, respectively. Arrows denotes ESR|-or ESR2 reacting gold particles in
the epithelial cells. Arowheads emphasize the association of estradiol receptor immunoreactivity with cilia (cl, see insert in d).
Asterisks indicate unspecific background laleling. Bar: 0.5 pm. PM = plasma membrane, C = cytoplasm, N = nucleus, L =

lumen, SV = secretory vesicle.
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Figure 2

Representative photomicrographs of oviductal epithelial cells processed by immunoelectron microscopy with-
out prior incubation with anti-ESRI antibody (a) or anti-ESR2 antibody (b), or incubated with rabbit preim-
mune serum (c). Bar: 0.5 pm. PM = plasma membrane, C = cytoplasm, L = lumen, cl = cilia. Bar: 0.5 pm.

Figure 3

Representative photomicrographs at low magnification of oviductal epithelial cells processed by immunoelec-
tron microscopy with gold labelled-antibodies of 40 nm for ESRI (a) or ESR2 (b). Arrows denotes ESRI-or ESR2
reacting gold particles in the epithelial cells. Note scarce unspecific background laleling. Bar: 0.5 um. PM = plasma membrane,
C = cytoplasm, L = lumen.
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Figure 4

Mean number of the density of gold particles (X £ SE) observed for ESRI in the plasma membrane (PM), cyto-
plasm (C) and nucleus (N) of epithelial cells of oviductal ampulla (A) and isthmus (I) from rats on day | of the
cycle or pregnancy, 3 hours after treatment with oestradiol. Means with different letters are significantly different
from each other within each graph (P < 0.05). a # b # c. Replicas of this experiment are stated in the figure.

Mating decreased immunoreactivity of ESR2 in the cyto-
plasm of the ampullary and isthmic segments although it
increased labeling of ESR2 in the plasma membrane of the
isthmus. In cyclic rats, E, decreased ESR2 density in the
cytoplasm in the ampulla and in the nucleus of the isth-
mus, whereas in pregnant rats, E, increased the density of
ESR2 labeling in the cytoplasm in the ampulla and
decreased it in the plasma membrane and nucleus in the
isthmus (Figure 5). The results using the mouse anti-ESR1
were similar to those obtained with the rabbit anti-ESR1
(not shown). Furthermore, low unspecific background
labeling of gold particles was found in the lumen of epi-
thelial cells in control experiments without primary anti-
body or incubation with rabbit preimmune serum (see
figures 2 and 3). All this supports the specificity in the rec-
ognition of ER immunoreactivity.

Effect of selective agonist of ESRI or ESR2 on the level of
c-fos, Ckb and s100g in the oviduct of pregnant and cycle
rats

Rats on C1 (N =4) or P1 (N = 4) were locally treated with
67.5 ng/uL of PPT or DPN and 3 h later oviducts were
excised and their total RNA were processed by RT-PCR
using specific primers for c-fos, Ckb, s100g or Gapdh as
described above. Figure 6 shows that in cyclic rats oviduc-
tal levels of c-fos, Ckb and s100g were similar while in preg-
nant rats levels of Ckb were major than c¢-fos and s100g.
PPT increased 5-fold and 3-fold the levels of Ckb and c-fos
in cyclic and pregnant rats while s100g was not affected in
both conditions. In cyclic rats, DPN increased 4- and 5-
fold Ckb and c-fos respectively, while in pregnant rats
DPN increased 2.5 fold c-fos and 2-fold s100g.
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Figure 5

Mean number of the density of gold particles (X * SE) observed for ESR2 in the plasma membrane (PM), cyto-
plasm (C) and nucleus (N) of epithelial cells of oviductal ampulla (A) and isthmus (I) from rats on day | of the
cycle or pregnancy, 3 hours after treatment with oestradiol. Means with different letters are significantly different
from each other within each graph (P < 0.05). a # b # c. Replicas of this experiment are stated in the figure.

Effect of selective agonist of ESRI or ESR2 on oviductal
egg transport in mated and non-mated rats

Rats on C1 or P1 were locally treated with PPT or DPN 7.5,
22.5 or 67.5 ng/uL and 24 h after treatment egg transport
was evaluated in all groups as described above. The mean
number (X + SE) of eggs recovered from the oviducts of
control or treated groups are shown in figure 7. Intrabur-
sal administration of PPT decreased the number of eggs
recovered from the oviduct in cyclic and pregnant rats
although at lower doses in cyclic rats. Administration of
DPN decreased the number of eggs only in C1, but not in
P1 rats.

Discussion

An important variable that influences E, actions on its tar-
get cells is the differential distribution of ESR1 and ESR2.
Previous works have reported presence of ESR1 and ESR2
in the epithelium and smooth muscle layers of the amp-

ullary and isthmic segments of the rat oviduct [25,26].
Here, we show for the first time that ESR1 and ESR2 were
found associated to the plasma membrane, cytoplasm
and nucleus of the epithelial cells of both oviductal seg-
ments in the rat. This is in agreement with previous
immunoelectron microscopy studies reporting localiza-
tion of ESR1 in non-nuclear sites in other cell types
[27,28]. Other studies have also shown the presence of
ESR1 and ESR2 in non-nuclear sites of various cell types
using western blot or ligand-blot of subcellular enriched
fractions [29-31]. Ligand activation of ER associated to
cell membrane and cytoplasm can modulate downstream
pathways that induce discrete signaling responses, includ-
ing stimulation of adenylyl cyclase in breast and vascular
tissues [32,33], activation of Ca2+ flux in arterial smooth
muscle [34] or the cascade Src/Ras/ERK [35]. Our findings
provide evidence of the presence of multiple pools of ER
that could initiate genomic and nongenomic responses to
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Figure 6

Mean number of the relative copies (X * SE) of Ckb,
c-fos and s100g in the rat oviducts on day | of cycle or
pregnancy following intrabursal treatments with the
selective agonists of ESRI, PPT or ESR2, DPN. V:
vehicle of drugs, PPT: 67.5 ng/uL, DPN: 67.5 ng/uL. All treat-
ments were given 3 h before autopsy. Each experiment con-
sisted of 4 replicas. Means with different letters are
significantly different from each other (P < 0.05),a#b#c#

E,. Furthermore, the data reported here show a dynamic
behavior of these ER pools in response to mating-associ-
ated signals and to an E, pulse.

Since mating induces IPS we expected that pregnant and
cyclic rats would exhibit different ER subcellular distribu-
tion, e.g. higher ESR1, ESR2 or both in the nuclear com-
partment. However, quantitative analyses showed that
mating increased the number of both receptors only in the
non-nuclear compartments. Furthermore, when E, was
administered to pregnant or cyclic rats receptor immuno-
reactivity also accumulated in the non-nuclear compart-
ments. Thus, IPS occurs independently of the changes in
the distribution of ESR1 and ESR2 in the oviductal epithe-
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lial cells induced by mating. ESR1 and ESR2 are also
expressed in the mucosa and muscle layer of the rat ovi-
duct [25,26] so that it is possible that mating stimulates
accumulation of ER in the nuclear compartment of other
cell types. The changes described in gold particle density
may reflect either change in antibody accessibility to
immunoreactive epitopes or true changes in the expres-
sion level of ER. The current data does not allow to distin-
guish between these two possibilities but increases up to
ten fold 3 hours after E, administration seem more plau-
sible as a result of ER dissociation from scaffolding pro-
teins than a result of de novo synthesis. In fact, previously
we have found that levels of ESR1 and ESR2 mRNA and
protein in whole oviducts of pregnant rats were similar to
those in oviducts of cycling rats, suggesting that mating
does not regulate global expression of ER in the oviduct
[12].

We observed different responses in the subcellular distri-
bution of ER in the epithelial cells of the two oviductal
segments. It is known that the relative proportion
between ciliated and secretory epithelial cells varies con-
siderably from ampulla to isthmus [36] so that is proba-
ble that mating-associated signals may have acted
differentially on these two cell types. Further analysis that
segregates the responses of ciliated from secretory epithe-
lial needs to be done. It has been reported that in the rat,
E, acts only in the isthmic segment to accelerate egg trans-
port [37] while that isthmus-specific apoptosis of epithe-
lial cells and activation of cilia-localized ESR2A induced
by clomiphene citrate act in parallel to block egg transport
[19]. Thus, it is probable that differences in the distribu-
tion of ESR1 and ESR2 between ampulla and isthmus
could reflect specific contribution of these segments to
signals provided by E, to regulate egg transport. Further-
more, we did not discard the possibility that E, acts
directly on the smooth muscle cells because it has been
found presence of ESR1 and ESR2 in the myosalpinx of
the rat [25,26].

Interestingly, ESR1 and ESR2 were also observed associ-
ated with the cilia of epithelial cells (see insert in figure
1d). Estradiol regulates differentiation and dedifferentia-
tion of ciliated cells of the mammalian oviduct [38]. Fur-
thermore, follicular fluid of human pre-ovulatory follicles
containing high concentrations of estradiol and progester-
one increased the ciliary beat frequency of human oviduc-
tal ciliated cells [39]. Our findings suggest that E, could
regulate ciliary activity directly through a nongenomic
mechanism probably involving phosphorylation/dephos-
phorylation of some proteins (e.g. tubulin or dynein)
present in this structure. Recently, it has been shown that
ESR2 is colocalized with B-tubulin at stem portion of the
cilia of the oviductal epithelial cells in immature rats [40].
Additionally, gold particles for ESR1 and ESR2 were found
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associated to secretory vesicles. This corroborates previous
works reporting localization of ESR1 and ER2 in the rough
endoplasmic reticulum and secretory vesicles of the
female rat pituitary cells [41]. Although, the biological sig-
nificance of the localization of ESR1 and ESR2 in secretory
vesicles remains to be determined it is probable that a
Golgi-dependent pathway could exist for translation of ER
that could be translocated into the plasma membrane and
mediate nongenomic responses [41].

In other estrogen-sensitive tissues ER subtype expression
is differentially regulated by E,. In the human vena cava,
E, down-regulates ESR1 expression [42] while deprivation
of E, in the cerebral microvessels of ovariectomized rats is
associated with a decrease in the expression of both iso-
forms and E, replacement up-regulates ESR1 but does not

affect expression of ESR2 [43]. In ovine endothelial cells,
short-term treatment with E, down-regulates ESR1, but
not ESR2 while long-term treatment up-regulates ESR1
and down-regulates ESR2 expression [44]. Our findings
provide the first evidence that E, is able to differentially
regulate not just the expression level, but also the subcel-
lular distribution of ESR1 and ESR2 in a target cell. We
also observed different responses in the expression of
three E,-associated signaling genes, c-fos, Ckb and s100g,
in the oviduct of pregnant and cyclic rats when ESR1 or
ESR2 was activated. Moreover, activation of ESR1 or ESR2
increased expression of c¢-fos although mating only
blunted the effect of ESR2. This indicates that mating-
associated signals modulate intraoviductal signalling of
both ER providing evidence that mating may change the
functional role of these receptors in the rat oviduct. On
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the other hand, the role of c-fos, Ckb or s100g on IPS
induction or E,-induced egg transport acceleration needs
to be disclosed.

Given that PPT is 400-fold more selective and DPN is only
70-fold more selective for ESR1 an ESR2 respectively, it
was not surprisingly that PPT would be more effective to
accelerate oviductal egg transport than DPN in cyclic rats.
However, mating decreased effectiveness of PPT and
blocked the effect of DPN. Probably, the nongenomic
pathway by which E, accelerates egg transport operates
through activation of either ESR1 and ESR2 while the
genomic pathway only operates through ESR1. The fact
that IPS is associated with suppression of ESR2 involve-
ment in the kinetic effect of E, in the oviduct indicate that
mating exerts a profound influence on the biology of ER
in a target organ of E, that merits further investigation.

Shao et al [19] have reported that subcutaneous adminis-
tration of DPN retard egg transport in the rat. In this
study, immature animals were treated, prior to DPN
administration, with gonatrophins to mimic the endog-
enous luteneizing hormone surge. Probably, this treat-
ment could have affected the response of the oviduct to
DPN. Another factor is that we recorded the number and
distribution of eggs in the genital tract within the first 24
h after treatment. In order to detect whether PPT or DPN
delay egg transport autopsies should be performed on day
4 or 5 of cycle or pregnancy respectively, but this was not
done.

Conclusion

Estrogen receptors ESR1 and ESR2 present a subcellular
distribution in oviductal epithelial cells that is compatible
with genomic and nongenomic actions of E, in the rat ovi-
duct. Mating is associated with changes in the basal and
E,-induced subcellular distribution of ESR1 and ESR2 in
these cells although it did not clearly explain IPS. Further-
more, mating affected signaling of both ER in the oviduct
and induced loss of functional involvement of ESR2 on
E,-induced accelerated egg transport. These findings
reveal a profound influence on the intraoviductal ER sig-
nalling pathways exerted by mating.
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