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Abstract: Polyploidization has played a prominent role in the evolutionary history of plants.
Two recent and sequential allopolyploidization events have resulted in the formation of wheat species
with different ploidies, and which provide a model to study the effects of polyploidization on the
evolution of gene expression. In this study, we identified differentially expressed genes (DEGs)
between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to
be unevenly distributed among functional categories and duplication modes. We observed more
DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13)
as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than
those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and
non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of
them had only one differentially expressed copy, however, when both copies of a homeolog pair
were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results
suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the
evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role
in the process.
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1. Introduction

Polyploidy, or whole genome duplication (WGD), is a ubiquitous feature in the evolutionary
history of angiosperms [1,2]. Allopolyploidy, the joining of two evolutionarily divergent genomes,
in particular, has played a crucial role in diversification and speciation among vascular plants [3].
Allopolyploid species show wider geographical distributions, occupy more diverse ecological habitats,
and display broader adaptability to various conditions than their diploid progenitors [4].

Extensive gene expression changes following allopolyploidization have been reported in artificially
synthesized and natural polyploid species of various taxa, including Arabidopsis [5], Tragopogon [6],
Gossypium [7], Oryza [8], Triticum [9–11], and others [12,13]. These changes include patterns such as
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non-additive expression and expression dominance. Recently, some studies have focused on the
allelic and homeologous expression changes in polyploid species. Homeologous expression bias and
divergence have been found to increase over time in cotton, rice, and wheat [7,8,10,11]. In tetraploid
cotton species, expression level dominance is primarily due to upregulation or downregulation of the
homeolog expression of the “non-dominant” parent, which suggests the regulation of gene expression
changes in polyploids involves complex cis- and trans-regulation and interactions [7]. In wheat,
newly synthesized and natural tetraploid species showed biased homeolog expression, largely set by
parental genome divergences [11]. This was shown to occur rapidly upon allotetraploid formation,
and this expression asymmetry was further reinforced during evolution and domestication [11].
Because allopolyploid reference genomes are still quite rare, these studies have been restricted to
examining total expression levels (all homeologs summed) or expression ratios between homeologs.
However, currently, little is known about the effect of different ploidy levels on the evolution of
gene expression of different subgenomes. The recent releases of polyploid reference genomes—such
as cotton, peanut, tetraploid wheat, and even hexaploid wheat—have made it possible to do these
analyses in a more refined manner [14–17].

The Triticum-Aegilops complex contains species of different ploidy levels. Thus, it provides an
excellent system to study the impact of differing ploidy levels on the evolution of gene expression.
There are three different ploidies in these wheat species: diploid, tetraploid, and hexaploid wheat.
The two diploid wheat genomes, A and B, diverged from a common progenitor ~6.5 million years
ago (Mya) [18]. The wild tetraploid wheat T. turgidum L. ssp. dicoccoides (BBAA) was formed via
allotetraploidization about 0.5 Mya and through domestication produced a new subspecies, T. turgidum
L. ssp. durum (BBAA) [18,19]. Subsequently, a single or multiple allohexaploidization event(s) between
T. turgidum ssp. durum (BBAA) and goat-grass Aegilops tauschii (DD) led to the establishment of
hexaploid wheat, T. aestivum (BBAADD), which occurred less than 10,000 years ago [18,20] (Figure 1a,b).
Thus, the AA and BB genomes have evolved independently in parallel in different species with three
different ploidy levels for about 8000–10,000 years. In previous studies, the BBAA subgenomes were
‘extracted’ from hexaploid wheat by backcrossing tetraploid wheat TTR13 to hexaploid bread wheat
T. aestivum L. (cv TAA10) as the recurrent parent [21]. The resulting individuals were then propagated
via self-pollination (to eliminate the D-subgenome chromosomes) to form a new BBAA, ‘extracted’
tetraploid wheat (ETW) accessions [21]. Together with a synthetic tetraploid wheat, these tetraploid
wheats present an ideal system to study gene expression changes in AA and BB genomes that have
evolved in different ploidy levels [11].

Figure 1. Diagram of wheat ploidy history and targeted genotypes. (a) Timeline of the two allopolyploidization
events in wheat evolutionary history that resulted in three different ploidy levels, diploid, tetraploid,
and hexaploidy (Marcussen et al., 2014) [18]. (b) The four tetraploid wheats (red color) used in this study
and their relationships in different ploidy backgrounds. In synthetic tetraploid wheat (AT2, SlSlAA),
both AA and BB (Sl~B) evolved in the diploid background; in wild tetraploid wheat (TD, BBAA) and
domesticated tetraploid wheat (TTR13, BBAA), both AA and BB evolved in tetraploid background after
the whole genome duplication 0.36–0.5 Mya; In the extracted tetraploid wheat (ETW, BBAA), both AA
and BB evolved in a hexaploid background before being extracted.
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All flowering plants have undergone at least two rounds of WGD: one in the common ancestor
of seed plants and the second in the common ancestor of angiosperms [1]. Many plant species have
experienced additional subsequent WGDs. Fractionation, a process whereby redundant gene copies
are deleted and remaining genes are reordered often follows these WGDs [22]. In some lineages,
most duplicate genes are lost post-WGD and only a few are retained in duplicate status. The rate of
deletion or retention of duplicate genes following WGD is often biased between subgenomes and
unevenly distributed among different functional categories or gene families [23,24]. The legacies
of ancient WGDs and subsequent evolution can be identified through analysis of within- and
between-chromosome collinearity in a diploid genome [25]. The two diploid wheat genomes AA and
BB have undergone multiple rounds of early WGDs during their evolution [1,26]. Examination of
collinearity of duplicate genes within each diploid genome reveals that genes can be classified into
five categories: singleton (no duplicate), dispersed (duplicated in different places along the genome),
proximal (duplicated, but close to the original copy), tandem (duplicated and directly adjacent),
and WGD/segmental duplicates (several genes duplicated in a similar order) [27]. The evolution
of genes in these five categories, conservation and expression, following tetraploidization and
hexaploidization in wheat is an outstanding question.

In this study, we compared the gene expression of four BBAA tetraploid wheats in which the AA
and BB genomes, either separately or together, came from three different ploidy backgrounds: diploid
(AA and S1S1, from a SlSl

× AA cross mimicking BB × AA in a synthetic tetraploid AT2), tetraploid
(AA and BB in wild tetraploid and domesticated tetraploid wheat), and hexaploid (AA and BB in
an extracted tetraploid wheat) to investigate the evolution of gene expression associated with ploidy
level changes in wheat. We explored differences in the rate of evolution between DEG (differentially
expressed genes) and non-DEG in different types of wheat in this context. Furthermore, we examined
associations between differential gene expression and putative functions, duplication modes (singleton,
dispersed, proximal, tandem, and WGD), and regulatory mechanisms.

2. Materials and Methods

2.1. Plant Materials and RNA-Seq Data

The transcriptome data are from a previously published study but re-analyzed in this study [11].
All sequence data were downloaded from the NCBI SRA database under the accession number
PRJNA272886. RNA-seq data of four wheat genotypes were included: the newly synthesized tetraploid
wheat (AT2: SlSlAA, for the evolution under diploid level), wild and domesticated tetraploid wheat
(TD and TTR13: BBAA, for evolution in a tetraploid nucleus) and the “extracted” tetraploid wheat
from the hexaploid bread wheat (ETW: BBAA) [10,11] (Figure 1a,b). For each genotype, RNA-seq data
of two tissues, young leaves and young inflorescences, were used for analysis.

2.2. Preprocessing and Mapping of RNA-Seq Data

All raw RNA-seq data were mapped to the genome sequences of a tetraploid wheat (T. turgidum
ssp. dicoccoides, “emmer wheat”) [16] using STAR [28] allowing each read to map to at most 1 location
(–outFilterMultimapNmax 1 option). The number of reads mapped to each defined gene region were
counted. The aligned files of different replicates and tissues for each genotype were merged into one
file for calculating coverage of genes. The per-base mapping depth was calculated in exon regions of
primary transcripts for each genotype with BEDTools, BEDOPS and custom Perl scripts [29,30].

2.3. Gene Expression Analysis

To mitigate the effects of sequence variation between genotypes on mapping and expression
analysis, we kept only genes where 85% of the exon regions (primary transcripts) were covered by
uniquely mapped reads (the depth of 85% exon regions were >1 read) in all genotypes. For all genes
in either AA or BB genome, gene expression values were normalized among all samples, and then
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gene expression values for the same tissue compared between different genotypes using DESeq2 [31].
Genes with fold change of expression value >2 and FDR adjusted p-value < 0.05 between genotypes
were classified as differentially expressed genes (DEGs) in each comparison.

2.4. Calculating Ka/Ks Ratio

All raw RNA-seq reads were filtered by “Trim Galore” to remove low quality (<20) and short reads
(<75 bp). For each genotype the combined, cleaned data of all replicates and tissues were mapped to
the coding DNA sequences (CDS) of primary transcripts of emmer wheat genes by BWA-mem with
default parameters [32]. The single nucleotide polymorphisms (SNPs) between each genotype and the
reference sequence were called by a SAMtools and BCFtools [33]. Next, alternative sequences for each
genotype were created by replacing the reference allele with the alternative allele for each called SNP
between the reference and the alternative genotype. For each gene, the newly created coding DNA
sequences between two genotypes were then aligned by “Clustalw” and the Ka and Ks were calculated
through the ‘Bio::Align::DNAStatistics’ BioPerl module in a custom Perl script [34]. Genes without
any synonymous mutations between genotypes were removed from further analysis. For each pair of
genotypes, the Ka/Ks ratios for DEGs and non-DEGs were calculated and compared in R.

2.5. Classification of Genes in Different Duplicate Status within AA or BB Genome

Homology searches were performed within and between AA and BB genomes for all primary
protein sequences using an all-by-all blastp with a cutoff of 1E-10. The blastp result was analyzed
by MCScanX [27] with default parameters for collinear block detection. Genes from either genome,
AA or BB, were classified into five different categories: singleton, dispersed, proximal, tandem,
and WGD/segmental with the “duplicate_gene_classifier” tool in MCScanX.

2.6. GO and Pfam Enrichment Analysis

Protein sequences of all genes from the reference genome were analyzed by InterProScan
(version 5.26–65.0) to obtain predicted Pfam and GO annotations [35]. The p-values for enrichment in
GO categories and protein families were calculated using the hypergeometric method and the p-values
were adjusted by the FDR method (q-values) [36].

3. Results

3.1. Expression Changes in AA and BB Genomes from Different Ploidy Backgrounds

In this study, for simplicity, the term ‘genome’ and ‘subgenome’ are used interchangeably.
Previously published RNA-seq data from two tissues of four different BBAA tetraploid wheat
(Figure 1a,b) were obtained [11]. The RNA-seq reads were mapped to the recently released wild
tetraploid wheat reference genome (T. turgidum ssp. dicoccoides) and the expression of genes were
obtained (Table S1 and Supporting Dataset 1). In total, 27,097 genes were analyzed, 16,526 and 10,571
genes from A and B genomes, respectively. A dendrogram of gene expression showed that samples
clustered into two large groups by tissue, and further into clusters of genotypes (Figure S1). Differentially
expressed genes (DEGs) were identified by comparing expression values (FDR adjusted p-value < 0.05
and >2-fold change in expression) between genotypes. There were significantly more DEGs identified
in ETW (leaves: 8049/29.70%; young inflorescences: 8263/30.49%) than TD (leaves: 6757/24.94%;
young inflorescences: 5006/18.47%) and TTR13 (leaves: 6400/23.62%; young inflorescences: 5037/18.59%)
when each was compared to AT2 (Figure 2, Tables S2 and S3). There were 2683 and 2432 overlapped
DEGs in the three comparisons TD/TTR13/ETW vs. AT2 in leaves and young inflorescences respectively;
however, the DEGs uniquely detected in ETW (leaves: 3415/42.43%; young inflorescences: 3877/46.63%)
were nearly twice of the number in TD vs. AT2 (leaves: 1648/24.39%; young inflorescences: 1175/23.47%)
and TTR13 vs. AT2 (leaves: 1302/20.34%; young inflorescences: 778/15.45%) (Figure S2). By dissecting
DEGs into different genomes, we found genes in BB-genome were more likely to be differentially
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expressed than those in AA-genome in most comparisons (Table S4). We also classified DEGs into
two regulatory directions, either upregulated or downregulated, and found no significant difference
between the numbers of upregulated vs. downregulated DEGs in all comparisons in leaf tissue.
However, in young inflorescences, the numbers of upregulated and downregulated DEGs were
significantly different in all comparisons (binomial test p-value < 0.05) except two (TTR13 vs. AT2 and
ETW vs. TTR13) (Table S5).

1 
 

 
Figure 2. Analysis of differentially expressed genes (DEGs). Number and direction of change of
DEGs identified in comparisons between different wheat genotypes in leaves (upper panel) and young
inflorescences (lower panel). The total number of upregulated and downregulated genes are shown
at top and bottom of x-axis for each comparison. The proportions of AA and BB upregulated DEGs
are shown in red and beige, respectively; The proportions of AA and BB downregulated DEGs were
shown in dark blue and light blue, respectively.

3.2. Enrichment of Gene Functions/Families in DEGs

To explore the relationship between expression changes and gene function, we performed
enrichment analysis of DEGs in gene ontology (GO) and Pfam terms using a hyper-geometric method.
The raw p-values were adjusted by the FDR method. A few GO and Pfam terms were found to be
significantly over-represented in DEGs (q-value < 0.05), indicating functional relevance of the changes
in gene expression between genotypes (Figure 3, Supporting Dataset 2). Some GO terms such as
“Oxidation-reduction process” and “ADP-binding” were found to be over-represented in half or more
of the comparisons (3/6, number of significant comparisons/number of total comparisons) in leaves
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and in young inflorescences (4/6); and some Pfam terms such as “NB-ARC domain” and “Core histone
H2A/H2B/H3/H4” were also significantly over-represented in several comparisons: (2/6) in leaves
and (3/6) in young inflorescences, respectively (Figure 3, Supporting Dataset 2). The DEGs between
extracted wheat ETW and two natural tetraploid wheat (TD and TTR13) were also enriched in the
transcription factor related GO term “sequence-specific DNA binding transcription factor activity”.
Together, these GO and Pfam results suggest that genes in some functional classes or families are more
likely than others to undergo changes in expression during the evolution of polyploid wheat.

Figure 3. Functional enrichment of DEGs. GO (gene ontology) (lower) or Pfam (upper) terms that
were significantly (q-value < 0.05) over-represented in DEGs of three or more comparisons are shown.
The dot sizes correspond to proportions of DEGs and colors correspond to the q-values.

3.3. Distribution of DEGs in Different Duplication Modes

All flowering plants have experienced at least two rounds of ancient whole genome duplication
(WGD), leading to retained syntenic blocks within plant genomes. With this in mind, we used
MCScanX [27] to place all A and B chromosomal genes into five categories based on their modes
of duplication: singletons (no duplication), dispersed (duplicated but not in synteny), proximal
(duplicated but separated by fewer than 20 genes), tandem (adjacent), and WGD (retained in synteny).
We identified 3084 and 2179 ancient WGD genes in A and B genomes, respectively, in the recently
released assembly of wild tetraploid emmer wheat (T. turgidum ssp. dicoccoides) [16] (Table S6).

To explore the relationship between models of duplication and changes in gene expression,
we assessed the proportion of DEGs for each gene duplication mode. The proportion of DEGs in
tandemly duplicated genes ranged from 13.31% to 34.73% in the A genome and from 17.02% to 45.39%
in the B genome, and similar proportions, A: 13.56–37.01%; B: 16.97–44.12%, for proximally duplicated
genes, across tissues. These two gene duplication modes showed a relatively higher proportion of
DEGs than other modes in both genomes for each comparison (Figure 4, Table S7). Singleton genes had
the smallest proportion of DEGs in all comparisons in leaves and two comparisons (TTR13 vs. AT2 and
TTR13 vs. TD) in young inflorescences (Figure 4, Table S7). Dispersed and WGD duplicates showed
slightly higher percentages of DEGs than singletons in all comparisons in leaves but lower percentages
in four comparisons (TD vs. AT2, ETW vs. AT2, ETW vs. TD, and ETW vs. TTR13) in young.
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Figure 4. Proportion of DEGs in five duplication modes in different comparisons. The percentages
of DEGs in AA and BB genome are shown on the up and down sides of x-axis. Different duplicate
modes are shown in different colors in leaves (upper panel) and young inflorescences (lower panel) for
each comparison.

3.4. Distribution of DEGs in A-B Homeolog Pairs

The A and B genomes share a common ancestor ~6.5 MYA, leading to a large number of
orthologous genes between the two genomes, termed “homeologs” in tetraploids. To address changes
in gene expression within and between the A and B genomes, we compared the DEGs and their
homeologous genes as previously identified [16]. In total, 7682 A-B homeolog pairs were studied.
Among them, 1496 (19.4%) to 5360 (69.8%) pairs in leaves and 968 (12.6%) to 5108 (66.5%) pairs in
young inflorescences had at least one differentially expressed copy in comparisons between genotypes
(Table 1). For these homeolog pairs with DEGs, most of them had only one differentially expressed
copy between genotypes (DEG in A or B) and there were more DEGs in B homeologs than in A
homeologs (Table 1). For homeolog pairs in which both copies were DEGs (DEG in both A and B),
we classified them into two types, AB-convergent (both A and B downregulated or upregulated) and
AB-divergent (A and B regulated in opposite directions). We found that homeolog pair with two DEGs
were more likely to be AB-convergent than AB-divergent, especially in the comparisons between ETW
and TD/TTR13, nearly all such pairs (>93%) were AB-convergent (Table 1).

Table 1. Distribution and regulatory types of DEGs in A-B homeolog pairs.

TD vs. AT2 TTR13 vs. AT2 ETW vs. AT2 ETW vs. TD ETW vs. TTR13 TTR13 vs. TD

Leaves a 4418 4136 5360 4694 4651 1496

DEG in A or B b 3839 3646 4502 3788 3715 1363
A-DEG 1312 1206 1806 1841 1817 620
B-DEG 2527 2440 2696 1947 1898 743

DEG in A and B c 579 490 858 906 936 133
AB-convergent 416 330 671 846 892 105
AB-divergent 163 160 187 60 44 28

Young
inflorescences a 2866 2944 5108 3071 1873 968

DEG in A or B b 2621 2675 4352 2543 1598 879
A-DEG 629 645 1648 1169 730 372
B-DEG 1992 2030 2704 1374 868 507

DEG in A and B c 245 269 756 528 275 89
AB-convergent 138 151 588 494 259 69
AB-divergent 107 118 168 34 16 20
a—the number of A-B homeolog pairs with one or two DEGs between genotypes. b—the number of A-B homeolog
pairs with only one DEG between genotypes. c—the number of A-B homeolog pairs in which both copies were
DEGs between genotypes.
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3.5. Relationship between Gene Expression Changes and Selection

To explore the relationship between gene expression changes and selection pressures, we calculated
Ka/Ks ratio for each gene. For clarity, genes were not differentially expressed between two genotypes in
both tissues were grouped into non-DEG category, while genes differentially expressed in either tissue
were grouped into the DEGs category. We compared the Ka/Ks ratios for DEG category and non-DEG
category (Figure 5). Only a small proportion of genes had Ka/Ks ratios larger than 1, suggesting
that these genes have likely experienced positive selection during wheat evolution. For most genes,
the Ka/Ks ratios were less than 1 and the mean Ka/Ks ratio varied from 0.237 to 0.252 in DEG category
and from 0.228 to 0.233 in non-DEG category indicating a predominant role of negative selection on
these genes during the evolution of wheat species. However, overall Ka/Ks ratios in DEG category were
elevated as compared to non-DEG category in all genotype pairs and were also statistically significant
(Mann–Whitney–Wilcoxon Test, p-value < 0.01) except for ETW vs. TD and ETW vs. TTR13 (Table S8)
that indicated a relaxed purifying selection on genes differentially expressed between genotypes.

Figure 5. Distribution Ka/Ks ratios for genes in DEG category (red) and non-DEG category (blue).
Any gene differentially expressed between genotypes in either tissue was grouped into DEG category,
while, others were grouped into non-DEG category. The significance of Mann–Whitney–Wilcoxon test
between DEG category and non-DEG category are shown as ** p-value < 0.01.

4. Discussion

4.1. Effects of Polyploidization on the Evolution of Gene Expression

Changes in gene expression could happen by the onset of polyploidization due to genetic and
epigenetic interactions and de novo changes which have been reported in newly synthesized or recently
formed polyploid plants [37]. In polyploid wheat, rapid and substantial DNA loss has also been
reported in very early generations of synthetics [38,39]. Recent genomics-based studies of bread wheat
revealed that there was extensive gene loss in hexaploid wheat [40]. Moreover, other types of genetic
changes, such as single nucleotide polymorphisms and gene copy number variation have been reported
in different tetraploid wheat genotypes [41]. These genetic variations might have been responsible
for the observed gene expression changes in different polyploid wheats. Along with genetic changes,
heritable epigenetic changes have been reported followed allopolyploidization in wheat that may also
have contributed to the transcriptome changes in the A and B subgenomes of polyploid wheat [42,43].
Indeed, in hexaploid bread wheat, it has been shown that permanent silencing of particular gene
homeologs can be caused by altered DNA methylation [44]. The A and B genomes of ETW experienced
one more polyploidization event and resided in the same hexaploid nucleus with the D genome for
8000–10,000 years before extraction. We found there were more DEGs in ETW than TD and TTR13
as compared to AT2 (4.76–6.08% and 12.02–11.90% more DEGs in leaves and young inflorescences)
(Figure 2 and Table S2). Our results indicate that the period of hexaploidy may have resulted in
accelerated changes in gene expression and led to many irreversible expression alterations in both
the A and B genomes as compared to the natural and domesticated BBAA tetraploid TD and TTR13,
which is consistent with an earlier study based on microarray analysis [10]. Although the extraction
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process of ETW from hexaploid involves a serious of backcrosses and repeated changes of ploidy could
introduce some new genetic and/or epigenetic mutations, there is no evidence that these processes can
lead to enormous gene expression changes [10]. Moreover, these DEGs were found to be enriched in
some GO or Pfam terms indicating that they had functional preferences rather than resulted from the
random changes due to the extraction process. Furthermore, we found that Ka/Ks ratios of genes in
DEG category were higher than those in non-DEG category in TD vs. AT2, TTR13 vs. AT2 and ETW
vs. AT2, indicating that these DEGs experienced relaxed purifying selection. As a matter of fact, the AA
and BB genomes in AT2 had evolved in diploid form before they are artificially synthesized together,
however, the two genomes in the rest BBAA genotypes have evolved in polyploid status since the
onset of the common ancestor of tetraploid wheat (Figure 1). The polyploidization process leads to
gene duplication and functional redundancy. The neo-/non-functionalization hypothesis predicts that
one duplicated gene copy can maintain the ancestral function while the other copy is relaxed from
purifying selection [45]. Here, our results suggest that some differentially expressed genes are likely
experienced relaxed purifying selection in the evolution of wheat following allopolyploidization.

4.2. Mode of Ancient Gene Duplication Is Related to Gene Expression Changes

Duplicated genes from the five modes (singleton, dispersed, proximal, tandem, and WGD/segmental
duplicates) identified in the A or B genome are mostly the legacies of ancient WGDs and/or
subsequent gene duplication/diploidization events that occurred before divergence of A and B
genomes [1,2]. Recent studies have shown that genes in different functional categories tend to have
different evolutionary fates after WGDs [23,25,46]. For example, some housekeeping genes and
nuclear-encoded organellar (chloroplast and mitochondria) genes commonly revert to singleton status
after duplication [23,46]. In contrast, transcription factor genes are more likely to be retained as
duplicate after WGDs [25]. These patterns can be explained by the gene balance hypothesis and
its amendment, which posits that stoichiometric or dosage balances of gene products that interact
in networks and functional pathways with other genes are more constrained to lose copies [47,48].
Tandem duplication, on the other hand, is a duplication mechanism distinct from WGD, and thus
tandemly duplicated genes have been proposed to be dosage-insensitive and less regulated by gene
balance [49]. Therefore, genes in different duplicate modes may be subject to different evolutionary
constraints following duplication. Here, we observed that the proportions of DEGs varied across
duplication modes. Singleton and dispersed duplicate genes contained lower proportions of DEGs
than other types, indicating genes in these duplicate modes were more stable in expression during
evolution of different wheat species. Meanwhile, a higher proportion of DEGs was found for tandemly
duplicated genes and proximal genes in all comparisons, suggesting that these genes experienced
faster expression changes, through copy number variation and/or the accumulation of genetic and
epigenetic regulatory mutations. These results indicate that the duplication modes might also affect
the changes of the expression of duplicated genes during polyploid wheat evolution.

4.3. Cis- and Inter-Subgenome Trans-Regulatory Changes Play Roles in the Evolution of Gene Expression in Wheat

Gene and genome duplication have been shown to play important roles in the evolution of
regulatory networks [50,51]. Duplicated genes can undergo rapid expression divergence following
WGDs thus further increase the complexity of their regulatory networks [51]. In tetraploid wheat,
both genes in a homeolog pair would be regulated in the same direction (up or down; convergent) if
they are due to changes in expression or function of an inter-subgenome trans-acting factor; in contrast,
a cis-regulatory change should affect the expression of one copy only. We observed that for A-B
homeolog pairs of DEGs, most of them (>80%) had only one differentially expressed copy from A or B
genome (DEG in A or B), indicating that either expression changes of these genes was due to mutations
in cis-acting regions or these A and B homeologs were regulated by distinct networks (Table 1).
Of the homeolog pairs in which both homeologs (DEG in A and B) were DEGs, we observed more
AB-convergent genes (both up or both down) than AB-divergent genes, particularly in comparisons
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between natural tetraploid (TD, TTR13) and the extracted tetraploid ETW where almost all (>93%)
were modulated in the same direction. This suggests that most differentially expressed homeolog
pairs (DEG in A and B) are likely due to changes in trans-regulatory factors affecting both A and
B-subgenome, which accords with the observation that a transcription factor related GO term were
significantly over-represented in DEGs of ETW vs. TD and ETW vs. TTR13. Together, our results
indicate that changes in both cis- and inter-subgenome trans-regulation playing roles in the expression
evolution of homeologous gene copies during the evolution of wheat at different ploidy levels.

5. Conclusions

In this study, homeologous gene expression changes were investigated in four BBAA tetraploid
wheats in which the AA and BB genomes, either separately or together, came from three different
ploidy backgrounds. Our results indicate that both gene functions and duplication modes are
important factors contributing to the evolution of homeologous gene expression in polyploid wheat,
with polyploidization events playing a major role primarily via relaxed purifying selection on
redundant genes and inter-subgenome trans- regulation. Our results have shed new light on the
post-polyploidization evolution in wheat.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1401/s1.
Figure S1. Dendrogram based on the cluster of gene expression for different replicates in different tissues and
genotypes. Figure S2. Venn-diagram of DEGs among TD/TTR13/ETW vs. AT2. Table S1. Mapping statistics
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