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ABSTRACT: Cancer is a lethal disease that affects numerous
people worldwide. Chemotherapy stands as one of the most
effective treatment regimens to combat cancer. Nevertheless,
anticancer drugs face a high failure rate due to safety and efficacy
issues. Drug failure could be subdued by instigating drug leads with
reduced toxicity and enhanced efficacy. Computer-aided drug
discovery endorses drug leads in manoeuvring protein and ligand
structures or representations. Simplified molecular input line entry
system (SMILES) is a linear notation representing the three-
dimensional structure of a molecule using symbols and
alphanumeric characters. SMILES representation hoards rings
and scaffold structures in its depiction. Mining ring and scaffold
patterns from molecular SMILES would assist in ascertaining
biological properties based on molecular patterns. Moreover, the emergence of artificial intelligence (AI) technologies would
accelerate identification of efficient anticancer drug leads. AI algorithms proclaimed for their pattern recognition ability could be
employed for identifying molecular patterns from SMILES representation, thereby enabling property prediction. Consequently, we
developed a multilayer perceptron (MLP) model for the prediction of anticancer activity using SMILES of NCI-60 cancer growth
inhibition data. Furthermore, the top 8 frequent scaffolds were identified on preliminary analysis of cancer growth inhibition data
and ChEMBL drugs. The developed MLP model classified anticancer and nonanticancer compounds with a classification accuracy of
0.92. Also, benchmarking of the developed model with machine learning algorithms exhibited better performance of the MLP model.

1. INTRODUCTION
Cancer is a genetic disease characterized by uncontrolled
proliferation of cells due to aberrations in genes,1,2 mRNAs,
miRNAs,3 proteins,4 and metabolites.5 The key processes that
are involved in tumor pathogenesis are referred to as hallmarks
of cancer that include cell death resistance, deregulation of
cellular metabolism, sustenance of proliferative signaling,
obstructing immune destruction, inducing vasculature, repli-
cative immortality, evading growth suppressors, activation of
invasion and metastasis, and so forth. Treatment strategies
include chemotherapy, which is one of the most common
therapies recommended to cancer patients by clinicians.
Chemotherapy mainly involves targeting the hallmarks of
cancer with chemical molecules to inhibit tumor pathogenesis.
Drug molecules inhibiting these key processes include cyclin-
dependent kinase inhibitors, epidermal growth factor receptor
inhibitors, telomerase inhibitors, vascular endothelial growth
factor signaling inhibitors, and so forth. Despite numerous
types of inhibitors, chemotherapy faces a high drug failure rate
due to low efficacy and safety issues. Nonspecific activity and
side effects are some of the major reasons for anticancer drug
attrition at different phases of clinical trials. Hence, drug leads
with more specificity and less toxicity need to be explored.

Moreover, the conventional drug development process is
time-consuming and laborious. To accelerate the identification
of potential anticancer drug leads, robust drug discovery
methods must be implemented. After the boom of artificial
intelligence (AI) technologies, various aspects of the drug
development process have been impacted by AI algorithms,
viz., lead identification, target identification, survival prediction,
and so forth. AI algorithms known for their robust pattern
identification through abstract and hierarchical data represen-
tations have been deployed in drug discovery research.6

Multilayer perceptron (MLP) is a form of deep neural network
with one or more hidden layers. It is primarily composed of
three layers, viz., an input layer, hidden layer(s), and an output
layer. MLP is a feed-forward neural network that uses a
backpropagation algorithm to minimize the error in prediction.
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MLP models could maneuver complex nonlinear problems and
are also robust for large data sets.
In this study, we propose an MLP-based model to predict

the anticancer properties of chemical compounds using
simplified molecular input line entry system (SMILES).
Chemical SMILES are linear notation of molecules and are
represented by a combination of alphabets (symbols of atomic
elements), numbers, and special characters. Atoms, bonds,
branches, and rings and cyclic structures are depicted in
SMILES. These linear notations are rendered by applying
graph theory on molecules.7,8 Rings, cyclic structures, and
other molecular patterns are depicted in the SMILES
representation.
Molecular SMILES have been employed in substructure

searching and quantitative structure−activity relationship
(QSAR) predictions9−16 SMILES-based descriptors have also
been used for property prediction. For instance, SMILES
representation of quantum-chemical data set was used for
prediction of nine molecular properties including heat capacity,
HOMO energies, dipole moment, electronic polarizability,
energy separation between HOMO and LUMO states and four

other thermodynamic properties.17 Similarly, the quantitative
structure−activity (QSAR) model for toxicological carcinoge-
nicity prediction of drugs using TD50 values has been
developed using SMILES-based descriptors.18 Furthermore,
QSAR models for bioactivity prediction of aromatase
inhibitors using SMILES have also been developed.9 Employ-
ing SMILES alleviates the development of property prediction
models devoid of using descriptor selection and molecular
geometrical optimization methods. Developed MLP model
would predict anticancer activity using SMILES information
on chemical compounds. Also, benchmarking of the developed
MLP model depicted better performance than compared
machine learning algorithms. Schematic representation of
scaffold analysis and model development has been summarized
in Figure 1.

2. RESULTS
2.1. Frequent Scaffold Analysis. Observing the vast

chemical space of drugs reveals that certain rings and cyclic
structures are privileged and also that entry of new ring
systems in drug space is less common.19 Likewise, analysis of

Figure 1. Schematic representation of molecular scaffold analysis and MLP model development.

Figure 2. Top 8 frequent scaffolds occurring in (A) ChEMBL drug molecules and (B) NCI-60 screened compounds. Number in the bracket refers
to as the order of frequency of occurrence. Number below each substructure refers to as the frequency of scaffold occurring in the data set.
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ring replications in the drug space emphasizes novel
configurations of existing drug molecules rather than a
completely novel molecule.20 Analysis of frequent scaffolds
occurring in the ChEMBL drug molecules and NCI-60 cancer
data set revealed top 8 frequent scaffolds occurring in both the
data sets (Figure 2). The frequent occurrence of these
substructures indicated a recurrence of molecular scaffolds in
drug-like molecules. Frequency of the most common scaffold
occurring in CHEMBL data set was 762, whereas it was 2155
in the NCI-60 data set. Similarly, frequency of the eighth most
commonly occurring scaffold was 36 and 134 in CHEMBL and
NCI-60 data sets, respectively. Replication of rings and
scaffolds implied inclination of drug space to certain structures.
In other words, there was preference in molecular patterns in
drug space.

2.2. MLP Model for Anticancer Property Prediction.
The proposed multi-layer perceptron model has one input
layer, two hidden layers, and one output layer for training of
molecular SMILES to identify patterns and predict anticancer
property. SMILES notation represents molecules in a linear
string of alphabets and symbols. One-hot encoded SMILES
matrix of the NCI-60 cancer growth inhibition data set was
padded with a maximum length of 421 characters (i.e., length
of the longest SMILES in the NCI-60 data set). Prior to
training, data set was processed to harmonize class imbalance.
NCI-60 data set was imbalanced with a greater number of
active compounds. Imbalance in the data set was handled using
the Synthetic Minority Oversampling TEchnique (SMOTE)
oversampling technique. SMOTE generates synthetic data
points for minor class (i.e., nonanticancer), thereby reducing
the class imbalance and improving the model performance.
The MLP model was optimized by hyperparameter tuning.
Extensive and grid search methods were used for the
hyperparameter search. Kernel initialization assigns random
weights to initialize the network. HeNormal was used for
kernel initialization, which initializes weights using a truncated
normal distribution. The learning rate scheduler tunes the
learning rate during the training iterations. Decay learning rate
set reduces the learning rate by a factor of 0.96. Early stopping
regularizes the network based on the monitored metric, which
avoids overfitting. During early stopping, validation loss was
monitored across training iterations. ReLU and Sigmoid

activation functions were used for hidden and output layers,
respectively. Adam optimization algorithm was used to
minimize the loss function. Cross-entropy function calculates
loss between actual and predicted labels. Binary cross-entropy
loss function was used in the developed MLP model. The
proposed MLP model classifies the data into binary labels
anticancer and nonanticancer.

2.3. MLP Model Performance. The MLP model trained
with NCI-60 data set had an accuracy of 92% and Matthew’s
correlation coefficient (MCC) of 0.84. Precision−recall (PR)
and receiver operating characteristic (ROC) curves were
generated (Figure 3). The PR curve (Figure 3A) gives a trade-
off between precision and recall at the threshold of 0.5. Area
under the PR curve was 0.91 that showed higher precision with
low false positive rate (FPR) and higher recall with a low false
negative rate and had a mean precision of 0.82. The ROC
curve (Figure 3B) shows an AUC of 0.92. The ROC curve was
plotted with true positive rate, TPR (recall) and FPR. Area
under the ROC curve (AUROC) gives an aggregate perform-
ance measure of the model. AUC ranges from 0 to 1, where 0
refers to as the incorrect classifier and 1 refers to as the perfect
classifier. AUC of the MLP model was 0.92, confirming better
performance in classifying anticancer and nonanticancer
classes.
Performance metrics like precision, recall, and F1-score were

calculated for developed MLP and compared to other machine
learning algorithms (Table 1). The performance metrics for
anticancer and nonanticancer class are shown in (Figure 4).
The precision score is given as the ratio of true positives (TP)

Figure 3. Precision−recall (PR) plot and ROC curve. (A) PR curve plotted with precision and recall values of the MLP model and (B) ROC curve
showing AUC of 0.92.

Table 1. Overall Performance Metrics for Both Classes of
MLP and Compared Algorithms

Algorithm precision recall F1-score MCC accuracy

MLP 0.97 0.87 0.92 0.84 0.92
SVC 0 0 0 0 0.50
logistic regression 0 0 0 0 0.50
decision tree 1 0.07 0.13 0.18 0.54
AdaBoost 0.86 0.83 0.85 0.70 0.84
CatBoost 0.90 0.89 0.91 0.81 0.90
XGBoost 0 0 0 0 0.50
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to the sum of TP and false positives (FP). Higher precision
implies that the classifier makes accurate predictions. Precision
scores of anticancer and nonanticancer class were 0.97 and
0.87, respectively. Recall score is given as the ratio of TP to the
sum of TP and false negatives (FN). The MLP model had
recall scores of 0.86 and 0.97 for anticancer and nonanticancer
classes, respectively. F1-score is calculated as the harmonic
mean of precision and recall scores. Unlike accuracy, F1-score
measures the predictive ability of the model based on the class-
wise performance. F1 score values range from 0 to 1, where 0
represents poor and 1 represents good classifier, respectively.
The MLP model had F1-score of 0.91 and 0.92 for anticancer
and nonanticancer classes, respectively.
Confusion matrix gives information about correct predic-

tions and model errors. It is a 2 × 2 matrix calculated based on
TPs, FPs, true negatives (TN), and FNs. The matrix represents
actual and predicted values or labels. The MLP model
classified 22,804 compounds (0.97) correctly as positive,
which are truly anticancer (TPs). Similarly, 20,218 compounds
(0.86) were correctly classified by the model as negative which
are truly nonanticancer (TNs). FPs (type I error) and FNs
(type II error) classified by the model were 705 (0.3) and 3291
(0.14), respectively (Figure 5).

2.4. Model Comparison with Machine Learning
Algortihms and Cross-Validation. The MLP model was
benchmarked against the support vector machine, logistic
regression, decision tree, AdaBoost, CatBoost, and XGBoost
algorithms. Performance comparison of the MLP model with
other algorithms are given in Table 1. Comparison of the MLP
model against boosting and other classification algorithms
depicted better performance of the MLP model. Performance
metrics viz., precision, recall, and F1-score were compared

(Figure 4). Among the algorithms compared with MLP,
CatBoost had good performance with a classification accuracy
of 0.90 followed by AdaBoost with an accuracy of 0.84.
However, MLP outperformed all other compared algorithms
with a classification accuracy of 0.92. Precision scores of MLP
for anticancer and nonanticancer class were 0.97 and 0.87
which were higher to all compared algorithms, except for
AdaBoost and CatBoost algorithms. AdaBoost had similar
precision score (0.87) for negative class, whereas CatBoost had
a higher precision score of 0.99 for nonanticancer class that is
higher than MLP. XGBoost had the lowest precision score of 0

Figure 4. Performance comparison of the MLP model with other machine learning algorithms (A) accuracy, (B) precision, (C) recall, and (D) F1-
score.

Figure 5. Confusion matrix for the MLP model showing true labels
and predicted labels classified by the MLP model.
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for nonanticancer class. The MLP model had recall scores 0.86
and 0.97 for anticancer and nonanticancer classes. F1-score of
MLP for both classes were higher (0.91 and 0.92). F1-scores of
nonanticancer classes of SVC, logistic regression, and XGBoost
were 0. Performance metrics were also calculated separately for
anticancer and nonanticancer classes of MLP and compared
algorithms (Table S1). Furthermore, MLP was cross-validated
to avoid overfitting and to evaluate the generalization capacity
of the model on unseen data. k-fold cross-validation of the
MLP model was carried out in five validation folds (k = 5).
Performance metrics of MLP K-fold cross-validation were
computed. Five-fold cross-validation carried out resulted with
mean training and validation accuracy of 0.89 (89.44) and 0.89
(89.38), respectively (Table S2). Also, the MLP-based model
showed better performance compared to existing methods.
CDRUG server was not accessible. Hence, AUROC reported
earlier was taken for performance comparison.21 MLP had an
AUC of 0.92 higher than the reported CDRUG AUROC of
0.88. pdCSM when tested with compounds screened for breast
cancer had an AUROC of 0.49. Further evaluation of the MLP
model carried out with independent ChEMBL data set resulted
in AUROC of 0.60. Despite lower performance on
independent data set, AUROC of the MLP model is better
than AUROC of pdCSM.

3. DISCUSSION AND CONCLUSIONS
Computational techniques for pattern identification, substruc-
ture searching, and molecular property prediction have been
widely applied in computer-aided drug discovery and QSAR.
Scaffold analysis identified frequently occurring scaffolds in the
NCI-60 growth inhibition data and the ChEMBL32. Scaffolds
are core structures and building blocks of chemical molecules.
Identification of scaffolds assists in an intuitive understanding
of shape features or molecular patterns. Scaffold analysis
leverages frequent occurrence of certain molecular patterns in a
particular pharmacological or bioactivity space. Inevitably this
suggests the functional relevance of molecular patterns as well
as the need to be identified and privileged for the clinical
success of drugs. AI algorithms recognize and learn patterns
from trained data and predict similar patterns in newly trained
or untrained data. MLPs have been widely implicated to solve
nonlinear problems and known for its application in pattern
identification studies.22 Multilayer artificial neural networks
with back-propagation algorithm for error rate optimization
were implemented for pattern recognition.23 In MLPs, pattern
recognition tasks are carried out in three layers, viz., input,
hidden, and output layers. Hidden layers of MLP allow
deciphering complicated patterns via nonlinear transformation
of the data set. Besides hierarchical representations of data
learned in hidden layers assist in capturing interpretable
intermediate patterns in the data set.24 The foremost hidden
layer receives inputs (In) from the input layer with associated
weights (wn) and is followed by inclusion of bias (b) to
generate output signals to be forwarded in the network. Output
of the hidden layer (H1) can be given as

H I w I w I w In wn

b

1 1 2 2 3 31 = × + × + × + ··· + ×
+ (1)

Propagation of output signals from hidden layers and output
prediction based on the recognized pattern in the output layer
are determined by activation functions used in these layers.25

In QSAR, MLPs were used in the prediction of toxicity,26

bioactivity for antibreast cancer drug development,27 blood−
brain barrier permeability for discovery of CNS (central
nervous system) therapeutic drugs,28 and so forth. Rings, cyclic
structures, and other molecular patterns are encompassed in
the SMILES representation. Like the word syntax in natural
languages, SMILES harbors patterns or scaffolds syntactically
in terms of molecular organization, symmetry, and topology.7

These patterns might be extrapolated to the pharmacological
or bioactivity space. Learned patterns via molecular SMILES in
relevant anticancer drug space could assist in identifying
inherently favored anticancer leads. Consequently, identified
high-quality anticancer leads would assist in the development
of efficient drugs with potent anticancer activity.
Pattern recognition can be performed in different types of

data representations, viz., text, image, video, and so on.
SMILES are textual notation of molecules obtained based on
molecular graph theory and harbor ring and cyclic structures in
its depiction. Exploiting different learning algorithms on
molecular SMILES enables the identification of underlying
patterns in the molecules. Implying the similarity structure
principle, the properties of unknown molecules could be
unveiled using machine learning algorithms. SMILES of
chemical compounds were one-hot encoded to train the
MLP model for prediction of anticancer activity. One-hot
encoding transforms string data into numerical values, easing
application of learning algorithms for training. Encoding data
using multidimensional binary vectors becomes advantageous
when the relationship between data points is not ordinal. One-
hot encoding is a vital text preprocessing step in many NLP-
related tasks. Simple one-hot vector representations enable
straightforward implementation providing nuance predictions
by including all unique categories or texts or strings. Hence,
distinctive patterns could be ideally identified, allowing precise
predictions. Moreover, training using one-hot vector repre-
sentations is computationally less expensive compared with
other embedding representations. Most commonly, biological
data sets are imbalanced. Training of machine and deep
learning models using imbalanced data might lead to
classification bias.29,30 Hence, to subdue class imbalance
different sampling techniques were being implemented viz.,
oversampling,31 undersampling,32 hybrid sampling,33 and so
forth. SMOTE is a robust oversampling technique used to
overcome class imbalance and depends on the pattern
augmentation.34 Synthetic data instances generated by
SMOTE in minority class intensifies the class boundaries by
boosting minority patterns, thereby increasing classification
accuracy.35 SMOTE was used in combination with different
algorithms to handle imbalance data sets so as to improve the
classification accuracy.36,37 Employing SMOTE oversampling
enriches the data set to be variegated, thereby reducing
overfitting and improving the generalization capacity of the
model with better performance metrics.38 Moreover, over-
sampling the data sets using SMOTE reduces classification bias
toward the highly populated class in the real data. However,
noise introduced due to synthetic data points generated during
SMOTE oversampling might also lead to overfitting,
furthermore affecting the generalization ability of the model.
Accordingly, hyperparameter optimization and k-fold cross-
validation were implemented to curb overfitting and improve
the generalization ability. Consequently, the MLP model
developed in this study for anticancer property prediction had
good performance with a classification accuracy of 92%.
According to the similar property principle, molecules which
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are structurally similar would possess similar biological
property.39 SSP has been implied in various property
prediction studies using fingerprints, substructures, and other
parameters. We suggest that the proposed MLP model would
predict the anticancer activity of any other molecules by
identifying the presence of patterns in SMILES pertinent to
anticancer activity. As the model is built using SMILES
representation, it could handle diverse molecular structures
represented in the textual form. Generalization ability
evaluated using k-fold cross-validation highlights the propitious
performance of the MLP model on unseen data. Also,
comparative assessment indicated better performance of the
developed MLP model over other similar algorithms and
existing methods. However, evaluation of the MLP model on
independent data set showed that performance of MLP to be
not exorbitant suggesting for improvement to achieve better
model performance. We recommend exploring more robust
algorithms for data set sampling and model training for
enhancement of the model performance. Additionally, different
descriptors could be utilized for anticancer property prediction,
exploiting varying types of molecular representations using
machine and deep learning algorithms. This would accelerate
anticancer drug discovery research by assisting in the
identification of prominent anticancer drug leads. Hence, we
also suggest that anticancer property prediction can become
more effective by deploying AI learning algorithms on various
types of molecular data representations or descriptor
information.

4. METHODS
4.1. Data Set Retrieval and Preprocessing. Molecular

SMILES and bioactivity values (IC50) of chemical compounds
tested against different cancer cell lines were retrieved from
NCI-60 growth inhibition data [NCI-60 Growth Inhibition
Data, NCI Developmental Therapeutics Program (DTP) Data,
NCI Wiki (nih.gov)] (accessed on 24/06/2023). NCI-60 data
embody compounds screened against various cancer cell lines
to identify molecules with potential anticancer activity either
by inhibiting or killing cancer cells. Human cancer cell lines
screened are representatives of different types of cancers, which
include blood cell (leukemia), skin (melanoma), breast, lung,
brain, kidney, ovary, prostate, and colon cancers. A list of NCI-
60 human cancer cell lines used for in vitro screening of
compounds can be found here [Cell Lines in the In Vitro
Screen | NCI-60 Human Tumor Cell Lines Screen | Discovery
& Development Services | DTP (cancer.gov)]. End points of
anticancer activity screens of 47,196 compounds measured in
terms of IC50 and their SMILES were used for training the
MLP model. IC50 is a measure of molecular activity that is
defined as the half-maximal inhibitory concentration and is
used to measure drug efficacy. The retrieved IC50 units were
normalized to μg/mL. Compounds with bioactivity value of
≤500 μg/mL were labeled as active, implying to exhibit
cancerous activity. Similarly, compounds with activity values
≥500 μg/mL were labeled as inactive, implying non-
anticancerous nature. Subsequently, drug molecules from
ChEMBL database (https://www.ebi.ac.uk/chembl/) (ac-
cessed on 04/03/2023) were downloaded. A total of 14,293
drug molecules screened against different ailments along with
SMILES information were obtained. This data set was
preprocessed by removing null values prior to the model
training and scaffold analysis. Furthermore, SMILES of 3144

small molecule drugs with anticancer activity were curated to
perform evaluation of the MLP model on independent data set.

4.2. Scaffold Analysis of NCI-60 and ChEMBL
Molecules. Scaffolds are core structures of chemical
molecules obtained after removing R-group substituents with
only aliphatic linkers between ring systems preserved.40

Molecular scaffolds are privileged in drug space, and entry of
new ring systems into chemical space of drugs is low.19

Scaffold analysis of NCI-60 and ChEMBL molecules was
carried out. Most frequently occurring Murcko scaffolds were
identified using molecular SMILES data. Scaffold frequency is
given as the number of unique scaffolds present in the data set
along with number of molecules in which it is present.

4.3. One-Hot Encoding of Molecular SMILES. Encoding
the SMILES representation of molecules in the form of ones
and zeros is termed as a one-hot encoding of SMILES (Figure
6). To enable one-hot encoding, NCI-60 molecular SMILES

were identified for unique characters. Upper-case and lower-
case letters were also identified, and linear combination was
generated to identify the double character elements. Double
character elements in the data set were converted to single
character. All double characters in the data set were replaced to
single character except for “Cn” and “Sc”. The aromatic carbon
and nitrogen could be depicted as Cn, so it is not replaced.
“Sc” represents Scandium which is rarely present in the drug
molecules. Besides “Sc” could represent sulfur and carbon.
Hence, “Cn” and “Sc” were not replaced. The list of replaced
characters in NCI growth inhibition data is given in Table 2.
Length of longest SMILES in NCI-60 compounds was
identified for padding which is 421 characters. One-hot matrix
was constructed with unique characters in the NCI-60 SMILES
data set.

4.4. Imbalanced Data Set Handling and Data Set
Splitting. The NCI-60 data set has 47,017 compounds with
anticancer activity (anticancer) and only 179 molecules with
no anticancer activity (nonanticancer) (Table S3). Number of
active compounds is higher compared to that of inactive
compounds. Hence, there is a class imbalance between active
and inactive classes. Training the model with an imbalanced
data set would result in a biased model by favoring active class
and overlooking inactive class. To overcome imbalance in the
data set, oversampling technique SMOTE was employed.
k_neighbors parameter was set to 5. After over sampling, the
NCI-60 data set was trained and evaluated with a 25%
independent test split.

Figure 6. One-hot encoding representation of molecular SMILES.
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4.5. MLP Model Implementation and Evaluation. The
MLP model was constructed with one input layer, two hidden
layers, and output layer. Flowgraph of the MLP model is given
in Figure 3. The input layer comprises 421 neurons, whereas
two hidden layers comprise 421 and 25 neurons by first and
second hidden layers, respectively. The output layer has one
neuron (Figure 7). The activation function used in hidden
layers was ReLU, and in the output layer, the Sigmoid function
was used for activation. Kernel initialization was performed
using the He normal initializer. The learning rate decay

schedule was used for tuning the learning rate during training
of the network, and the decay rate was set to 0.96. Early
stopping was used to avoid overfitting. Adam optimization
function was used, and the epsilon was set to 1. Hyper-
parameters were tuned by using manual and grid search
methods. Hyperparameter sets for the MLP network are given
in Table 3.

Performance metrics like accuracy, precision, recall, f1, and
MCC scores were calculated to assess the performance of the
model. Confusion matrix was computed. PR and ROC curves
were generated. To avoid overfitting and to evaluate the
generalization capacity of the model, k-fold cross-validation
was carried out with a k value of 5. Furthermore, the MLP
model was benchmarked by comparing with different
algorithms, viz., support vector machine, logistic regression,
decision tree, AdaBoost, CatBoost, and XGBoost algorithms.
Hyperparameter sets for the compared machine learning
algorithms are given in Table S4. All the codes implemented
for the model training and evaluation are available on the
GitHub repository (https://github.com/TeamSundar/
Anticancer-Activity-Prediction). Performance comparison of
the MLP model with existing methods CDRUG21 and
pdCSM-cancer41 was also carried out.
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La É Zr Ű
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Figure 7. MLP model architecture for anticancer property prediction
comprising an input layer, two hidden layers, and an output layer.
Error minimization is performed using backpropagation algorithm.

Table 3. Hyperparameters of the MLP Model

hyperparameter setting

batch size auto
epochs 200
initial learning rate 0.1
decay rate 0.96
activation function ReLU, Sigmoid
optimization function Adam
epsilon 1
decay steps 100,000
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