
Extended Connectivity Fingerprints as a Chemical Reaction
Representation for Enantioselective Organophosphorus-Catalyzed
Asymmetric Reaction Prediction
Ryosuke Asahara and Tomoyuki Miyao*

Cite This: ACS Omega 2022, 7, 26952−26964 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Predicting the outcomes of organic reactions using data-driven
approaches aids in the acceleration of research. In laboratory-scale experiments, only
a small number of reaction data can be accessed for machine learning model
construction, where reaction representations play a pivotal role in the success of model
construction. Nevertheless, representation comparison for a small data set is not
adequate. Herein, focusing on the enantioselectivity of phosphoric-acid-catalyzed
reactions, various two-dimensional and three-dimensional reaction representations
(descriptors) were compared. Overall, the concatenated form of the extended
connectivity fingerprints showed the best predictive capability for the two types of
data sets: high-throughput experimental data and manually collected literature data sets.
Furthermore, highlighting the substructure contribution to the prediction outcome was
shown to be informative for guiding catalyst development.

■ INTRODUCTION
Developing chemical reactions to produce desired substances
is one of the ultimate goals of organic chemistry. Trial-and-
error approaches combined with expert knowledge have
traditionally dominated the optimization of chemical reactions.
Recently, chemoinformatics1,2 or data-driven approaches have
emerged to fully utilize experimental data to guide the design
of chemical reactions, where the reaction outcomes (e.g.,
yields) are quantitatively predicted from numerical representa-
tions of the reactants or catalysts.3,4 These representations
consist of molecular descriptors, which are abstract expressions
of the compounds involved in the reaction.5 Molecular
descriptors can be experimentally tested or computationally
derived physicochemical parameters,6,7 topological descriptors
derived from chemical formulas,8 and geometrical descriptors
based on molecular conformations.9,10 Physicochemical
descriptors or descriptors based on the hypothetical reaction
mechanism combined with a simple multivariate linear
regression model are able to give an interpretation of the
reaction mechanism.11−13 On the other hand, topological
descriptors accompanied by nonlinear machine learning (ML)
models have sufficient predictive capability when trained on
high-throughput experimental (HTE) data.14,15 Although HTE
data16−18 provide the opportunity to analyze the comprehen-
sive reaction space with high precision, the exhaustive
combinations of substances under uniformly controlled
experimental conditions are not usually available in labo-
ratory-scale experiments for novel reaction development. Thus,
methods for constructing highly predictive ML models trained
on a small number of reactions are highly demanded.

Asymmetric catalyst reactions are paramount in organic
chemistry for selectively synthesizing one of the enantiomers.
Approximately 50% of the currently marketed pharmaceuticals
contain compounds with at least one chiral center.19 Without
catalysts, separation of the racemic mixture is necessary, in
which the theoretical yield is limited to 50%. Because the
energy barrier between enantiomers remains almost the same,
it is difficult to bias the reaction to one enantiomer in a
thermodynamics manner. To solve this issue, asymmetric
catalysts, such as transition-metal catalysts and organocatalysts,
have been developed.20,21

Highly predictive ML models of the enantioselectivity for
asymmetric catalysts have been investigated.22−24 1,1′-Bi-2-
naphthol (BINOL)-based phosphoric acid catalysis reactions
have been used for molecular descriptor development.22,23

Zahrt et al.22 proposed novel reaction representations that do
not depend on a single conformation of the compounds. The
representation includes the steric effect of a molecule by
estimating the grid-occupancy probability of the feasible
conformers. Although ML models with this representation
have high predictive capability when they are trained on a
sufficient number of reactions, comparison with other
molecular descriptors, including traditional two-dimensional

Received: June 18, 2022
Accepted: July 7, 2022
Published: July 25, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

26952
https://doi.org/10.1021/acsomega.2c03812

ACS Omega 2022, 7, 26952−26964

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryosuke+Asahara"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tomoyuki+Miyao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c03812&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c03812?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


(2D) and three-dimensional molecular descriptors (3D), is not
adequate. Furthermore, this sophisticated descriptor is only
applicable to a series of analogous substrates or catalysts owing
to the necessity of molecular alignment. In addition to the
difficulty of deployment, it is not straightforward to use the
descriptors for the design of high enantioselectivity because
space filling at particular grids is the interpretation of the
descriptors.

Methods for interpreting the outcomes of nonlinear ML
models have been developed for biological activity prediction.
The contributions of chemical structural fragments to the
model outcomes can be color-coded on the chemical structures
as model interpretation.25 When a graph neural network is
used as a ML model, sensitivity analysis by changing the input
molecular graph attributions gives the important atoms
(substructures) of molecules.26 The method in the latter
category has already been reported for reaction prediction
using the publicly available large reaction data set of USPTO.27

However, to the best of our knowledge, there have been no
reports on the former type for reaction−outcome prediction
models.

Here, we tested various 2D and 3D molecular descriptors in
enantioselectivity ML models for phosphoric acid catalyst
design and propose model construction schemes with high
predictive capability focusing on a small number of reactions.
Descriptor comparison was performed using a HTE data set to
fully evaluate the descriptors with statistical significance. To
mimic a real-world situation when the reaction data from
various data sources are combined to make ML models,
different reaction mechanisms including substrates and
phosphoric acid catalysts were collected. Data-fusion ap-
proaches were tested for this data set. We found that 2D
chemical structural fingerprints were useful for both highly
predictive ML models and interpretation. In data-fusion
approaches, reaction mechanism similarity was not as
important as chemical structural similarity for the model
predictive capability.

■ MATERIALS AND METHODS
Chemical Reaction Data Sets. Two data sets of

organophosphorus-catalyzed asymmetric reactions were pre-
pared. The first was the HTE data set reported by Zahrt et
al.,22 which is called the HTE data set. The second was a
collection of chemical reactions extracted from several research
articles from several research groups, which is called the
literature data set. The chemical reactions in the two data sets
were annotated with the experimentally validated percentage
enantiomeric excess (% ee) as the enantioselectivity of the
product. The HTE data set consisted of 1075 reactions of
enantioenriched N,S-acetal formation catalyzed by chiral
BINOL phosphoric acid derivatives. These reactions were
the exhaustive combinations of five imines, five thiols, and 43
chiral phosphoric acid catalysts, as summarized in Figure 1.

The literature data set consisted of 116 imine-involved
enantioselective reactions manually extracted from seven
research articles.28−34 These reactions can be regarded as a
general reaction form of conversion of an imine electrophile
and a nucleophile with a catalyst to a product. These research
articles satisfied the following criteria: the chemical structures
of the substances and catalysts were present, multiple reaction
types were present, and catalysts with axial chirality (R or S) or
chiral centers were present. A collection of chemical reactions
from different groups contains different scaffolds, making the %
ee prediction task beyond the scope of analogous substances
and catalysts. When nucleophiles or catalysts consist of
different core substructures (nucleophiles and catalysts in
Figure 2), superimposition of the conformers for each reaction
component becomes a nontrivial task, making the calculation
of the conventional 3D reaction descriptors difficult. In this
data set, the chiral phosphoric acid catalysts consisted of four
core scaffolds, and the nucleophiles consisted of six core
scaffolds. The electrophiles consisted of an imine core with
various substituents (electrophiles in Figure 2). Although all
the reactions in the data set can be represented by a general
reaction form, electrophile + nucleophile → product, the
putative reaction mechanisms are different based on the

Figure 1. HTE data set. The reaction data set was extracted from the publication by Zahrt et al.22 This data set contained 1075 reactions of the
exhaustive combinations from the imine group [five substituents for aryl (Ar)], the thiol group (five substituents for R1), and the chiral phosphoric
acid catalyst group (43 substituents for R2).
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nucleophile cores: catalytic asymmetric addition of an amide or

an imide by nucleophilic attack of the nitrogen lone pair (37

reactions), the direct aza-Mannich reaction (66 reactions), and

the Friedel−Crafts reaction (13 reactions). The electrophiles,

nucleophiles, and catalysts of the reactions are shown in Figure
2, and the profile of the literature data set is given in Table 1.

As the objective variable for enantioselectivity, the difference
in the Gibbs free energy of activation between the R and S
isomers was used, which can be converted from the % ee values

Figure 2. Literature data set. The reaction data set was extracted from seven publications.28−34 This data set contained 116 reactions from
combinations of electrophiles (31 substituents for the two R groups), nucleophiles (27 substituents for the six R groups), and catalysts (21
substituents for the four building blocks).
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by the equation ΔΔG‡ = −RT ln +( )100 % ee
100 % ee

,35,36 where T is
the reaction temperature and R is the gas constant (8.314 J
mol−1 K−1). Although this metric uses an absolute enantio-
meric excess and does not distinguish between the R and S
isomers, this elimination, as well as temperature incorporation,
is necessary for integrating the reaction data sets consisting of
diverse chemical structures with different reaction temper-
atures from different sources. The distributions of ΔΔG‡ for
both data sets are shown as histograms in Figure 3. The
median ΔΔG‡ for the HTE data set was 1.05 kcal mol−1 and
that for the literature data set was 1.10 kcal mol−1.

Reaction Descriptors. The reaction descriptors were
based on the chemical structures of the main components of
the chemical reactions: the electrophiles, nucleophiles,
catalysts, and products. For each component, a molecular
descriptor vector was derived, and concatenation of the vectors
formed a reaction descriptor for the reaction.37 To calculate
the 3D descriptors, the force-field-based energy-minimized
conformation was used, which was identified by a con-
formation search using MOE software (version 2020.09,
Chemical Computing Group Inc.) as follows.38 An input
chemical structure, represented as a SMILES string, was loaded
into the software, and explicit hydrogen atoms were added to

the structure, followed by manual curation of the structure, in
particular, fixing the axial chirality when the structure was a
catalyst. A conformation search was then performed by the
command “Conformations: search” using the default settings
with the Amber10 force field. The most stable conformation in
terms of the total energy was selected. For each reaction
component, the most stable conformation was used for the
calculation of the 3D descriptors.

Molecular Descriptors. One of the aims of this study is to
evaluate the reaction descriptors in terms of their predictive
capability for the enantioselectivity of organophosphorus-
catalyzed reactions. Various 2D and 3D molecular descriptors
were used for fair comparison.

3D Descriptors. Dragon Descriptors. Dragon descriptors
are the molecular descriptors implemented in Dragon 7
software (version 7.0) provided by Kode Chemoinformatics.39

The descriptors in the software are a collection of descriptors
proposed in the scientific literature. More than 5000
descriptors are available, which are categorized based on the
descriptor type. Owing to the completeness and diversity of
the descriptor types, Dragon descriptors have been frequently
used for quantitative structure−activity relationship anal-
yses.40−42 In this study, 10 3D descriptor groups were
considered (the number of descriptors is given in parentheses):
geometrical descriptors (38), 3D matrix-based descriptors
(99), 3D autocorrelations (80), RDF descriptors (210), 3D-
MoRSE descriptors (224), WHIM descriptors (114), GET-
AWAY descriptors (273), Randic molecular profiles (41), 3D
atom pairs (36), and CATS 3D descriptors (300). Estrada-like
index (EE_M(w)) descriptors were not considered because
they cannot be calculated for chiral phosphoric acid catalysts.
MOE Descriptors. The MOE descriptors were the

descriptors calculated by MOE software (version 2020.09).
The implemented descriptors mainly focus on the properties
for molecular interaction in medicinal chemistry, such as the
polar surface area and molecular shape. The calculated
molecular properties (energies) at the semiempirical quantum
mechanics level were also included. In this study, all the
available 3D descriptors (138) were considered. The names
and definitions of the descriptors are given in Table S1. For the

Table 1. Literature Data Set Profile

ΔΔG‡ [kcal mol−1]

literature
ID

number
of

reactions
putative reaction

mechanism average minimum maximum

028 20 Mannicha 0.92 0 1.51
129 24 Mannicha 1.03 0.11 1.53
230 14 Mannicha 0.68 0 1.23
331 13 Additionb 1.65 0.06 3.13
432 8 Mannicha 0.22 0.06 0.75
533 13 Friedel−Craftsc 1.73 1.22 1.98
634 24 Additionb 1.51 0 3.13

aDirect aza-Mannich reaction. bCatalytic asymmetric addition of an
amide (imide) by nucleophilic attack. cFriedel−Crafts reaction.

Figure 3. Enantioselectivity: ΔΔG‡ values of the reactions in the data sets. The histograms show the distributions of the objective variables for the
(A) HTE data set and (B) literature data set.
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chiral phosphoric acid catalysts, 18 out of the 138 descriptors
could not be calculated (Table S2), leading to a 120-
dimensional vector for a reaction component.
Average Steric Occupancy Descriptors. The average steric

occupancy (ASO) descriptor of a molecule is a numerical
vector in which each variable represents the average occupancy
of a grid cell by an ensemble of conformers of the molecule.22

Because the descriptor values are averaged over the feasible
conformers, conformational flexibility can be taken into
account, and thus, it is a 3.5-dimensional (3.5D) descriptor.
To calculate the ASO descriptors, grid cells surrounding a
molecule are first defined, and conformational alignment
(superimposition) of analogous molecules is then performed.
Although it is difficult to superimpose nonanalogous molecules
inside the predefined grid cells in a consistent manner, ASO
descriptors can give an interpretation of a prediction model
when the modeling algorithm is linear regression. This is
similar to molecular interaction-field-based descriptors, such as
CoMFA combined with linear regression models (partial least-
square regression).43−45 In this study, ASO descriptors were
only used for the HTE data set. The calculated ASO descriptor
values for the HTE data set were downloaded from a website46

as csv files provided by Zahrt et al.22

2D Descriptors. Extended Connectivity Fingerprints.
Extended connectivity fingerprints (ECFPs) are atom-centric
circular fingerprints. The atom environment for each atom
becomes a feature component of an ECFP. Each feature
generates a hash number, and a collection of the hash numbers
forms an ECFP. In this study, the ECFP with a bond diameter
of 6 (ECFP6) was used.47 To avoid bit collision when making
a fixed-sized bit vector (assigning different hash values to the
same bit), a feature set generated by ECFP6 was first folded
into a large bit vector by modulo operation (1,000,000 bits),
followed by the operation of removing the bits consisting of
zero. This bit reduction process was performed on a
component basis: electrophiles, nucleophiles, catalysts, and
products. The ECFP6 descriptors were calculated by in-house
Python scripts with the aid of the OEChem toolkit.48

Mol2vec Descriptors. The Mol2vec descriptor is the
descriptor generated by a Mol2vec model. This descriptor is
a fixed-sized numerical vector obtained by summing the feature
vectors of the atom environments. An atom environment is
represented by an ECFP hash value, and the Mol2vec model is
trained to find vector embeddings for the hash values taking
the similarity among the different atom environments into
account. For a molecule, all the feature vectors of the atom
environments are summed, which becomes a Mol2vec
descriptor. The Mol2vec model is usually trained on a large
compound data set to learn the unbiased similarity among the
atom environments.

To generate the Mol2vec descriptors, the ChEMBL24
database (1,646,866 compounds),49 part of the Reaxys
database (232,104 compounds),50 and the HTE data set (78
compounds) were prepared to train a Skipgram-based Mol2vec
model.51 To train the Mol2vec model, a hash value of an ECFP
atom environment formed a word, and it was assigned to its
central atom. The aligned hash values on the canonical
SMILES string order formed a molecular sentence. A
collection of the sentences was used to train the model, and
the word (hash value) embedding was extracted from a hidden
layer vector of the model. All the feature vectors in the
molecule were summed to form the final Mol2vec descriptor.

Machine Learning. ML models can estimate ΔΔG‡ of a
reaction by inputting a value of the chemical reaction
descriptor. As modeling algorithms, extreme gradient boosting
(XGBoost) and support vector regression (SVR) were used.
XGBoost models were constructed with the XGBoost libraries
(version 1.4.0),52 and SVR models were constructed with the
scikit-learn (version 0.24.2) libraries. For SVR, the hyper-
parameters C and ε were set to 10.0 and 0.1, respectively,
which were the settings in scikit-learn.53,54 Two kernel
functions were also tested: rbf and polynomials with degrees
of 2 and 3. To interpret the outcome of a SVR model, the
Tanimoto kernel (vide infra) was used in combination with the
ECFP descriptor.55

Evaluation Metrics. The ML model performance was
evaluated by the mean absolute error (MAE)

= | |
=n

y yMAE
1

i 1

n

i i

where n is the number of data, ŷi is the predicted value for the
ith sample, and yi is the measured value. The MAE is a more
rigorous metric for a data set containing outliers than the root-
mean-squared error, and thus, it was used in this study.

Interpretation of the SVR Prediction Outcome Based
on the Fragment Contributions. Interpretation of the
prediction outcome generated by a ML model is important for
practical applications. This gives more information than a mere
prediction of the enantioselectivity (ΔΔG‡). Because SVR
(support vector machine) models combined with the
Tanimoto kernel generally achieve high prediction accuracy
in activity prediction, only SVR with the Tanimoto kernel was
considered in this study.

The prediction outcome by a SVR model with the Tanimoto
kernel function can be decomposed into the contributions of
the descriptors.56 The outcome of a SVR model is as follows
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where K is the kernel function, α and α* are Lagrange
multipliers on the dual problem of the objective function, and i
is an index of the support vectors (SVs). f(x) is a linear
combination of the kernel functions on the SVs and x
(weighted on α or α*, αα* = 0). The Tanimoto kernel is
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where d is a dimension of the D dimensional fingerprint.
Inserting the Tanimoto kernel equation into the SVR
prediction function gives
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Therefore, the outcome of the SVR model can be
decomposed into individual descriptor contributions without
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approximation. Because each bit of an ECFP vector represents
an atom environment, the normalized summation of the
contributions matching the atom becomes the total contribu-
tion of the atom. Visualization of the atom contributions to the
molecular structure was performed by the procedure proposed
by Bajorath et al.56,57

■ RESULTS AND DISCUSSION
Study Design. HTE Data Set. Using the HTE data set, the

MAE values in ΔΔG‡ prediction by several ML models were

compared for several reaction representations: Dragon, MOE,
Mol2vec, ASO, and ECFP6. Four data-splitting strategies were
tested to understand the prediction models from different
perspectives: random splitting, 80% ee splitting, silyl splitting,
and out-of-sample splitting. For random splitting, the training
reactions were randomly selected from the HTE data set. The
number of training reactions varied (10, 20, ···, 100 and 100,
200, ···, 1000), and the rest of the reactions became the test
reactions. For each number of training reactions, the prediction
trial was repeated 100 times by different random splitting to
assure statistical validity. For 80% ee splitting, the reactions
with less than 80% ee were added to a training pool, and the
reactions with greater than or equal to 80% ee were added to a
test pool, as in a previous study.22 The training pool consisted
of 718 reactions with low % ee values, and the test pool
consisted of 357 reactions with high % ee values. For this
splitting, each training data set was constructed by randomly
sampling a predefined number of reactions from the training
pool. These numbers varied (10, 20, ···, 100 and 100, 200, ···,
700). For silyl splitting, the reactions with catalysts containing
a silyl group were the test data set, and the reactions with
catalysts not containing a silyl group were the training pool.
The test-data-set size was 100 (four catalysts), and the
training-pool size was 975 (39 catalysts). A predefined number
of reactions was sampled from the training pool for each
training data set. The number of training reactions varied (10,
20, ···, 100 and 100, 200, ···, 900). For the out-of-sample
splitting, a training data set and three test data sets were

prepared in the same way as in previous studies.22,58 The
training data were 384 reactions which were the combinations
of 16 substrates and 24 catalysts. The remaining 691 reactions,
which were not overlapped in both substrates and catalysts
with the training data set, were further classified into three test
sets. The first data set consisted of reactions with the same
substrates but different in catalysts (termed test sub), the
second with the same catalysts but different in substrates (test
cat), and the last with both different substrates and catalysts
(test sub-cat). The number of training reactions varied (10, 20,
···, 100, 200, 300, and 384).

After evaluating the predictive capability of the ML models
with various reaction representations and modeling methods,
interpretation of the prediction outcome was performed to
identify the chemical structural features responsible for high
(low) % ee as examples of several reactions in a test data set.
This was performed to understand the model, as well as to gain
insight into the reactions for further optimization of the

Figure 4. Model performance against the data-set size. Prediction
accuracy against the training-data-set size for the HTE data set by
XGBoost. The average of the MAEs for the test data sets is plotted
against the training-data-set size. For each size, the training data sets
were randomly sampled from a total of 1075 reactions, and the rest of
the reactions formed the test data set. An XGBoost regression model
was constructed using a training data set, and the MAE was measured
for the test data set. This procedure was repeated 100 times. The
error bars correspond to the standard deviations of the MAEs. The
descriptors for model construction were Dragon (3D), MOE (3D),
ASO (3.5D), Mol2vec (2D), and ECFP6 (2D).

Figure 5. Extrapolated prediction capability for the HTE data set. The
average of the MAEs for the test data sets is plotted against the
training-data-set size for the (A) 80% ee splitting and (B) silyl
splitting data sets.

Table 2. ΔΔG‡ Prediction Performance for the Out-of-
Sample Data Setsa

descriptor test sub (216) test cat (304) test sub-cat (171)

Dragon 0.141 0.419 0.471
MOE 0.150 0.480 0.545
ASO 0.144 (0.161b) 0.285 (0.211b) 0.311 (0.238b)
Mol2vec 0.131 0.344 0.404
ECFP6 0.135 0.215 0.212
One-hot 0.253 (0.178d) 0.575 (0.447d) 0.444 (0.507d)
MFFc 0.137d 0.254d 0.262d

aMAE [kcal mol−1]. bReported performances in a previous study.22
cMultiple fingerprint features. dReported performance in a previous
study.37
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components of the reactions. For interpretation, a SVR model
was trained on 100 reactions obtained by random splitting,
which showed sufficient predictive capability. The model was
selected from a set of 100 models trained on the same number
of reactions based on the closeness to the average MAE over
the 100 trials for fair comparison.
Literature Data Set. The predictive capability of ΔΔG‡

prediction models was investigated in terms of the training-
data-set size, reaction representations, and ML algorithms in
the same way as in random splitting using the HTE data set.
The number of training reactions was varied from 10 to 100,
and the MAE values for the test reactions that were not
included in the training data set were calculated. For each
training-data-set size, 100 trials were performed.

Next, we investigated how much of the reaction data with
different putative reaction mechanisms contributed to the
improvement of the predictive ability of the ML models. For

Figure 6. Model interpretation for the HTE data set. For six example reactions, the contributions of the fragments to the SVM prediction outcome
are visualized with colors. The positive contributions are highlighted in orange, and the negative contributions are highlighted in blue. The degree
of nontransparency reflects the intensity of the contribution. The reaction IDs are given in the second column from the left. The rightmost column
shows the prediction outcomes.

Figure 7. Prediction capability for the literature data set. The average
of the MAEs for the test data sets is plotted against the training-data-
set size.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03812
ACS Omega 2022, 7, 26952−26964

26958

https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03812?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03812?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


this purpose, reactions in each paper formed a test data set, and
four training data sets were prepared for each test data set: all,
the same reaction mechanism, in the cluster (cluster), and
outside the cluster (outside the cluster). The “all” data set
consisted of the rest of the literature data set: the remaining
reactions after the test data set was extracted. The same
reaction mechanism data set consisted of the reactions of the
same putative reaction mechanism (Table 1). The cluster data
set consisted of the reactions belonging to the same cluster in a
reaction descriptor space. The outside cluster data set
consisted of the reactions belonging to the different clusters
in the reaction descriptor space. The ECFP6-based reaction
representation was used for this purpose, and the number of

clusters was determined to be three based on an ELBOW plot
(Figure S8). These benchmark calculations were investigated
to reveal a reasonable way to integrate data sets from different
sources, that is, mechanism-based or reaction similarity-based.

Prediction Capability of the ML Models for the HTE
Data Set. General Performance. The five descriptors listed in
the Materials and Methods section, Dragon (5659 dimen-
sions), MOE (534 dimensions), Mol2vec (1600 dimensions),
ASO (8548 dimensions), and ECFP6 (839 dimensions), were
evaluated using the data sets obtained by random splitting
with, partial least-squares regression, the decision tree, SVR,
and XGBoost. Overall, XGBoost showed the best predictive
capability in terms of the MAE (Tables S3−S7). Therefore,
further discussion is limited to XGBoost with the five reaction
representations. A recently proposed neural network-based
fingerprint, bidirectional encoder representations from the
transformer (BERT)-based reaction fingerprint (rxnfp),59 was
also evaluated for predictive capability for this data set using
the default setting for fingerprint generation. However, the
performance was worse than other representations (Table S8);
thus, we did not consider this fingerprint for further analysis.

The MAE values for the test data sets plotted against the
training-data-set size (up to 300) are shown in Figure 4.
Overall, the MAE values decreased as the training-data-set size
increased. The differences in the MAE values among the
representations became smaller as the number of training
reactions increased. The average MAE range of the five
representations for a training-data-set size of 100 was 0.0630
kcal mol−1 and that for a training-data-set size of 300 (1000)
was 0.00911 kcal mol−1 (0.00164 kcal mol−1). The order of the
predictive capability for the different representations was
consistent for different training-data-set sizes. Ranking the
representations by the MAE, ECFP6 > ASO > Dragon
(Mol2vec) > MOE (paired t-test at a significance level of
0.05). The results for training-data-set sizes larger than 300
were not significantly different in the MAE values among the
different representations (Figure S1). Notably, the ECFP6
representation showed acceptable accuracy even for a training-
data-set size of 100. The ECFP representation is atom-
centered structural features extracted on chemical graphs (2D
representations). This simple feature was better than more
complicated 3D or 3.5D representations in terms of the MAE.
Predictive Capability for Extrapolated Reactions. For the

80% ee splitting data sets, the MAE values for the test data sets
for training-data-set sizes of up to 300 are shown in Figure 5A
and those for training-data-set sizes of larger than 300 are
shown in Figure S2. The baseline of the MAE values was
higher than that for the random splitting data sets (Figure 4).
ECFP6 was the best representation, and it was statistically
significantly better than the second-best representation ASO
(paired t-test, significance level of 0.05). The order of the other
three descriptors was not consistent as the training-data-set
size varied.

For the silyl splitting data set, the performance using the
ECFP6 representation was the best irrespective of the training-
data-set size (Figures 5B and S3). For the ECFP6
representation, the trend of the MAE value against the
training-data-set size was different from those of the other
representations: the MAE value decreased as the training-data-
set size increased, while the other representations showed the
opposite trend. An ECFP is a collection of bits, and each bit
corresponds to an atom-centric fragment (atom environment).
The environments of the atoms of the silyl group were ignored

Figure 8. Y−Y plots for the literature data set using the XGBoost
models. The predicted ΔΔG‡ values are plotted against the observed
values. The training reactions are in blue, and the test reactions are in
red. ECFP6, Dragon, and MOE were tested as reaction
representations.
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in the prediction models using the ECFP6 representation. The
superiority of the ECFP representation can be explained by the
presence of silyl groups at the 3 and 3′ positions of BINOL-
derived catalysts in this reaction might not be important for the
enantioselectivity. Although the ECFP approach of not using
the atom information of the silyl group seems to be reasonable
as it does not add any uncertainty or speculation to the model,
the performance might change if the silyl groups have a
significant effect on the enantioselectivity. This finding is
supported by the Dragon and MOE descriptors showing
poorer performance as the number of training data increased.
These models performed better for random splitting as the
training-data-set size increased (Figure 4). In other words, the
models constructed with more training reactions predicted
ΔΔG‡ better for a test data set exhibiting the same distribution
as the training data set. Both descriptors distinguish atom types
in various ways and reflect the differences in the descriptor
values (e.g., the molecular weight). The finely tuned models
might have an adverse effect on ΔΔG‡ prediction when
encountering outlier values in the independent variables.

Prediction capability for extrapolated reactions was further
investigated using the previously reported data sets by the out-
of-sample splitting,22,58 which was a data-splitting strategy for
combinatorial reactions. Table 2 shows the MAE values of
prediction models for the three test data sets. As a control,
one-hot encoding representation was also tested. Overall, the
ECFP6 representation consistently performed well among the
tested representations including previously reported ones
[ASO and multiple fingerprint features (MFF)]. It should be
noted that in Table 2 MFF and ASO in the previous studies
used different modeling methods from XGBoost used in this
study.

Like the silyl splitting data set, the performance using the
ECFP6 representation was the best irrespective of the training-
data-set size as shown in the MAE values for test data sets for
training-data-set sizes of up to 300 in Figure S4. Furthermore,
differences in MAE values among descriptors were confirmed
by the Y−Y plots (Figures S5−S7). The Y−Y plots for the
Dragon and MOE showed a similar trend to the one-hot
encoding, implying that these representations did not contain
meaningful reaction information for the prediction. The ASO

and Mol2vec descriptors failed to predict high ΔΔG‡ values,
suggesting that they had a narrow adaptive range. On the other
hand, ECFP6 could predict high ΔΔG‡ values better than the
other representations (Figures S5−S7).

From this analysis focusing on the extrapolation ability of
chemical reaction representations, an atom environmental-
based chemical structural fingerprint: ECFP6 showed better
performance than other representations irrespective of sizes of
training data sets.

Interpretation of the Model Outcomes for the HTE
Data Set. The ECFP6 representation showed the best
predictive ability among the five representations for all of the
splitting strategies using the HTE data set. The average MAE
value of the 100 prediction trials using 100 training reactions
was 0.199 kcal mol−1 by the XGBoost models and 0.233 kcal
mol−1 by the SVR model. The performance of the SVR models
was slightly poorer than that of the XGBoost models, but they
were still comparable. The SVR model for model interpreta-
tion was chosen from the 100 constructed models based on the
closeness to the average MAE value (0.233 kcal mol−1).

Visualization of the example reaction outcomes by the SVR
model is shown in Figure 6, in which the atoms and bonds on
the components of the chemical reactions are highlighted. The
only difference between ID1 and ID2 was the substituted
benzene rings at the 3, 3′ positions of the chiral phosphoric
acid catalyst. ID1 showed higher enantioselectivity than ID2.
The difference in the chemical structures clearly highlights the
effect of 2,4,6-trichlorobenzene. The two reactions ID3 and
ID4 (Figure 6) differed only by the direct attachment of
methylene groups to the 3, 3′ positions of the chiral
phosphoric acid catalyst. The enantioselectivity decreased by
0.9 in ΔΔG‡ when inserting methylene groups at the 3, 3′
positions. The atom contributions clearly highlighted this
effect. This led to the interpretation that the rigidness of the
catalyst conformation may be involved in the enantioselectiv-
ity, although ECFP is based on chemical structures (2D). The
two reactions ID5 and ID6 differed in the nucleophile: an
aromatic and an aliphatic thiol, respectively. In the HTE data
set, aromatic thiols generally gave higher enantioselectivity
than aliphatic thiols. A difference between these two functional
groups is the degree of nucleophilicity: aromatic thiols are less

Figure 9. Model outcome interpretation. For two example reactions, the fragment contributions to the SVM prediction outcome are visualized on
the chemical structures. The color scheme is the same as in Figure 6.
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nucleophilic than the corresponding aliphatic thiols. For
aromatic thiols to obtain comparative enantioselectivity to
aliphatic thiols, 5 mol % of the catalyst is required instead of 2
mol %.60 This led to the speculation that chemical reactions
with aliphatic thiols were completed before the catalyst was
actually involved, and thus, they lose enantioselectivity. In this
manner, highlighting the contribution of reaction components’
substructure to the prediction outcome gave the opportunity of
interpreting the reaction based on the chemical knowledge that
chemists possess. To propose a hypothesis, the ECFP
representation with SVR is powerful as a first step to analyze
the reaction data set.

Analysis of the Literature Data Set for Data Fusion.
General Performance. Three descriptors, Dragon (5659

dimensions), MOE (534 dimensions), and ECFP6 (1731
dimensions), were evaluated using the randomly split data sets
with the XGBoost regression model. Mol2vec was not tested
owing to its poor performance for the HTE data set. The MAE
values for the test data sets are plotted against the size of the
training data set (up to 100) in Figure 7. Overall, the MAE
values decreased with increasing training-data-set size. The
differences between the MAE values among the representa-
tions became small as the number of training reactions
increased. The MAE range for a training-data-set size of 100
was 0.0398 kcal mol−1. The order of the predictive capability
for the different representations was consistent regardless of
the training-data-set size. The ECFP6 representation per-
formed the best among the selected reaction representations,
which was the same trend as for the HTE data set.

Y−Y plots of the three representations for 70 training
reactions are shown in Figure 8. Overall, the ECFP6
representation performed better (R2 = 0.69, MAE = 0.275
kcal mol−1) than the Dragon (R2 = 0.57, MAE = 0.306 kcal
mol−1) and MOE (R2 = 0.63, MAE = 0.277 kcal mol−1)
representations. Using Dragon and MOE, the enantioselectiv-
ities for some of the test reactions were reasonably well
predicted, while the enantioselectivities for the other test
reactions were poorly predicted (Figure 8). In contrast, using
the ECFP6 representation did not produce such outliers for
the test data set. Thus, even using a mixed data set from
different sources, the ECFP6 representation was found to be
preferable to the Dragon and MOE representations.

Like the HTE data set, model interpretation of a SVR model
with the Tanimoto kernel was performed using the ECFP6
representation. The predictive ability of the SVR models was
comparable with that of the XGBoost models: the average
MAE of ΔΔG‡ prediction for the 100 SVR models trained on
70 randomly selected reactions was 0.275 kcal mol−1, and it
was 0.268 kcal mol−1 for the XGBoost model. The selected
SVR model for model interpretation showed the closest
predictive ability to the average MAE value (0.275 kcal mol−1).

Two example reactions along with the fragment contribu-
tions to the model outcomes are shown in Figure 9. ID7 was a
Mannich-type reaction from literature 0,28 while ID8 was also a
Mannich-type reaction catalyzed by α,α,α,α-tetraaryl-1,3-
dioxolane-4,5- dimethanols (TADDOL)-derived phosphoric

Figure 10. Visualization of the literature data set on principal
component analysis (PCA) maps. The dots represent chemical
reactions, and the colors represent the three clusters classified by the
k-means. Three reaction representations were tested: ECFP6 (top),
Dragon (middle), and MOE (bottom).

Table 3. Predictive Capability for the Data-Fusion
Strategiesa

training data set

literature ID
as test data

cluster
ID

same reaction
mechanismb allc

in the
clusterd

outside the
clustere

028 0 0.460 0.362 0.457 0.385
129 1 0.573 0.440 -f (0.440)
230 0 0.432 0.400 0.411 0.445
331 2 0.842 0.378 0.312 0.792
432 2 0.949 0.500 0.171 0.925
533 2 -f 0.776 0.731 0.700
634 2 0.512 0.505 0.539 0.857

aThe MAE values [kcal mol−1] for the literature data set by data-
fusion strategies are shown. The best performance is highlighted in
bold. bOnly reactions classified under the same putative reaction
mechanism are shown in Table 1. cAll of the reactions in the literature
data set. dReactions in the same cluster in the ECFP6-based reaction
descriptor space. eReactions not belonging to the cluster where the
test reactions belonged. fNo training data.
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acid from the literature.30 The hydroxyl group on the phenyl
ring next to the imine nitrogen has been reported to be
important for high enantioselectivity in this type of Mannich
reaction.28,30,61 This information can be derived from the
highlighted fragments by the SVR feature contribution
method. Furthermore, for ID8, the trifluoro groups at the 4-
positions of the phenyl rings in the catalyst were also reported
to be important for the selectivity.30 Small positive
contributions were given to the substructures (ID8). Extracting
the fragment contributions to the model outcome and their
visualization were found to be important by retrospective
validation using the two data sets.
Data Fusion of Different Reaction Mechanisms and

Sources. Visualization of the reaction space for the literature
data set is provided in Figure 10 using three reaction
representations: ECFP6, Dragon, and MOE. On the three
plots, three clusters are represented in different colors, which
were determined by k-means clustering in the ECFP6-based
reaction descriptor space. The number of clusters was
determined based on the ELBOW plots. Although the
reactions were obtained from seven different research papers,
similar reactions existed based on the ECFP6 reaction
descriptors, resulting in the three clusters in the reaction space.

Each literature sub-data set, identified by the literature ID,
became a test data set in turn. Four strategies of training-data-
set compilation for the XGBoost models were tested: all, the
same reaction mechanism, in the cluster, and outside the
cluster, as explained in the Study Design section. The
predictive capability in terms of the MAE is summarized in
Table 3. Overall, the same reaction mechanism and outside the
cluster showed lower prediction capability than all and in the
cluster. Outside the cluster was a type of negative control.
Collecting and using putative reaction data for model
construction did not improve the performance. However,
using similar reaction data (i.e., in the cluster) showed notable
performance improvement for ID3 and ID4. The reactions in
ID4 were Mannich type with an acetylacetone as the
nucleophile. The other reactions in the same cluster (clusters
ID0, ID1, and ID2) were also Mannich type but with a silyl
enol ether nucleophile. The same core scaffolds were not
necessary for performance improvement. This also indicated
that reaction similarity in terms of the ECFP6 representation
was important to collect and identify the training data.
Prediction for the ID5 data set was not good by any of the
strategies. This might be due to the absence of reactions with
similar mechanisms: the reactions in ID5 were Friedel−Crafts-
type reactions, also due to the descriptor dissimilarity indicated
by the Dragon and MOE PCA maps (Figure S9).

■ CONCLUSIONS
A retrospective study of predictive ML models for phosphoric-
acid-catalyzed asymmetric reactions has been performed. From
analysis using the HTE data set (enantioenriched N,S-acetal
formation catalyzed by chiral BINOL phosphoric acid
derivatives), the ECFP6 representation was found to be the
best representation among the Dragon, MOE, Mol2vec, ASO,
and ECFP6 representations. The ECFP6 representation
combined with SVR and the Tanimoto kernel function was
able to give reasonable interpretations of the model outcomes
for several example test reactions, which would lead to further
catalyst development. From analysis using a small-size
literature data set consisting of different reaction mechanisms
from different sources, ECFP6 was also found to be the best

representation. This analysis also revealed that reaction-
mechanism-oriented data-fusion approaches were not as
good as simple similarity-based approaches in the ECFP6
reaction descriptor space.
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